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Abstract—Thermal-to-visible face verification is a challenging
problem due to the large domain discrepancy between the modali-
ties. Existing approaches either attempt to synthesize visible faces
from thermal faces or learn domain-invariant robust features
from these modalities for cross-modal matching. In this paper,
we use attributes extracted from visible images to synthesize
attribute-preserved visible images from thermal imagery for
cross-modal matching. A pre-trained attribute predictor network
is used to extract the attributes from the visible image. Then,
a novel multi-scale generator is proposed to synthesize the
visible image from the thermal image guided by the extracted
attributes. Finally, a pre-trained VGG-Face network is leveraged
to extract features from the synthesized image and the input
visible image for verification. Extensive experiments evaluated on
three datasets (ARL Face Database, Visible and Thermal Paired
Face Database, and Tufts Face Database) demonstrate that the
proposed method achieves state-of-the-art performance. In par-
ticular, it achieve around 2.41%, 2.85% and 1.77% improvements
in Equal Error Rate (EER) over the state-of-the-art methods
on the ARL Face Database, Visible and Thermal Paired Face
Database, and Tufts Face Database, respectively. An extended
dataset (ARL Face Dataset volume III) consisting of polarimetric
thermal faces of 121 subjects is also introduced in this paper.
Furthermore, an ablation study is conducted to demonstrate the
effectiveness of different modules in the proposed method.

Index Terms—Heterogeneous Face Recognition, Visual At-
tribute, Generative Adversarial Network.

I. INTRODUCTION

Face Recognition (FR) is one of the most widely studied
problems in computer vision and biometrics research commu-
nities due to its applications in authentication, surveillance,
and security. Various methods have been developed over
the last two decades that specifically attempt to address the
challenges such as aging, occlusion, disguise, variations in
pose, expression, and illumination. In particular, convolutional
neural network (CNN) based FR methods have gained sig-
nificant traction in recent years [44]. This is mainly due to
the availability of large annotated datasets, affordability of
graphics processing units (GPUs), and trainability of nonlinear
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Fig. 1: (a) Traditional heterogeneous face verification ap-
proaches use the features directly extracted from different
modalities for verification [21], [27], [24], [54]. (b) The pro-
posed heterogeneous face verification approach uses a thermal
face and semantic attributes to synthesize a visible face. Then,
deep features extracted from the synthesized and visible faces
are used for verification.

layers of deep neural networks employing activations functions
(e.g., ReLU, ELU ) that alleviated issues with diminish-
ing/exploding gradients. Many deep CNN-based methods [41],
[49], [56], [5], [44], [43], [8], [58] have achieved state-of-the-
art performances on various FR benchmarks.

Despite the success of CNN-based methods in addressing
various challenges in FR, they are fundamentally limited
to recognizing face images that are collected near-infrared
spectrum. In many practical scenarios such as surveillance in
low-light conditions, one has to detect and recognize faces
that are captured using thermal modalities [22], [47], [51],
[62], [46], [27], [38], [30], [3], [2]. However, the performance
of many deep learning-based methods degrades significantly
when they are presented with thermal face images. For ex-
ample, it was shown in [62], [46], [11], [10] that simply
using deep features extracted from both thermal and visible
facial images are not sufficient enough for heterogeneous face
recognition. The performance degradation is mainly due to
the significant distributional change between the thermal and
visible domains as well as a lack of sufficient data for training
the deep networks for cross-modal synthesis and matching.

Several attempts have been made to address the thermal-
to-visible cross-spectrum FR problem [46], [47], [62], [11],
[63]. Riggan et al.[47] proposed a two-step method (visible
feature estimation and visible image reconstruction) to solve
the heterogeneous FR problem. Zhang et al.[62] proposed a
generative adversarial network (GAN) based method that fuses
different Stokes images to synthesize a visible face image
given the corresponding polarimetric thermal images. Re-

ar
X

iv
:2

00
4.

09
50

2v
2 

 [
cs

.C
V

] 
 1

4 
Fe

b 
20

21



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MONTH 2017 2

Fig. 2: A single generator with multi-scale resolution output is proposed to synthesize high-quality images by leveraging
hierarchical information at different scales. Multimodal Bilinear Pooling (MCB) pooling is proposed to fuse the semantic
attribute information with the image feature in the latent space. In order to make sure that the synthesized image maintains
the identity and semantic attributes, a multi-purpose objective function is adopted which consists of adversarial loss LDi

, L1

loss, perceptual loss LPi , identity loss LIi and attribute preserving loss LAi .

cently, Riggan et al.[46] developed a global and local region-
based method to improve the discriminative quality of the
synthesized visible imagery. Recently, Zhang et al.[63] intro-
duced a multi-stream feature-level fusion method to synthesize
high-quality visible images from polarimetric thermal images.
Though these methods are able to synthesize photo-realistic
visible face images to some extent, the synthesized results in
[62], [45], [46] are still far from optimal and they tend to
lose some semantic attribute information such as expression,
facial hair, gender, etc. Such reconstructions may degrade the
performance of thermal-to-visible face verification.

In this paper, we take a different approach to the problem
of thermal-to-visible matching. Fig. 1 compares the traditional
cross-modal verification problem with that of the proposed
attribute-preserved heterogeneous face verification approach.
Given a visible and thermal image pair, the traditional ap-
proach first extracts some features from these images and then
verifies the identity based on the extracted features [27] (see
Fig. 1(a)). In contrast, we propose a novel framework in which
we make use of the attributes extracted from the visible image
to synthesize the attribute-preserved visible image from the
input thermal image for matching (see Fig. 1(b)). In particular,
a pre-trained VGG-Face model [41] is used to extract the
attributes from the visible image. Then, a novel Multi-Scale
Attribute Preserved Generative Adversarial Network (Multi-
AP-GAN) is proposed to synthesize the visible image from
the thermal image guided by the extracted attributes. Finally, a
pre-trained VGG-Face network is used to extract features from
the synthesized and the input visible images for verification.

The proposed Multi-AP-GAN model is inspired by the
recent works [29], [67], [60], [69], [68], in which deep
supervision [29] is used at intermediate convolutional layers to
learn better feature representations. Specifically, the Multi-AP-
GAN consists of two parts: (i) a multimodal compact bilinear
(MCB) pooling-based generator [13], [14], and (ii) a generator
with the multi-scale architecture. The MCB pooling module
fuses the given attributes with the image features. The multi-
scale architecture aims to improve the synthesis image quality
by leveraging hierarchical representations of CNNs at different
image resolutions.

Fig. 2 provides an overview of the proposed Multi-AP-GAN

framework. A single generator with a series of distinct dis-
criminators are employed to learn the multi-scale adversarial
discrimination at different scales [55]. The generator fuses the
extracted attribute vector with the image feature vector in the
latent space. On the other hand, each discriminator uses triplet
pairs (real image/true attributes, fake image/true attributes,
fake image/wrong attributes) to not only discriminate between
real and fake images but also to discriminate between the
image and the attributes. In order to generate high-quality
and attribute-preserved images, the generator is optimized by
a multi-purpose objective function consisting of adversarial
loss [15], L1 loss, perceptual loss [25], identity loss [62] and
attribute preserving loss.

To summarize, this paper makes the following contributions:
• We propose a novel thermal-to-visible face verification

framework in which Multi-AP-GAN is developed for syn-
thesizing high-quality visible faces from thermal images
guided by facial attributes.

• We propose a single generator with a multi-scale output
architecture and a Multimodal Compact Bilinear (MCB)
pooling module [13], [14] to generate high-quality visible
images.

• A novel triplet-pair discriminator is proposed, where the
discriminator [45] not only learns to discriminate between
real/fake images as well as images/visual-attributes.

• An extended version of the ARL polarimetric thermal
face database consisting of data from 121 individuals is
introduced in this work.

• Extensive experiments are conducted on three different
volumes of the ARL Multimodal Facial Database [22],
[63] as well as the Thermal and Visible Paired Face
Database [35], and comparisons are performed against
several recent state-of-the-art approaches. Furthermore,
an ablation study is conducted to demonstrate the im-
provements obtained by including semantic attribute in-
formation for synthesis.

Note that the proposed Multi-AP-GAN framework can be
viewed as an extended version of our earlier paper in the 2018
BTAS proceedings [11]. However, the generators used in both
papers are quite different. The generator in [11] is a single-
scale generator whereas a multi-scale generator is proposed
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in this paper. Furthermore, a new polarimetric thermal face
dataset consisting of multimodal data from 121 subjects is
introduced in this paper. Extensive experiments and analysis
are presented using the new dataset as well as the Thermal
and Visible Paired Face Database [35].

The rest of the paper is organized as follows. In Section II,
we review a few related works on visible to thermal face syn-
thesis and matching. Details of the proposed Multi-AP-GAN
method are given in Section III. Datasets and corresponding
protocols are described in Section IV. Experimental results
are presented in Section V. Finally, Section VII concludes the
paper with a brief summary and discussion.

II. RELATED WORK

In this section, we review some related works on thermal-
to-visible face synthesis and recognition.

A. Feature-based Thermal-Visible Face Recognition

Traditional thermal-to-visible face verification methods first
extract features from the visible and thermal images and
then verify the identity based on the extracted features (See
Fig. 1). Both hand-crafted and learned features have been
investigated in the literature. Buddharaju et al. [4] proposed a
method that leverages physiological information based on the
superficial blood vessel network for face recognition in themral
imagery. In [57] Wesley et al.presented a comparative analysis
of performance of automated facial expression recognition
from thermal videos, visual facial videos, and their fusion
using principal component analysis (PCA) based features.
Gyaourova et al. [17] proposed a multimodal fusion method
by combining information from both thermal and visible im-
ages for face recognition. Hu et al.[21] proposed a partial least
squares (PLS) regression-based approach for heterogeneous
face matching. Klare et al.[28] developed a generic frame-
work for cross-modal FR based on kernel prototype nonlinear
similarities. Another multiple texture descriptor fusion-based
method was proposed by Bourlai et al.in [54] for cross-modal
FR. In [24] PLS-based discriminant analysis approaches were
used to correlate the thermal face images to the visible face
signatures. Gurton et al.[16] and Nathaniel et al.[50], [52]
proposed to use the polarization-state information of thermal
emissions to enhance the performance of thermal FR. Wu
et al.[59] introduced a disentangled variational representation
for crossmodal matching in which a face representation is
modeled with an intrinsic identity information and its within-
person variations. He et al.[19] proposed a network which
maps both NIR and VIS images to a compact Euclidean
space for matching. Later on, they added more constraints on
the representation by utilizing Wassertain distance [20] and
adversarial learning [18]. Fu et al. [12] proposed a framework
which generates new paired images with abundant intra-class
diversity to reduce the domain gap of heterogeneous face
recognition.

B. Synthesis-based Thermal-Visible Face Recognition

Synthesis-based thermal-to-visible face verification algo-
rithms leverage the synthesized visible faces for verification.

Due to the success of CNNs and recently introduced GANs
in synthesizing realistic images, various deep learning-based
approaches have been proposed in the literature for thermal-
to-visible face synthesis [46], [62], [66], [47], [18], [61]. For
instance, Riggan et al.[47] proposed a two-step procedure
(visible feature estimation and visible image reconstruction) to
solve the cross-modal verification problem. Zhang et al.[62]
proposed an end-to-end GAN-based approach for synthesizing
photo-realistic visible face images from the corresponding po-
larimetric thermal images. Recently Riggan et al.[46] proposed
a new synthesis method to enhance the discriminative quality
of generated visible face images by leveraging both global
and local facial regions.Zhang et al.[63] introduced a multi-
stream fusion-based generative model for cross-modal face
verification. Di et al.[11] proposed a GAN-based network
called AP-GAN to improve the synthesized visible image by
utilizing visual attributes. Di et al.[10] proposed another unsu-
pervised generative model which combines features from both
thermal-to-visible and visible-to-thermal synthesized images
for heterogeneous face verification. Recently Pereira et al. [7]
proposed a generic adaptation-based network for heteroge-
neous face recognition. He et al.[18] proposed a generative
model for thermal-to-visible face synthesis by utilizing texture
inpainting and pose correction. Another improved FusionNet
was proposed in [31], which increases robustness against
overfitting using dropout for a thermal-to-visible generation.
This method was evaluated on the RGB-D-T dataset [39]. Re-
cently, Mallat et al.[34], [6] proposed a cascaded model which
is optimized by the contextual loss [36] for cross-spectrum
synthesis. An attribute-guided visible face synthesis method
using a conditional CycleGAN framework was proposed in
[32].

III. PROPOSED METHOD

In this section, we discuss the details of the proposed Multi-
AP-GAN method (see Fig. 2). In particular, we discuss the
proposed attribute predictor, multi-scale generator, a series of
distinct accompanying discriminators and the loss function
used to train these networks.

A. Attribute Predictor

To efficiently extract attributes from a given visible face,
an attribute predictor is fine-tuned based on the VGG-Face
network [41] using the annotated attributes. This network
is trained separately from Multi-AP-GAN. The fine-tuned
network is used in both obtaining the visible face attributes and
for capturing the attribute loss when training the generator and
discriminator. When fine-tuning the network, a binary cross-
entropy loss is used and the final fully-connected layer has
the same dimension as the number of visual attributes. The
predictor is selected based on the lowest loss error.

B. Generator

A U-net structure [48] is used as the building block for the
multi-scale generator since it is able to better capture the large
receptive field and also able to efficiently address the vanishing
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Fig. 3: The network architecture of multi-scale generator and multimodal compact bilinear (MCB) pooling in details.
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Fig. 4: An overview of the triplet-pair-input discriminator. The
triplet-pair-input discriminator is composed of a conditional
and an unconditional streams. The unconditional stream aims
to discriminate the fake and real images. The conditional
stream aims to discriminate between the image and the cor-
responding attributes. In order to keep the bottleneck feature
map size to be consistent to 8 × 8 for different input image
resolution scale, a different number of downsampling layers
(dash-line cubic) are utilized.

gradient problem. In addition, to effectively combine the extra
facial attribute information into the building block, we fuse the
attribute vector and the image feature in the latent space [45],
[62], [9]. Note that the attributes are extracted from the given
visible face using the fine-tuned model as discussed above.
The generator architecture is illustrated in Fig 3(a).

In our experiments, we observe that simple concatenation
of the two vectors (encoded image vector and attribute vector)
does not work well. One possible reason is that both vectors
are significantly different in terms of their dimensionality.
Thus, we adopt the well-known MCB pooling method [13],
[14] to overcome this issue. Instead of simple concatenation,
MCB leverages the following two techniques: bilinear pooling
and sketch count. Bilinear pooling is the outer-product and
linearization of two vectors, where all elements of both vectors
are interacting with each other in a multiplicative way. In
order to overcome the high-dimension computation of bilinear
pooling, Pham et al.[42] implemented the count sketch of
the outer product of two vectors, which involves the Fast
Fourier Transform (FFT ) and inverse Fast Fourier Transform
(FFT−1). The architecture of the MCB module is shown in
Fig 3(b).

In order to improve the quality of the synthesized visible
images, the proposed single generator utilizes a multi-scale
output architecture. Specifically, the generator G produces
multiple outputs at different resolution scales as follows

G(x, z) = {ŷ1, · · · , ŷs}, (1)

where x, z denote the input thermal image and the extracted
visual-attributes, respectively. Here, {ŷ1, · · · , ŷs} denote the
synthesized images with gradually growing resolutions and ŷs

is the final output with the highest resolution s. In this work,
we set s = 3 where ŷ3 is the 256 × 256 image, ŷ2 is the
128× 128 image, and ŷ1 is the 64× 64 image. These multi-
scale resolution outputs act as a regularizer to the generator
G. Furthermore, they shorten the error signal flow path and
help to improve the training stability [68].

The multi-scale generator network, as shown in Fig. 3(a),
consists of the following components:
CL(64)-CNL(128)-CNL(256)-CNL(512)-CNL(512)-
CNL(512)-CNL(512)-MCB(512)-DNR(512)-DNR(512)-
DNR(512)-DNR(256)-DNR(128)-DNR(64)-DNR(32),
where C stands for the convolutional layer (conv), L stands
for LeakyReLU layer (negative slope=0.02), N stands for
the spectral normalization layer [37], MCB indicates the
Multimodal Compact Bilinear module [13], [14], D stands
for the deconvolutional layer (dconv), and R corresponds
to the ReLU layer. All the numbers in parenthesis indicate
the channel number of the output feature maps. Table I
gives the details of the generator architecture. Note that,
for simplicity, spectral normalization [37], LeakyReLU and
ReLU layers are omitted. In the last three layers, feature
maps are converted into three-channel images by a “to rgb”
block, which consists of one convolutional layer (parameters
are indicated in parenthesis) followed by a Tanh layer.

C. Discriminator

A series of distinct discriminators Di, i = 1, · · · , s are
utilized and trained iteratively with the generator G. For a
certain discriminator at the i-th resolution scale, a patch-
based discriminator [23] is leveraged and it not only aims to
discriminate between real/fake images but also to discriminate
between the image and the corresponding attributes. Similar to
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TABLE I: Architecture details corresponding to the generator network.

conv conv conv conv conv conv conv MCB dconv dconv dconv dconv dconv
(to rgb)

dconv
(to rgb)

dconv
(to rgb)

Input Size 256 128 64 32 16 8 4 2 2 4 8 16 32 (128) 64 (64) 128 (32)
Output Channel 64 128 256 512 512 512 512 512 512 512 512 256 128 (3) 64 (3) 32 (3)
Kernel Size 3 3 3 3 3 3 3 - 3 3 3 3 3 (3) 3 (3) 3 (3)
Stride Size 2 2 2 2 2 2 2 - 2 2 2 2 2 (1) 2 (1) 2 (1)

previous works [45], [68], [64], a triplet of paired image and
attribute is given to the discriminator: real, fake and wrong.
The real pair consists of a real-image (yi) along with the
corresponding true-attributes (z). The wrong pair consists of
a real image (yi) along with wrong attributes (z′). The fake
pair consists of a fake-image (ŷi) with true attributes (z). The
overall adversarial objective function used to train the network
is as follows:

LG =

s∑
i=1

min
G

max
Di

(V i
real + V i

fake + V i
wrong),

V i
real = Eyi∼PY

[logDi(yi)]

+Eyi,z∼PY,Z
[logDi(yi, z)]

V i
wrong = Eyi,z′∼PY,Z

[log(1−Di(yi, z
′))]

V i
fake = Eŷi∼PG(x,z)

[log(1−Di(ŷi))]

+Eŷi∼PG(x,z),z∼PZ
[log(1−Di(ŷi, z))].

(2)

Specifically, each discriminator Di has two streams: condi-
tional stream and unconditional stream. One discriminator on
256× 256 resolution scale is illustrated in Fig. 4. The uncon-
ditional stream aims to learn the discrimination between the
real and the synthesized images. This unconditional adversarial
loss is back-propagated to G to make sure that the generated
samples are as realistic as possible. In addition, the conditional
stream aims to learn whether the given image matches the
given attributes or not. This conditional adversarial loss is
back-propagated to G so that it generates samples that are
attribute-preserving.

Fig. 4 gives an overview of a discriminator at 256 × 256
resolution scale. This discriminator consists of 6 convolutional
blocks for both conditional and unconditional streams. Details
of these convolutional blocks are as follows:
CL(64)-CNL(128)-CNL(256)-CNL(512)-C†NL(512)-C†S(1),
where S stands for the Sigmoid activation layer. Note that
the only difference between the unconditional and conditional
stream is the concatenation of the attribute vector at the fifth
convolutional block. For different discriminator, Di at different
resolution scale, the number of convolutional down-sample
blocks (blocks with dotted lines in Fig. 4) vary, but we keep
the bottleneck feature map at the same size (i.e. 8 × 8). The
architecture details corresponding to the other discriminators
are given in Table II.

D. Loss Function

The generator is optimized by minimizing the following loss

LMulti−AP−GAN = LG+λALA+λPLP+λILI+λ1L1, (3)

†unconditional and conditional streams are shortened for brevity.

TABLE II: Architecture details corresponding to different
discriminators. Numbers in parenthesis indicate the channel
number of the output feature maps. The convolutional layers
have stride size 2.

Discriminator 64x64 Discriminator
128x128

Discriminator
256x256

Convolutional (64)
LeakyReLU

Convolutional (64)
LeakyReLU

Convolutional (64)
LeakyReLU

Convolutional (128)
Spectral Norm
LeakyReLU

Convolutional (128)
Spectral Norm
LeakyReLU

Convolutional (128)
Spectral Norm
LeakyReLU

Convolutional† (256)
Spectral Norm
LeakyReLU

Convolutional (256)
Spectral Norm
LeakyReLU

Convolutional (256)
Spectral Norm
LeakyReLU

Convolutional† (1)
Sigmoid

Convolutional† (512)
Spectral Norm
LeakyReLU

Convolutional (512)
Spectral Norm
LeakyReLU

Convolutional† (1)
Sigmoid

Convolutional† (512)
Spectral Norm
LeakyReLU
Convolutional† (1)
Sigmoid

where LG is the multi-scale adversarial loss in Eq (2) , LP

is the perceptual loss, LI is the identity loss, LA is the
attribute loss, L1 is the loss based on the L1-norm between
the target and the reconstructed image, and λP , λI , λA, λ1 are
the corresponding weights.

1) Multi-scale Perceptual and Identity Loss: Perceptual
loss was originally introduced by Johnson et al.[25] for style
transfer and super-resolution. It has been observed that the
perceptual loss produces visually pleasing results than L1 or
L2 loss. The perceptual and identity losses are defined as
follows

LP,I =

s∑
i=1

3∑
c=1

W∑
w=1

H∑
h=1

‖F (ŷi)
c,w,h − F (yi)

c,w,h‖1, (4)

where F represents a non-linear CNN feature. VGG-16 [53]
is used to extract features in this work. C,W,H are the
dimensions of features from a certain level of the VGG-
16, which are different for perceptual and identity losses.
Since the deeper convolutional layer captures more semantic
information, we choose deeper convolutional feature maps as
the identity loss.

In addition, multi-scale L1 loss between the synthesized
image ŷi and the corresponding real image yi is used to
capture the low-frequency information, which is defined as
follows

L1 =

s∑
i=1

‖ŷi − yi‖1. (5)

2) Multi-scale Attribute Loss: Inspired by the perceptual
loss, we define an attribute preserving loss, which measures the
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error between the attributes of the synthesized image and the
real image. To make sure the pre-trained model captures the
facial attribute information, we fine-tune the pre-trained VGG-
Face network on the annotated attribute dataset and regard the
fine-tuned attribute classifier as the pre-trained model for the
attribute preserving loss. Similar to the perceptual loss, the LA

is defined as follows

LA =

s∑
i=1

‖Q(ŷi)−Q(yi)‖1, (6)

where Q is the fine-tuned attribute predictor network. The
output vectors are from the last layer. As a result the feature di-
mensions C,W,H are omitted in (6). By feeding such attribute
information into the generator during training, the generator
G is able to learn semantic information corresponding to the
face.

E. Implementation

The entire network is trained in Pytorch on a single Nvidia
Titan-X GPU. During the Multi-AP-GAN training, the L1,
perceptual and identity loss parameters are chosen as λ1 = 10,
λP = 2.5, λI = 0.5, respectively. The ADAM [26] is
implemented as the optimization algorithm with parameter
betas = (0.5, 0.999) and batch size is set equal to 1. The
total epochs are 200. For the first 100 epochs, we fix the
learning rate as 0.0002 and for the remaining 100 epochs, the
learning rate was decreased by 1/100 after each epoch. The
feature maps for the perceptual and the identity loss are from
the relu1-1 and the relu2-2 layers, respectively. In order to
fine-tune the attribute predictor network, we manually annotate
images with the attributes tabulated in Table III.

TABLE III: The facial attributes used in this work.

attributes

Arched Eyebrows, Big Lips, Big Nose,
Bushy Eyebrows, Male, Mustache,

Narrow Eyes, No Beard,
Mouth Slightly Open, Young

IV. DATASETS AND PROTOCOLS

In this section, we describe the datasets and the protocols
that we use to conduct experiments. In particular, we describe
the new extended ARL Polarimetric thermal face dataset and
the corresponding protocol that we use in this paper.

A. Extended Polarimetric Thermal Face Dataset

In many recent approaches, the polarization-state informa-
tion of thermal emissions has been used to achieve improved
cross-spectrum face recognition performance [22], [47], [51],
[62], [46] since it captures geometric and textural details of
faces that are not present in the conventional thermal facial
images [51], [22]. A polarimetric thermal image consists of
three Strokes images: S0, S1, S2 where S0 indicates the
conventional total intensity thermal image, S1 captures the
horizontal and vertical polarization-state information, S2 cap-
tures the diagonal polarization-state information [22]. Similar
to [62], [46], we also refer to Polar as the three channel

polarimetric image concatenated with S0 , S1 and S2. These
Stokes images along with the visible and the polarimetric
images corresponding to a subject in the ARL dataset [22]
are shown in Fig. 5. It can be observed that S1, S2 tend to
preserve more textural details compared to S0.

Fig. 5: Sample images from the ARL dataset. (a) Visible,
polarimetric thermal, and Stokes images (S0, S1, S2) corre-
sponding to a subject from the ARL dataset [22]. (b) Sample
visible, conventional thermal and polarimetric thermal images
with different variations from the ARL Dataset Volume III.

The U.S. Army DEVCOM Army Research Laboratory
(ARL) multimodal face dataset consists of polarimetric ther-
mal and visible face image pairs in three volumes. Volume
I consists of the polarimetric thermal and visible images
from 60 subjects, which were collected by the U.S. Army
Research Laboratory in 2014-2015. Frontal imagery with dif-
ferent ranges and expressions are included. Details regarding
this volume can be found in [22] and [63]. Volume II consists
of images from 51 subjects collected at a Department of
Homeland Security test facility. As described in [63], while the
participants of the Volume I subset consisted exclusively of the
ARL employees, the participants of the Volume II collect were
recruited from the local community in Maryland, resulting in
more demographic diversity. In addition, frontal imagery with
various expressions is included in this volume.

In this paper, we present an extension of the dataset
which was collected by ARL across 11 different sessions
over 6 days. We refer to this extended dataset as Volume
III hereinafter. Volume III contains polarimetric thermal and
visible facial signatures from 121 subjects collected at Johns
Hopkins University Applied Physics Laboratory as part of an
IARPA government testing event. There are a total of 5419
polarimetric thermal and visible image pairs with significant
variations (Fig. 5) such as expression, off-pose, glasses, etc.
These variations make the dataset more challenging for cross-
modal face verification. Note that this extended database is
available upon request.
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To be consistent with previous methods [63], [22], the
experimental protocols are defined as follows:
Protocol I: The Protocol I is evaluated on Volume I, which
consists of frontal imagery with range and expression varia-
tions (including neutral expression). Images from 30 subjects
with eight samples for each subject are used as the training
split. Images from the other 30 subjects with eight samples
for each subject are used as the test split. All the samples in
training and test split are randomly chosen from 60 subjects.
Results are evaluated on five random splits. Note that there
are no overlapping subjects between training and test splits.
Protocol II: The Protocol II is evaluated on the extended 111
subject dataset which contains the images from both Volume
I and Volume II. In particular, 85-subject images are used as
the training split and the other 26-subject images are denoted
as the test split. The 85-subject images in training split consist
of all 60-subject images in Volume I and another 25-subject
images randomly selected from Volume II. The other 26-
subject images in Volume II are selected as the test split. As
before, results are evaluated on five random splits [63]. Note
that Volume II consists of frontal imagery with expression
variations only (including neutral expression).
Protocol III: The Protocol III is evaluated only on the Volume
III data consisting of images from 121 subjects. Volume
III includes frontal and off-pose imagery (excludes extreme
pose, e.g. profile), and expression variation (including neutral
expression). Images from 96 randomly chosen subjects are
used as the training split and the images from the remaining
25 subjects are used as the test split. Results are evaluated on
five random splits.

B. Visible and Thermal Paired Face Database

In addition to the ARL dataset, the proposed method is
evaluated on a recently introduced Visible and Thermal Paired
Face Database [35]. This dataset contains thermal and visible
image pairs corresponding to 50 subjects. Each subject partic-
ipated in two different sessions separated by a time interval
of 3 to 4 months. This dataset includes 21 face images per
subject in each session. These images correspond to different
facial variations in illumination, head pose, expression and
occlusion. In total, 4200 images are included in this dataset.
Protocol: Images corresponding to randomly chosen 30
subjects are used as the training split and the images from the
remaining 20 subjects are used as the test split. This results
in 630 paired training images and 420 paired testing images.
There is no overlap among subjects in the training and the test
sets. Results are evaluated on five random splits.

C. Tufts Face Database

We also evaluate the proposed method on a recently pro-
posed Tufts Face Database [40], which contains 1532 paired
visible and thermal face images from 112 subjects. For each
subject multiple images are taken in different conditions. In
particular, each subject has images in 9 different poses, 4
expressions and 1 occlusion with eye glasses. Sample images
from this dataset are shown in 6. The Tufts dataset [40] is

Neutral ExpressionPose Occlusion

Fig. 6: Sample thermal and visible images from the Tufts Face
Database [40] with different variations.

more difficult than the other two datasets as it contains less
number of images per person in each variation.
Protocol: Similar to the previous protocols, images corre-
sponding to 90 subjects are used for training and the images
from the remaining 22 subjects are used for testing. This
results in about 1232 paired data for training and 300 paired
data for testing. There is no overlap among subjects in the
training and the test sets. Results are reported based the
evaluations on five random splits.

D. Preprocessing

In addition to the standard preprocessing, two more pre-
processing steps are used for the proposed method. First, the
faces in the visible images are detected by MTCNN [65].
Then, a standard central crop method is used to crop the
detected faces. Since MTCNN is implementable on the visible
images only, we use the same detected rectangle coordinations
to crop the thermal images, which were already aligned to
the same canonical coordinates as the visible images. After
preprocessing, all the images are scaled and saved as 256×256
16-bit PNG files.

E. Metrics

Once the visible image is synthesized from the input probe
thermal image, we use a pre-trained VGG-Face model [41] to
extract features from the synthesized visible probe image as
well as the visible gallery image to perform cross-modal face
verification. In particular, the verification score is calculated
using the cosine similarity between the two feature vectors.
The cross-modal verification performance of different methods
is evaluated using the Receiver Operating Characteristic (ROC)
curve, Area Under the Curve (AUC) and Equal Error Rate
(EER) measures.

V. EXPERIMENTAL RESULTS

In this section, we demonstrate the effectiveness of the
proposed approach by conducting various experiments on
the datasets described in the previous section. Since the
ARL Dataset contains both conventional thermal (S0) and
polarimetric thermal modalities, we conduct the following
two cross-modal face verification experiments on the ARL
dataset: 1) Conventional thermal (S0) to Visible (Vis) and 2)
Polarimetric thermal (Polar) to Visible (Vis). On the other
hand, the Visible and Thermal Paired Face Database and
the Tufts Face Database do not contain polarimetric thermal
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(a) Polarimetric thermal-to-visible verification (b) Thermal-to-visible verification

Fig. 7: The ROC curve comparison on Protocol I with several state-of-the-art methods: (a) Polarimetric thermal-to-visible
verification performance. (b) S0-to-Visible verification performance. Note that the dotted lines indicate results based on the
ground-truth attributes. The gap between the results with ground-truth attributes and that with predicted attributes demonstrate
the degradation caused by the attribute predictor.

(a) Polarimetric thermal-to-visible verification (b) Thermal-to-visible verification

Fig. 8: The ROC curve comparison on Protocol II with several state-of-the-art methods: (a) Polarimetric thermal-to-visible
verification performance. (b) S0-to-Visible verification performance. Note that the dotted lines indicate results based on the
ground-truth attributes. The gap between the results with ground-truth attributes and that with predicted attributes demonstrate
the degradation caused by the attribute predictor.

images. As a result, we only conduct thermal-to-visible cross-
domain face verification experiments on these datasets.

We evaluate and compare the performance of the pro-
posed method with that of the following recent state-of-the-
art methods [62], [33], [47], [46], [11], [63], [34], [6]. Note
that our previous work [11] can be viewed as a single scale
version of the proposed method. In particular, in [11], we
synthesize images at a particular scale which has the same
resolution as the input. We also conduct experiments with
another baseline method called, Multi-AP-GAN (GT), where
we use the ground-truth attributes in our method rather than
automatically predicting them using the proposed attribute
predictor. This baseline will clearly determine how effective
the proposed attribute predictor is in determining the attributes

from unconstrained visible faces.

A. Results on the ARL Face Dataset

Fig. 7 shows the performance corresponding to Protocol I on
two different experimental settings (i.e S0-to-visible and Polar-
to-visible). Compared with other state-of-the-art methods in
Fig. 7, the proposed method performs better with a larger AUC
and lower EER scores. In addition, it can be observed that
the performance corresponding to the Polar modality is better
than the S0 modality, which also demonstrates the advantage
of using the polarimetric thermal images than the conventional
thermal images. In addition, the gap between the results with
ground-truth attributes (dash-line) and that with the predicted
attributes (solid-line) demonstrates the degradation caused by
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(a) Polarimetric thermal-to-visible verification (b) Thermal-to-visible verification

Fig. 9: The ROC curve comparison on Protocol III with several state-of-the-art methods: (a) Polarimetric thermal-to-visible
verification performance. (b) S0-to-Visible verification performance. Note that the dotted lines indicate results based on the
ground-truth attributes. The gap between the results with ground-truth attributes and that with predicted attributes demonstrate
the degradation caused by the attribute predictor.

Fig. 10: The ROC curve comparison on Thermal-Visible
Paaired Database [35]. Note that the dotted lines indicate
results based on the ground-truth attributes. Similarly, the gap
between the results with ground-truth attributes and that with
predicted attributes demonstrate the degradation caused by the
attribute predictor.

the attribute predictor. The quantitative comparisons, as shown
in the Table IV, also demonstrate the effectiveness of the
proposed method. In addition, compared with the previous
single scale resolution method [11], the proposed multi-scale
algorithm achieves significant improvement: around 4% and
6% on the conventional and polarimetric thermal modalities,
respectively. These improvements demonstrate the effective-
ness of the proposed multi-scale synthesis algorithm.

Furthermore, we also show some visual comparisons in
Fig. 12. The first row in Fig. 12 shows one synthesized sample
using S0. The second row shows the same synthesized sample
using a polarimetric thermal image. It can be observed that
the results of Riggan et al.[47] do capture the overall face

Fig. 11: The ROC curve comparison on the Tufts Face
Database [40]. Note that the dotted lines indicate results based
on the ground-truth attributes. Similarly, the gap between the
results with the ground-truth attributes and that with predicted
attributes demonstrate the degradation caused by the attribute
predictor.

structure but it tends to lose some facial details. Results of
Mahendran et al.[33] are poor compared to [47]. Results of
Zhang et al.[62] are more photo-realistic but tend to lose some
attribute information. The proposed Multi-AP-GAN not only
generates photo-realistic images but also preserves attributes
on the reconstructed images.

Fig. 8 and Table V show the performance of different
methods on Protocol II. These results also demonstrate the
superiority of the proposed method. Note that the performance
of many methods is slightly better in Protocol II than Protocol
I. This is mainly due to the fact that the training dataset is
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Input Riggan et al.[47] Mahendran et al.[33] GAN-VFS [62] AP-GAN [11] Multi-AP-GAN Ground Truth

Fig. 12: The visual comparison of synthesized samples from different methods: Riggan et al.[47], Mahendran et al.[33], GAN-
VFS [62], AP-GAN [11], Multi-AP-GAN, Ground Truth. The first row results correspond to the S0 image, and the second
row results correspond to the Polar image.

Input Pix2Pix [23] CycleGAN [70] GAN-VFS [62] CRN+CL [34], [6] Multi-AP-GAN Ground Truth

Fig. 13: The visual comparison of synthesized images corresponding to Pix2Pix[23], CycleGAN [70], GAN-VFS [62], CRN+CL
[34], [6], Multi-AP-GAN (ours) from the Visible and Thermal Paired Face Database [35].

Pose-Up Pose-Left Pose-Right Pose-Down Occolusion-Hand on Eye Light-Dark

Fig. 14: Some failure cases. Note that extreme pose, illumination and occlusion variations cause the proposed method to
synthesize poor quality images.

larger in Protocol II than Protocol I.

Protocol III results corresponding to different methods are
shown in Fig. 9 and Table VI. Note that face images in
this volume include many variations such as expression, pose,
illuminations and occlusion (glasses). As a result, the perfor-
mance of the methods compared is slightly lower than what
we observed in Protocol I and Protocol II. In general, the
proposed method performs favorably against the state-of-the-
art methods. Note that Pix2PixBEGAN method [23], [1] fails
to generate good quality visible faces from profile thermal face
images. As a result, Pix2PixBEGAN method performs poorly
on this dataset.

We further analyze the cross-modal verification performance
of different methods on different variation settings on Protocol
III. The corresponding results are shown in Table VII. Since
variations like occlusion and illumination are not included in
some subjects, we only use three variations (neutral, expres-
sion, and pose) which are included in all subjects. As can
be seen from Table VII, the performance degradation mainly
comes from pose variations.

B. Results on the Visible and Thermal Paired Face Database

Table VIII shows the performance of different methods on
the Visible and Thermal Paired Face Database. Compared to
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Input Ground Truth

Fig. 15: The visual results of the ablation study for different experimental settings. Given input polarimetric thermal image,
synthesized results using different combination of losses and resolutions are shown successively from left to right. One
intermediate synthesis results L↑AP−GAN , which utilizes 2-scale resolutions 128 × 128 and 256 × 256, is shown here to
demonstrate the progressive improvements obtained by adding multi-scale.

the ARL Face dataset, the performance of every method is
lower on this dataset. This is mainly due to the fact that this
dataset is small in size and contains many facial variations. In
general, the proposed method performs favorably against the
previous methods.

In addition, following the analysis presented in [35], we
also analyze how different variations (i.e. illumination, pose,
expression, occlusion) influence the cross-spectrum matching
performance of our method. As can be seen from the results
in Table IX illumination and pose variations are the two
variations that affect the performance of our method the most.
This analysis is based on the proposed method implemented
with the ground-truth visual attributes.

We also show some visual results in Fig. 13. It can be
observed that Pix2Pix [23] and CycleGAN [70] methods
generate poor quality images with many artifacts. GAN-VFS
et al.[62] is able to synthesize better quality images. However,
this method also introduces some artifacts around the eyes and
mouth regions. The proposed Multi-AP-GAN method not only
generates photo-realistic images but also preserves attributes
on the synthesized images. We also show some images in
Fig. 14 in which the proposed method is not able to produce
good quality images. From these images we see that extreme
pose, occlusion and illumination variations cause the proposed
method to produce poor quality images.

C. Results on the Tufts Face Database
Table X and Fig. 11 show the performance of different

methods on the Tufts Face Dataset [40]. Compared to the
previous two datasets, this dataset is more challenging due
to a large number of pose and expression variations as well
as a few number of images per variation, which leads to the
lower performance of every method. In general, our method
outperforms the other baseline methods on this challenging
dataset by improvements on 1.8 % EER and 2.4% AUC scores
respectively.

D. Ablation Study
In order to demonstrate the effectiveness of different

modules in the proposed method, we conduct the following

ablation study using the Polarimetric thermal modality in the
ARL dataset on Protocol I:

1) Polar to Visible estimation with only L1 (as defined in
Eq. (5))

2) Polar to Visible estimation with L1 and LG (as defined
in Eq. (2))

3) Polar to Visible estimation with L1, LG, perceptual loss
LP and identity loss LI , which are defined as in Eq. (4).

4) Polar to Visible estimation with all the losses as
defined in Eq. (3), by utilizing various solution
scales: LAP−GAN (2562), L↑AP−GAN (1282, 2562),
LMulti−AP−GAN (642, 1282, 2562) respectively.

Fig. 17 shows the ROC curves corresponding to each ex-
perimental setting. From this figure, we can observe that
using all the losses together as LMulti−AP−GAN can obtain
the best performance. Compared to the results between L1

and L1 + LG, we can observe the enhancement provided
by adding the adversarial loss. Compared with the results
between L1 + LG and L1 + LG + LP + LI , we can observe
the improvements obtained by adding the perceptual and
identity loses. On the other hand, one can clearly see the
significance of fusing the semantic attribute information with
the image feature in the latent space by comparing the results
between L1 + LG + LP + LI and LAP−GAN . Additionally,
looking at the comparison with LAP−GAN , L↑AP−GAN and
LMulti−AP−GAN , one can see the successive improvements
by leveraging the multi-scale information.

Besides the ROC curves, we also show the visual results
for each experimental setting in Fig. 15. Given the input Polar
image, the synthesized results from different experimental set-
tings are shown in Fig. 15. It can be observed that L1 captures
the low-frequency features of images very well. L1 + LG

can capture both low-frequency and high-frequency features
in the image. However, it adversely introduced distortions
and artifacts in the synthesized image. In addition, optimizing
LP +LI suppresses these distortions to some extent. Finally,
fusing attributes into the loss on with leveraging multi-scale
resolution (i.e. LMulti−AP−GAN ) can not only improving the
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TABLE IV: ARL Protocol I verification performance comparisons among the baseline methods, state-of-the-art methods, and
the proposed Multi-AP-GAN method for both polarimetric thermal (Polar) and conventional thermal (S0) cases.

Method AUC(Polar) AUC(S0) EER(Polar) EER(S0)
Raw 50.35% 58.64% 48.96% 43.96%

Mahendran et al.[33] 58.38% 59.25% 44.56% 43.56%
Riggan et al.[47] 75.83% 68.52% 33.20% 34.36%

GAN-VFS et al.[62] 79.90% 79.30% 25.17% 27.34%
Riggan et al.[46] 85.43% 82.49% 21.46% 26.25%

AP-GAN [11] 88.93%± 1.54% 84.16%± 1.54% 19.02%± 1.69% 23.90%± 1.52%
AP-GAN (GT) [11] 91.28%± 1.68% 86.08%± 2.68% 17.58%± 2.36% 23.13%± 3.02%

Multi-stream GAN [63] 96.03% 85.74% 11.78% 23.18%
Multi-AP-GAN (ours) 93.61%± 1.46% 90.14%± 2.17% 14.24%± 1.91% 18.20%± 2.65%

Multi-AP-GAN (GT) (ours) 95.29%± 1.39% 92.72%± 2.03% 11.22%± 1.89% 16.05%± 2.15%

TABLE V: ARL Protocol II verification performance comparisons among the baseline methods and the proposed method for
both polarimetric thermal (Polar) and conventional thermal (S0) cases.

Method AUC (Polar) AUC(S0) EER(Polar) EER(S0)
Raw 66.85% 63.66% 37.85% 40.93%

Pix2Pix [23] 93.66%± 1.07% 85.09%± 1.48% 13.73%± 1.38% 23.12%± 1.14%
Pix2PixBEGAN [23], [1] 92.16%± 1.09% 83.69%± 1.28% 15.38%± 1.45% 26.22%± 1.16%

CycleGAN [70] (supervised) 93.11%± 1.02% 87.29%± 1.13% 15.19%± 1.02% 20.99%± 1.19%
Multi-stream GAN [63] 98.00% – 7.99% –
Multi-AP-GAN (ours) 96.55%± 1.12% 91.43%± 0.93% 10.17%± 1.01% 15.86%± 2.13%

Multi-AP-GAN (GT) (ours) 97.68%± 0.78% 91.88%± 0.87% 7.69%± 1.39% 15.29%± 2.36%

TABLE VI: ARL Protocol III verification performance comparisons among the baseline methods and the proposed
method for both polarimetric thermal (Polar) and conventional thermal (S0) cases.

Method AUC (Polar) AUC(S0) EER(Polar) EER(S0)
Raw 73.43% 76.71% 33.56% 30.76%

Pix2Pix [23] 86.78%± 1.84% 86.65%± 1.48% 21.92%± 1.26% 23.12%± 1.77%
Pix2PixBEGAN [23], [1] 71.29%± 1.88% 69.42%± 1.84% 33.83%± 1.68% 36.88%± 1.76%

CycleGAN [70] (supervised) 86.77%± 1.77% 81.80%± 1.67% 21.48%± 1.11% 25.86%± 1.36%
GAN-VFS ‡ [62] 90.20%± 1.85% 87.10%± 1.52% 18.53%± 1.21% 20.22%± 1.92%

Multi-AP-GAN (ours) 92.29%± 1.48% 88.49%± 1.87% 16.26%± 1.12% 19.25%± 1.62%
Multi-AP-GAN (GT) (ours) 93.72%± 1.08% 90.99%± 1.13% 14.75%± 1.36% 17.81%± 1.63%

TABLE VII: Protocol III verification performance with respect to different variations.

Variations AUC (Polar) AUC(S0) EER(Polar) EER(S0)
Neutral 96.77%± 1.25% 94.69%± 1.17% 12.50%± 2.09% 13.38%± 1.48%

Expression 96.77%± 1.91% 92.38%± 1.40% 10.05%± 2.02% 15.18%± 1.58%
Pose 86.62%± 2.39% 82.35%± 2.54% 22.45%± 1.84% 25.76%± 1.95%

Average 93.72%± 1.08% 90.99%± 1.13% 14.75%± 1.36% 17.81%± 1.63%

TABLE VIII: Visible and Thermal Paired Face Database
verification performance comparisons among the baseline
methods and the proposed method for the conventional ther-
mal case.

Method AUC EER
Raw 69.54% 35.39%

Pix2Pix [23] 78.66%± 1.48% 28.39%± 1.14%
Pix2PixBEGAN [23], [1] 73.69%± 1.82% 34.22%± 1.61%

CycleGAN [70] (supervised) 80.24%± 1.31% 26.72%± 1.39%
GAN-VFS ‡ [62] 80.44%± 1.03% 26.33%± 1.19%

CRN + CL ‡ [34], [6] 81.25%± 1.01% 26.01%± 1.23%
Multi-AP-GAN (ours) 81.73%± 0.93% 25.68%± 1.56%

Multi-AP-GAN (GT) (ours) 82.68%± 0.87% 23.16%± 0.98%

TABLE IX: Verification performance with respect to different
variations on the Visible and Thermal Paired Face Database.

Variations AUC EER
Illumination 73.35%± 0.25% 32.60%± 0.43%
Expression 97.25%± 0.68% 7.45%± 1.74%

Pose 78.25%± 1.03% 28.75%± 0.93%
Occlusion 83.98%± 1.33% 24.02%± 1.06%
Average 82.68%± 0.87% 23.16%± 0.98%

performance but also preserves facial attributes. In our study,
we do not see significant more improvement by utilizing more
than 3-scale resolutions.

In addition, we analyze the effect of attributes on the
synthesized images in Figure 16. In particular, given the input
gallery image, we examine how attributes help in synthesizing
a visible image from a thermal probe image. If the probe image
and the input gallery image share the same identity then Multi-

AP-GAN is able to generate attribute preserving visible image.
On the other hand, if the probe image’s identity is different
from that of the gallery image then the proposed method is not
able to synthesize identity preserving visible face. However,
the attributes are still preserved on the synthesized image.
This analysis further demonstrates that the proposed Multi-
AP-GAN method learns the cross-spectral (thermal-to-visible)
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Fig. 16: Analysis of attributes on synthesis. We show the synthesis samples from either conventional or polarimetric thermal
images on both datasets. Given probe (thermal) images and estimated attributes from the gallery (visible) image, our proposed
method can generates attribute preserving (visible) images.

TABLE X: The Tufts Face Database [40] verification per-
formance comparisons among the baseline methods and the
proposed method.

Method AUC EER
Raw 66.73% 38.13%

Pix2Pix [23] 69.73%± 0.92% 35.83%± 0.59%
Pix2PixBEGAN [23], [1] 68.89%± 0.51% 36.88%± 0.43%

CycleGAN [70] (supervised) 71.93%± 1.94% 34.16%± 1.70%
GAN-VFS ‡ [62] 73.78%± 0.46% 32.32%± 0.53%

CRN + CL ‡ [34], [6] 74.90%± 0.56% 31.71%± 0.54%
Multi-AP-GAN (ours) 75.86%± 0.88% 31.14%± 0.74%

Multi-AP-GAN (GT) (ours) 77.38%± 0.98% 29.94%± 0.79%

Fig. 17: The ROC curves corresponding to the ablation study.

translation mapping exactly guided by the visual attributes.

VI. DISCUSSION

The proposed Multi-AP-GAN approach generates better
quality visible images and as a result obtains improved
cross-modal verification performance compard to previous
GAN-based approaches. This can be contributed to the fact
that Multi-AP-GAN uses a better generator which is guided
by visual attributes. The multi-scale generator mitigates the

‡results are obtained after re-implementation due to the limited code
availability.

*features are extracted: https://github.com/TreB1eN/InsightFace Pytorch

receptive-field limitation of the convolutional operation by
leveraging the features corresponding to images at multiple
scales. In addition, visual attributes provide complementary
semantic information for better synthesis. GAN-based methods
such as GAN-VFS [62], Multi-stream GAN [63] and Pix2Pix
[23] are single-scale generators and do not exploit such facial
semantic information during synthesis.

Though our method performs reasonably well on three
datasets, there are some limitations which we hope to over-
come in our future work. Our model requires paired thermal
and visible face images for training, which is laborious and
expensive. Hence, an unsupervised synthesis method that does
not require paired data is needed. Another limitation of our
approach is that it does not work well on extreme pose
variations. We are currently developing a new method that
can deal with this pose issue in heterogeneous face recognition.
We also plan to further investigate the impact of metabolic and
physiologic variability in thermal facial signatures on synthesis
and subsequent recognition performance.

VII. CONCLUSION

We propose a novel Attribute Preserving Generative Ad-
versarial Network (Multi-AP-GAN) structure for thermal-to-
visible face verification via synthesizing photo-realistic visible
face images from the corresponding thermal (polarimetric or
conventional) images with extracted attributes. Rather than use
only image-level information for synthesis and verification, we
take a different approach in which semantic facial attribute
information is also fused during training and testing. Quantita-
tive and visual experiments evaluated on a real thermal-visible
dataset demonstrate that the proposed method achieves state-
of-the-art performance compared with other existing methods.
In addition, an ablation study is developed to demonstrate
the improvements obtained by different combination of loss
functions.
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