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Inverse Biometrics: Generating Vascular Images
From Binary Templates
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Abstract—In this work, we investigate the possibility of gen-
erating grayscale images of finger and hand vein patterns from
their corresponding binary templates. This would allow us to
determine the invertibility of vascular templates, which has impli-
cations in biometric security and privacy. The transformation
from binary features to a gray-scale image is accomplished using
a Pix2Pix Convolutional Neural Network (CNN). The reversibility
of 6 different types of binary features is evaluated using this CNN.
Further, a number of experiments are conducted using 8 distinct
finger vein datasets and 3 hand vein datasets. Results indicate
that (a) it is possible to reconstruct the considered vascular
images from their binary templates; (b) the reconstructed images
can be used for biometric recognition purposes; (c) the CNN
trained on one dataset can be successfully used for reconstruct-
ing images in a different dataset (cross-dataset reconstruction);
and (d) the images reconstructed from one set of features can be
successfully used to extract a different set of features for biomet-
ric recognition (cross-feature-set generalization). The results of
this research further underscore the need for properly securing
biometric templates, even if they are of binary nature.

Index Terms—Inverse biometrics, finger vein recognition, hand
vein recognition, CNN-based reconstruction, template protection.

I. INTRODUCTION

ABIOMETRIC system may be viewed as a pattern recog-
nition system consisting of a sensor module, a feature

extractor module and a comparison module [27]. The sen-
sor module captures the biometric data; the feature extractor
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computes a set of numerical features from the data; and the
comparison module inputs two feature sets and generates a
match score denoting their degree of similarity or dissimilar-
ity. The feature set that is extracted from the biometric data and
stored in a database is often denoted as the feature template.
Since the template is a compact and reduced representation of
the input data, it is commonly assumed that the original data
(e.g., image) cannot be reconstructed from the template. This
has positive implications as far as the security and privacy of
biometric templates are concerned [28].

However, in recent years, researchers have upended this
notion and demonstrated the possibility of reverse engineer-
ing templates and reconstructing the original biometric data
for fingerprint, face and iris modalities [52]. This has raised
privacy and security concerns since the reconstructed image
may divulge information about the individual that was not
evident in the template.

In this work, we consider the problem of deducing palm and
finger vein images from their corresponding feature templates.
The problem is challenging since the feature templates, in this
case, are binary in nature. Further, a number of different fea-
ture extractors have been developed resulting in different sets
of binary templates. The entropy of such binary templates are
very restricted compared to non-binary templates such as the
ones encountered in face and fingerprint recognition.

In a previous work [30], we established the possibility of
deriving finger vein images from their corresponding binary
templates. In this regard, we addressed and demonstrated the
following issues: (a) a suitable CNN architecture to reconstruct
gray-scale images from feature-rich binary images; (b) recon-
structing gray-scale finger vein images from binary templates
pertaining to a single given dataset (i.e., intra-dataset recon-
struction); and (c) reconstructing gray-scale finger vein images
from binary templates in a dataset that was not used for
training the CNN (i.e., cross-dataset reconstruction).

In this work, we extend our study to hand vein patterns.
The cross-dataset (or inter-dataset) reconstruction in particular
poses a security threat for biometric recognition systems that
store binary templates. As there are several publicly available
finger and hand vein datasets, it is possible to extract binary
features from the images in these datasets and use them to train
a CNN model. If this CNN model can ingest binary templates
from previously unseen databases (i.e., databases or datasets
that were not used in the training phase) and reconstruct
the original images, it can lead to possible security viola-
tions. To assess the risk imposed by this attack we conducted
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an inverse biometric threat assessment as proposed by [19]
(IAMR) which is a recent methodology to evaluate inverse bio-
metric approaches. These templates can be input to the trained
CNN model to regenerate digital images which can then be
used to extract additional information about individuals or to
attack the biometric system based on finger/hand vascular pat-
terns. For example, it may be possible to launch a presentation
attack (PA) by generating a physical spoof artifact [57] from
the digitally reconstructed image.

All in all, there are two public PA finger vein datasets, the
VERA-FV Spoofing [58] and SCUT-FVD [49]. Both are based
on paper printouts of the original gray scale sample images.
Hence, if only the binary templates are available, a gray scale
reconstruction (inversion of the templates) to generate the nec-
essary samples for this kind of PA is essential. Moreover, all
existing PAD methods for vascular pattern based biometrics
are trained on gray scale samples as bona fide. Hence, a binary
feature template as an input sample would be detected as an
attack immediately. In order to further motivate the need of the
gray scale reconstruction we evaluated the attack performance
in case a binary template instead of the reconstructed gray
scale image is directly used as an input to the attacked system.

This research is based on our previous work [30], where
we showed that it is possible to reconstruct gray-scale finger
vein images from their binary feature templates. This work
extends our previous research by exploring the invertibility
of 6 different types of binary templates corresponding to 8
different finger vein datasets as well as 3 different hand vein
datasets. While 7 of the 8 finger vein datasets were explored
in [30], the hand vein biometric modality is investigated for
the first time in the current work. In contrast to finger vein
images, hand vein data can be considered more challenging;
on one hand, they have less fine-structured vascular pattern
information and on the other hand they exhibit noise such as
skin texture information, wrinkles and hair. Furthermore, in
our previous work, the performance on the UTFVP finger vein
dataset was inferior compared to the other datasets. This issue
has been addressed in the current paper, resulting in markedly
improved performance on this dataset.

The remainder of the paper is organized as follows:
Section II provides an overview on related work in biomet-
ric image reconstruction from templates. Section III gives
a short introduction to finger vein biometrics and describes
the utilized datasets. Section IV gives a short introduction
to hand vein biometrics and describes the utilized datasets.
Section V discusses the recognition process for hand and vein
biometrics. The proposed CNN-based reconstruction approach
is explained in Section VI. Section VII presents the experi-
mental protocol used and discusses the results, including the
baseline performance, the use of the binary template as attack
sample, the intra- as well as the inter-dataset reconstruction
evaluation and the IAMR assessment. Conclusions and future
work are given in Section VIII.

II. RELATED WORK

Image-to-Image Translation: The phrase “image-to-image
translation” was first coined in [26], and defined as a class of

TABLE I
SUMMARY OF APPROACHES FOR INVERSE BIOMETRICS IN THE CONTEXT

OF HAND GEOMETRY, FINGERPRINTS, IRIS, AND FACE MODALITIES

computer vision tasks where the goal is to learn a mapping to
translate images from domain A to domain B. Image-to-image
translation tasks can be divided into two categories: paired
and unpaired. In paired translation [26], [62], the training data
contains aligned input and output images. Such tasks include
colorizing grayscale images [25], [38], semantic segmenta-
tion [40], and reconstructing objects from edge maps [43]. In
unpaired translation, the alignment between inputs and outputs
in the training data is not defined [68]. An example would be
the transfer of facial attributes [12], [13], [23]. Lack of align-
ment makes unpaired translation an unsupervised task, and
to handle the challenges of unsupervised settings, proposed
methods rely on cycle-consistency and assumption of shared
latent space between the two domains [68].

Convolutional neural networks have been widely used for
image-to-image translation [38], [40]. Traditionally, this task
was formulated as per-pixel classification. Such a treatment,
however, loses the conditional dependency among output pix-
els given the input image [26]. Furthermore, the use of
Euclidean distance results in blurry images. The Pix2Pix [26]
method instead proposed a structured loss using GANs
(Generative Adversarial Networks) to penalize the joint config-
uration of output pixels conditioned on the input image. While
the use of L2 distance in prior work resulted in blurry images,
the use of L1 distance along with GAN-loss in Pix2Pix [26]
resulted in sharp and realistic outputs.

Inverse Biometrics: A recent study by
Gomez-Barrero et al. [19] analyzed the aspect of inverse
biometrics from several points of view, including a compre-
hensive definition of inverse biometrics and an evaluation as
well as a mitigation strategy to handle this potential security
threat. Thus, a two-stage experimental protocol was proposed
for the evaluation of the threat posed by inverse biometric
algorithms by defining four scenarios based on knowledge
about the sample inversion process and the systems that
should be attacked by the inverted samples. More details on
the evaluation are given in Section VII-A and the results on
our gray scale reconstruction are presented in Section VII-E.
Furthermore, the intriguing possibility of deducing biometric
images from their templates has been well explored in the
context of fingerprint, iris, and face modalities. Table I
summarizes the most significant work on this topic.

In the case of fingerprints, Ross et al. [52], [53] and
Feng and Jain [16], [17] demonstrated the viability of gen-
erating fingerprint images from just the minutiae points.
Cappelli et al. [8], [9] showed that it is possible to reconstruct
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fingerprint images from standard ISO fingerprint templates
that contain information beyond just minutiae points. A more
recent work by Cao and Jain [7] presents an advanced
approach based on prior knowledge about the fingerprint ridge
and phase structure, which is encoded as a dictionary of ori-
entation and phase patches. These dictionaries are then used
to reconstruct the orientation field and ridge patterns of the
fingerprint from minutiae information.

In the context of iris, Galbally et al. [18] utilized a proba-
bilistic approach based on a genetic algorithm to perform iris
image reconstruction from binary IrisCodes. Venugopalan and
Savvides [61] developed a scheme to generate a discriminative
texture pattern from an IrisCode with the purpose of embed-
ding this pattern in a different person’s iris image thereby
facilitating a digital spoof attack.

In the area of face recognition, Yan et al. [63] utilised
a generative model based on a variational auto-encoder to
reconstruct face images from disentangled latent representa-
tions. Their results were promising and the reconstructed faces
looked realistic. Another approach to invert face templates was
presented by Mai et al. [42] who utilized a neighborly de-CNN
(NbNet) to reconstruct face images from templates created by
a deep face CNN. In contrast to other modalities like finger-
print and iris, the finger and hand vein features are extremely
sparse and, hence, there is a lot less information available in
the extracted binary templates. Moreover, these images usually
suffer from over/underexposed areas and uneven illumination,
making the vascular pattern barely visible and, in many cases,
leading to broken vein lines and spurious vein lines as well.

Template Protection: This research area is closely related
to inverse biometrics as successfully inverting biometric sam-
ples enables to launch presentation attacks on biometric
systems. One possibility to address the security threat asso-
ciated with inverting biometric templates is the application of
biometric template protection (BTP). Requirements of BTP
methods are specified in ISO/IEC Standard 24745 [1] and
30136 [2], namely, non-invertibility or irreversibility, revo-
cability or renewability, non-linkability or unlinkability and
performance preservation. Three main BTP categories can be
defined [6]: (1) cancellable biometrics (CB) [47], (2) biometric
cryptosystems (BCS) [50], and (3) biometrics in the encrypted
domain (BED) [5].

In the context of vascular biometrics several recent
approaches exist that can be applied to protect the biomet-
ric template. We will not discuss them here in detail, but the
interested reader is referred to [35], [48] for studies on CB
and [10], [15], [22], [64] where various BCS are proposed
and evaluated.

III. FINGER VEIN RECOGNITION

Vascular biometrics, which include finger as well as hand
vein biometrics, deal with person-specific characteristic pat-
terns formed by the human blood vessels. As these vessels
are located inside the human body this biometric modality is
based on an internal biometric trait, similar like retina bio-
metrics. The vascular patterns can be made visible due to
the hemoglobin contained in the blood. This iron-containing

TABLE II
ALL CONSIDERED FINGER VEIN DATASETS, INCLUDING DATASET NAME,
VIEW (DORSAL OR PALMAR; DOR/PAL), NUMBER OF SUBJECTS (SUBJ),
NUMBER OF FINGERS PER SUBJECT (FGS), TOTAL NUMBER OF IMAGES

(IMGS), NUMBER OF SESSIONS (S) AND IMAGE SIZE

protein complex is not only responsible for the red color of
human blood but also has a higher light absorption coeffi-
cient in the near-infrared (NIR) spectrum than the surrounding
tissue. As consequence, the vessel area becomes visible in
captured images as dark lines if NIR illumination and NIR
sensitive cameras [60] are utilized. There are two common
set-ups for the image sensor and light source: reflected light,
where the image sensor and light source are positioned next to
each other on the same side of the finger/hand. The NIR light
enters the tissue from the same side as it is emitted again. In
light transmission set-up, the light source and image sensor are
positioned on opposite sides of the finger/hand and the NIR
light enters the tissue at one side, travels through the whole
finger/hand and exits on the opposite side where it is captured
by the image sensor. In order to ensure a consistent feature
extraction, it is beneficial to extract the person-specific char-
acteristics from a region of interest (ROI, which is a specific
part of the captured image).

A. Utilized Finger Vein Datasets

The utilized finger vein datasets and their characteristics are
summarized in Table II and described in the following.

FVUSM [3]: Contains 5904 palmar finger vein images,
exhibiting a resolution of 640 × 480 pixels, acquired from
123 subjects. All of them participated in 2 acquisition ses-
sions where each time 4 fingers per subject and 6 images per
finger were captured by a custom built capturing device con-
sisting of 850 nm LEDs, an NIR-pass filter and a Sony PSEye
camera.

MMCBNU_6000 [41]: The 6000 palmar light transmission
finger vein images, exhibiting a resolution of 640 × 480 pix-
els, contained in this dataset were acquired from 100 subjects.
From all of them 6 fingers per subject and 10 images per finger
were captured in a single session utilizing a capturing system
based on 850 nm LEDs and a modified webcam. The applied
modification replaces the NIR blocking filter by an 850 nm
NIR-pass one.

UTFVP [59]: Contains 1440 palmar light transmission fin-
ger vein images, exhibiting a resolution of 672 × 380 pixels,
acquired from 60 subjects. From all of them 6 fingers per sub-
ject and 4 images per finger were captured in a single session
utilizing a custom built capturing device using 850 nm LEDs,
a 930 nm NIR-pass filter and a C-Cam BCi5 monochrome
camera.

PLUSVein-FV3 [31]: This dataset contains 4 subsets of
dorsal and palmar light transmission finger vein images:
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Fig. 1. Examples of pre-processed finger vein images (a) and the corresponding extracted features (using the (b) GF, (c) IUWT, (d) MC, (e) PC, (f) RLT
and (g) WLD methods) from all 8 finger vein datasets considered in this study.

Laser Dorsal (PVLD), Laser Palmar (PVLP), LED Dorsal
(PVLEDD), LED Palmar (PVLEDP). Each of these subsets
contains 1800 images, which exhibit a resolution of 200×750
pixels, acquired from 60 subjects. From all of them 6 fingers
per subject and 5 images per finger have been acquired in a
single session. The data acquisition was done by the use of
two different capturing devices based on a IDS UI-ML1240-
NIR camera with an 850 nm NIR-pass filter. Both systems
differ due to the utilized illumination modules: The first one
is based on NIR LEDs with a peak wavelength of 850 nm,
whereas the second one is based on NIR laser modules with
a peak wavelength of 808 nm.

SDUMLA [65]: Contains palmar finger vein images of
left/right index, middle and ring finger from 106 subjects.
From all of them 6 fingers per subject and 6 images per finger
have been acquired in a single session. This results in a total
of 3816 images, each exhibiting a resolution of 320 × 240
pixels.

Fig. 1 shows example images from each of the 8 considered
finger vein datasets. Each dataset exhibits distinct characteris-
tics in terms of extracted ROI, varying vein widths, vein clarity
and contrast, as well as changes in background noise (some
images have a uniform background whereas there are some
artifacts of the capturing device visible in others). All these
varying characteristics increase the reconstruction’s difficulty
as there is a greater variety in the training and testing data.

IV. HAND VEIN RECOGNITION

Hand vein biometrics is closely related to finger vein bio-
metrics. Thus, most relevant characteristics are shared, e.g., the

TABLE III
ALL CONSIDERED HAND VEIN DATASETS, INCLUDING DATASET NAME,
VIEW (DORSAL OR PALMAR; DOR/PAL), NUMBER OF SUBJECTS (SUBJ),
NUMBER OF FINGERS PER SUBJECT (FGS), TOTAL NUMBER OF IMAGES

(IMGS), NUMBER OF SESSIONS (S) AND IMAGE SIZE

used patterns are formed by the blood vessels located inside
the human body. The sole difference is the specific region in
the hand from where the biometric trait is captured. In hand
vein biometrics, the NIR images containing the vascular pat-
terns are acquired from the dorsal or palmar side of the hand
instead of the finger region as done in finger vein biomet-
rics. Although a bigger area can be used to extract biometric
information from the hand region, there are more skin wrinkles
and skin hair on the hand than on the finger, which are prone
to be mistakenly detected as blood vessels and potentially
impacting the recognition performance.

A. Utilized Hand Vein Datasets

The utilized hand vein datasets and their characteristics are
summarized in Table III and described in the following.

CIE-HV [29]: Contains 1200 palmar hand vein images cap-
tured using reflected light illumination. The images have been
acquired for left and right hand in three sessions. All of the
images exhibit a resolution of 1280 × 960 pixels. The acqui-
sition system was made up of a low cost USB camera in
combination with IR emitting diodes.
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Fig. 2. Examples of original images (a) and the corresponding extracted features (using the (b) GF, (c) IUWT, (d) MC, (e) PC, (f) RLT and (g) WLD
methods) from the 3 hand vein datasets considered in this study.

PROTECT-HV [54]: Contains two subsets of left and right
dorsal hand vein images, acquired from 40 subjects, 5 images
per hand. All images exhibit a resolution of 384 × 384 pixels
and were captured using a reflected illuminator equipped with
NIR LEDs with a peak wavelength of 950 nm. The capturing
device is similar to one used for the PLUSVein-FV3 images,
an IDS UI-ML1240-NIR camera with an 950 nm NIR-pass
filter.

VERA [56]: Contains 2200 palmar hand vein images of both
hands captured using reflected light illumination in two differ-
ent sessions. The images with a resolution of 580×680 pixels
were acquired by the application of an Imaging Source cam-
era, containing a Sony ICX618 sensor and a NIR illumination
of LEDs using a wavelength of 940 nm.

Fig. 2 shows example images from each of the 3 consid-
ered hand vein datasets. Similar to the finger vein datasets
depicted in Fig. 1 a great variety of changes among the vari-
ous images as well as vascular pattern characteristics can be
detected, which is expected to increase the difficulty of the
reconstruction task for the hand vein images as well. For fur-
ther information on all utilized finger and hand vein datasets
and the biometric capturing devices used, the interested reader
is referred to [33] and [32], which include an overview and
details about many of the currently available hand and finger
vein datasets as well as the utilized capturing devices.

V. RECOGNITION PROCESS

The usual biometric recognition process consists of data
acquisition and data processing. The first one is not described
as we use already acquired data. The latter one consists of
the pre-processing module, the feature extractor, the biomet-
ric template database, the comparison module and the final
decision module, which are described in the following.

A. Pre-Processing

The acquired vascular images contain the finger or hand
region of a subject’s hand as well as the background. For the
subsequent recognition process, only the finger or hand region
is of interest. Thus, this area or ROI needs to be extracted

in a first step. In case finger vein images are processed, a
finger outline detector [39] is applied followed by a rota-
tional and vertical alignment of the finger [24]. If hand vein
images are processed a square area centered at the hand’s cen-
ter of mass is extracted where the square’s size depends on
the hand’s outline defined by four points which are detected
at the middle distance between the single fingers. Afterwards,
the visibility of the vein pattern is enhanced by applying High
Frequency Emphasis Filtering (HFE) [67], Circular Gabor
Filter (CGF) [66], CLAHE (local histogram equalisation) [69]
as well as Speeded Up Adaptive Contrast Enhancement
(SUACE) [4].

B. Feature Extraction Methods

Various possibilities exist for feature extraction in vas-
cular biometrics. We selected six different template gen-
eration methods which aim to separate the gray-scale
vascular patterns from the background, resulting in a
binary vein template (i.e., a binary output image): Gabor
Filter (GF [36]), Isotropic Undecimated Wavelet Transform
(IUWT [55]), Maximum Curvature (MC [45]), Principal
Curvature (PC [11]), Repeated Line Tracking (RLT [46]), and
Wide Line Detector (WLD [24]). All of them can be applied
to finger as well as hand vein images, respectively. Further
details regarding these methods are given in [34]. Examples
of binary output images are shown in Fig. 1 and Fig. 2 for
finger vein examples and for hand vein images, respectively.

C. Comparison and Final Decision

All extracted features are binary representations of the
vein patterns and are compared using a template comparison
technique as suggested by Miura et al. [46]. The maximum
correlation value, calculated between the input template and in
x- and y-direction shifted and rotated versions of the reference
template, is used as a comparison score. To decide if compar-
ison is genuine or impostor, a pre-defined threshold is used.
If the comparison score is above the threshold it is genuine,
and otherwise it is deemed to be an impostor one.
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VI. CNN-BASED GRAY-SCALE IMAGE RECONSTRUCTION

When reconstructing images from their binary patterns, the
alignment between the input (i.e., binary pattern) and the out-
put (i.e., vein image) is available during training. So the task is
a paired image-to-image translation, where the source domain
A is the concatenated binary patterns and the target domain B is
the vein image. In order to determine a suitable method for per-
forming this task, we have to account for the following factors:
(a) the image translation technique has to operate on binary
images; (b) the output gray-scale image has to exhibit good
contrast between the veins and the background; (c) the method
has to account for intra-class variations, as multiple binary
templates of the same hand or finger may exhibit some differ-
ences; and (d) the method has to preserve identity information
in the generated outputs. While a regular GAN can be used
for this purpose, it would need additional supervision in order
to generate the fine vascular structure of the hand or fin-
ger. A conditional GAN (cGAN), however, can assist in this
endeavour since it learns a conditional generative model of
the input data, i.e., it relies on the image statistics of the input
domain being considered. However, we also need the cGAN
to focus on certain regions in the input where discriminatory
information is present. In particular, it has to account for the
sparsity in the template. This highlights the need for a dis-
criminator that accounts for local statistics (besides the global
structure). This means, a pixel-wise loss function may not be
suitable and a more sophisticated loss function based on the
discriminator has to be used. The discriminator of the GAN,
as will be described below, allows for the generation of better
contrast images.

Therefore, we adapted the Pix2Pix model [26], and tuned
it for this work. The architectures of the generator and dis-
criminator are shown in Fig. 3. As in the original Pix2Pix
model [26], the generator uses a U-net architecture [51] with
skip connections between the down-sampling and upsampling
convolution blocks. The input to the generator are binary fea-
ture patterns denoted with F, that were previously extracted
from vein image I. The input features F are concatenated
along their channel dimension to preserve the alignment of the
inputs with the output I. The output of the generator denoted
with G(F) is a gray-scale vein image, reconstructed from the
five input binary patterns. Down-sampling the input is per-
formed using convolution with kernel size 3 × 3 and stride of
2, while increasing the number of feature maps by a factor
of 2. After the bottleneck layer, four upsampling blocks using
transpose convolution with kernel size 4 × 4 and stride 2 are
followed. Finally, the last convolution layer uses kernel size
1 × 1, followed by Tanh activation.

The discriminator is designed to receive binary patterns F
fused with the original vein image I or the reconstructed image
Î = G(F), and the objective is to classify each patch of the
input vein image as real or synthesized, conditioned on the
aligned patch of binary patterns. Thereby forming a patchwise
conditional discriminator, and is denoted by D(I|F) for real
input images, or D(G(F)|F) for images that are reconstructed
by the generator. The architecture of the discriminator is shown
in Fig. 3, where the input has 6 channels (i.e., 5 binary features

F concatenated with gray-scale vein image I or Î). The dis-
criminator uses four convolution layers with kernel size 3 × 3
and stride 2 for down-sampling the feature maps. Finally, the
Sigmoid activation is used to get probabilities of each patch
as real or synthesized.

A. Loss Function for Training the Model

For the generator, we use L1 loss to penalize the per-
pixel differences of the reconstructed and target, LRec

G =
‖G(F) − I‖1. Furthermore, the generator is penalized with
a GAN-loss with the objective of making the reconstructed
outputs indistinguishable from the targets. For this, we use a
negative log-likelihood loss using the probabilities computed
by our discriminator,

LGAN
G = 1

n

∑
log[1 − D(G(F)|F)], (1)

where, n is the number of patches in the output of the
discriminator.

The total loss for the generator is the weighted sum of the
per-pixel L1 loss:

LG = λRecLRec
G + LGAN

G , (2)

where, λRec is the coefficient for balancing the reconstruction
and the GAN-loss.

For the discriminator, we use the non-saturating GAN loss
as designed in [21], which contains two terms, first term is to
penalize the mis-classification of the patches in a real image:

Lreal
D =

∑
− log[D(I|F))], (3)

and the second term accounts for the mis-classification of
synthesized images:

Lfake
D =

∑
− log[1 − D(G(F)|F)]. (4)

The total loss for the discriminator is the sum of these two
components: LD = 1

2 (Lreal
D + Lfake

D ).

VII. EXPERIMENTAL EVALUATION

In the following, the experimental set-up, including the
recognition process, the evaluation protocol and parameters,
as well as the obtained results are presented.

A. Recognition Process and Protocol

For the finger- and hand-vein feature extraction and eval-
uation we utilized the publicly available PLUS OpenVein
Tool-Kit.1 This tool-kit includes all six feature extraction
methods (GF, IUWT, MC, PC, RLT and WLD) as well as
the necessary pre-processing and comparison schemes [34]. In
order to assess the reconstruction performance of our proposed
CNN architecture we evaluate the recognition performance
by comparing the binary feature templates extracted from the
reconstructed samples against the templates extracted from the
original ones.

Training and evaluation protocol: For training the model,
the coefficient λRec in the generator’s loss was set to 100.

1Publicly available at: http://www.wavelab.at/sources/OpenVein-Toolkit.
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Fig. 3. The architecture of the generator and discriminator networks used in the proposed Pix2Pix model for reconstructing vein images from 5 selected
binary features. The generator receives a 5-channel input and synthesizes a single-channel vein image. The discriminator receives both features and the vein
image, and computes the probability of each 16 × 16 input patch being real or synthesized.

Adam optimizer with learning rate of 2e − 4 was used for
both the generator and discriminator networks. The models
were trained for 100 epochs with a batch size of 2. All the
images and features were resized to 256×256, and normalized
to the range [−1, 1].

In order to show the efficacy of our reconstruction with
regard to splitting and utilizing the training data, we designed
two separate experiments. First, conducted intra-dataset
experiments, where the training data from each dataset were
partitioned into 5 subject-disjoint folds. In this set of exper-
iments, we trained 5 models independently using 4 training
folds, and the trained models were used to reconstruct the vas-
cular images in the remaining fold. The performance for each
dataset is averaged over the performance of each evaluation
fold.

In the second set of experiments, rather than training mod-
els and evaluating them on the same dataset, we conducted
inter-dataset training and evaluation, where each dataset is
used for evaluation of the models that were trained on any
of the other datasets. We use the term “target” to denote the
dataset that was used for evaluation, and the term “source” to
denote the dataset used for training the model. First, we trained
the models using 100 epochs on the source datasets. Then, in
order to transfer the trained models to the target dataset for
evaluation, we further split the target dataset into 5 folds in a
subject-disjoint manner, and used one fold for fine-tuning, and
the remaining 4 folds for evaluation. This is repeated for each
fold, resulting in 5 fold which can be used for the performance
evaluation. We performed a total of 20 fine-tuning epochs, in
which we combined the original training dataset and the fine-
tuning portion of the data. After each epoch, the samples in
the fine-tuning portion were oversampled by a factor of 1.1.

Finally, the last two epochs only contained the fine-tuning por-
tion. This fine-tuning scheme was designed to gradually adapt
the trained models from source to target dataset, and capture
the latent characteristics of the target dataset. All but one fea-
ture type were used for training and the remaining one for
reconstruction.

Inverse Biometric Threat Assessment (IAMR):
Gomez-Barrero et al. [19] proposed a methodology to
evaluate inverse biometrics approaches and the risk they pose
to the attacked applications. Their method can be used to
assess the performance of the inverse biometric algorithm
as well as to assess the vulnerability of a given system to
this threat. For the evaluation they defined different levels
of knowledge needed by the inverse biometric approach:
(1) template format, (2) similarity scores, (3) similarity
scores and comparison function and (4) feature extraction
method. These knowledge levels influence the level of threat
posed by the inverse biometric method while (1) means least
knowledge needed and highest threat posed. In addition to the
knowledge levels, they introduced four evaluation scenarios
based on the selection of the samples and the selection
of the systems for the development and validation stage:
(1) same samples, same systems (2) different samples, same
systems, (3) same samples, different systems and (4) different
samples, different systems. Case (1) poses the least threat
as it needs the same samples and the same system for
development and evaluation, while case (4) poses the highest
threat as a successful attack works with different systems
and samples (most general case). If the focus is on assessing
the inverse biometrics algorithm, case (3) and (4) should
be used while if the focus is on assessing the recognition
system, case (1) and (2) should be considered. To quantify
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Fig. 4. Examples of reconstructed vein images and the corresponding binary templates computed using the PC feature extractor (so training was done using
the remaining 5 feature sets). The inter-dataset reconstructions in the first 3 rows were obtained by pre-training the CNN model on the PVLEDP dataset,
while the reconstructions in the last two rows were obtained by pre-training on the VERA and PROTECT-HV dataset, respectively.

the threat level or the performance of the inverse biometric,
they introduced an inversion metric, the so called Inversion
Attack Match Rate (IAMR). The IAMR evaluated the
expected probability that a reconstructed sample gains access
to the system at a given operating point and is defined as
follows:

IAMR = 1

M

M∑

m=1

{
max
n≤N

(
Sn

m

)
> δ

}

where M is the number of subjects being attacked, N is the
number of reconstructed samples per bona-fide sample, Sn

m is
the similarity score of the n-th reconstructed sample of the m-
th subject and δ is the verification threshold. The verification
threshold is set for desired levels of the false match rate (FMR)
where the system is to be evaluated (suggested FMRs are:
0.1%, 0.05% and 0.01%).

As we are interested in evaluating the inverse biometrics
algorithm itself, we chose the following evaluation framework:

• Knowledge required about the development system: tem-
plate format and type of feature extraction method (needs
to be binary), but no particular details about the feature
extraction method.

• Samples selection: same development and validation sam-
ples (S3) as well as different development and validation
samples (S4) with N = 5.

• System selection: different development and evaluation
system (cross-feature type evaluation).

B. Baseline Results

The baseline recognition performance results for the con-
sidered original finger vein samples are presented in Table IV

while the results corresponding to the original hand vein
samples are presented in Table V. We use two performance
metrics to measure the recognition accuracy: the equal error
rate (EER) and the FMR1000 (the lowest false non match rate
(FNMR) at a false match rate (FMR)≤ 0.1%). The baseline
performance was calculated by utilizing original finger as well
as original hand vein images as provided by each dataset and
the OpenVein Tool-kit’s default parameters for the respective
datasets.

The MC method results in the best performance values in
five of the eight finger vein datasets, while the PC, WLD
and IUWT methods performed best once each. Recognition
performance is the best on the PLUSVein-FV3 subsets (PVLD,
PVLEDD, PVLEDP) followed by UTFVP, PVLP, MMCBNU
and FVUSM datasets. The worst baseline performance can be
observed assessing the recognition system on SDUMLA finger
vein samples.

In contrast to the baseline performance obtained on the fin-
ger vein datasets, there is no clear trend on the hand vein
datasets. For each of the three considered datasets a different
feature extraction method resulted in the best performance.
Overall, the best baseline performance is on the PROTECT-
HV dataset using RLT as the feature extraction method,
followed by VERA and CIE-HV. For both vascular biomet-
ric modalities the full comprehensive set of results, including
the reconstruction experiments, are provided on our website2

where ROC and DET plots for each dataset/experiment are
available.

2http://www.wavelab.at/sources/Kauba20b/
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TABLE IV
FINGER VEIN - BASELINE RECOGNITION PERFORMANCE (%). THE BEST

RESULT FOR EACH FEATURE EXTRACTION METHOD PER FV DATASET IS

HIGHLIGHTED IN BOLD NUMBERS. THE OVERALL BEST RECOGNITION

PERFORMANCE IS ACHIEVED ON PVLEDD. THE LAST COLUMN AND

ROW REPRESENT THE AVERAGE VALUES PER DATASET AND FEATURE

TYPE, RESPECTIVELY

TABLE V
HAND VEIN - BASELINE RECOGNITION PERFORMANCE (%). THE BEST

RESULT FOR EACH FEATURE EXTRACTION METHOD PER HAND VEIN

DATASET IS HIGHLIGHTED IN BOLD NUMBERS. THE OVERALL BEST

RECOGNITION PERFORMANCE IS ACHIEVED ON PROTECT-HV. THE

LAST COLUMN AND ROW REPRESENT THE AVERAGE VALUES PER

DATASET AND FEATURE TYPE, RESPECTIVELY

C. Results of Binary Template Based Attack

In order to motivate the introduced template inversion pro-
cess, we apply a simple straight-forward attack possibility
without the need to invert the binary template. The idea is
to obtain a subject’s template based on feature type A and use
this template as a sample presented to the biometric system
(in a PA) which then applies a feature extraction based on
feature type B. In Fig. 5 a sample template resulting from this
attack is shown. The first two images on the left side show the
original templates, while the ones on the right side result from
applying the feature extraction on the original binary templates
instead of the original HV samples.

Fig. 5. Examples of cross-feature binary templates from a PROTECT-HV
sample. From left to right: original PC features, original RLT features, RLT
applied on the PC features and PC applied on the RLT features.

TABLE VI
EER (%) AND IAMR RESULTS OF DIRECTLY USING TEMPLATES AS NEW

SAMPLES WITHOUT THE GRAY SCALE RECONSTRUCTION. GF, RLT,
WLD AND PC REPRESENT THE BASELINE EER VALUES WHILE GF-RLT,

GF-WLD AND PC-RLT REPRESENT THE FEATURE EXTRACTION

APPLIED TO THE BASELINE TEMPLATES (RESULTS GIVEN IN BOLD
NUMBERS). THE GENERAL LOW IAMR VALUES INDICATE THAT THE

DIRECT USE OF THE TEMPLATES DOES NOT RESULT IN A

SUCCESSFUL ATTACK

Table VI lists corresponding results and two additional
motivating example cases in terms of EER (%) and IAMR.
For some combinations (PROTECT-HV GF-WLD, PVLEDD
GF-RLT) the EER results suggest that this simple attack is
successful (as the EER is still low when conducting this
PA), while for other combinations (PROTECT-HV PC-RLT)
the chance of success is rather low. The attack’s efficiency
depends on two factors: a) the used feature extraction meth-
ods and b) the algorithm used for template comparison. Some
of the feature extraction methods tend to smooth the input
and remove noise and distortions (e.g., PC applied to RLT
in Fig. 5) while others introduce additional noise (e.g., RLT
applied to PC in Fig. 5) which decreases the recognition
performance (PROTECT-HV PC-RLT). The employed tem-
plate comparison method according to Miura et al. [45], [46]
is based on a matched pixel ratio, normalized by the number
of white pixels. If the positions of the vascular lines in both
templates match and they only differ in their thickness, the
resulting comparison score is only slightly affected.

In contrast to the EER, the IAMR results indicate that this
kind of attack poses little to no threat. For the IAMR evalu-
ation, a pre-defined FMR level is used, i.e., the threshold to
separate between genuine and imposter scores is fixed, while
the threshold is variable for the EER evaluation. If the base-
line performance is high (low EER), the set threshold for the
IAMR will be rather high and, thus, for a successful attack,
the attack samples have to achieve a high comparison score.

Especially the IAMR results confirm that this simple
approach is not suitable to attack a finger/hand vein recog-
nition system. The subsequently presented results achieved
with our gray-scale reconstruction methodology show that by
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TABLE VII
FINGER VEIN - INTRA-DATASET RECOGNITION PERFORMANCE (%). THE

BEST RESULT FOR EACH FEATURE EXTRACTION METHOD PER DATASET

IS HIGHLIGHTED IN BOLD. THE CNN MODEL SHOWS VERY GOOD

RECONSTRUCTION PERFORMANCE IN ALL DATASETS, EXCEPT FOR

UTFVP. THE LAST COLUMN AND ROW REPRESENT THE AVERAGE

VALUES PER DATASET AND FEATURE TYPE, RESPECTIVELY

applying the proposed inversion, an attack becomes highly
effective.

D. Results of Reconstructed Vascular Biometrics

As mentioned in Section VII-A for both vascular biometric
modalities, two different evaluation protocols were considered
in this work: intra-dataset and inter-dataset. The first case is
probably the easier one since training as well as testing of
the proposed reconstruction model was done on each of the
finger and hand vein datasets independently. This allows to
show that the designed CNN model is capable of generat-
ing meaningful images containing sufficient vascular pattern
information that can be successfully used in the subsequent
biometric recognition process. The evaluation (i.e., measuring
recognition performance) in the intra-dataset case is conducted
on a small subset of each dataset, since the remaining images
in that dataset were needed to perform the model training. For
the inter-dataset experiments, the evaluation is conducted on
the entire reconstructed dataset since the training was done on
the other datasets. For presenting the inter-dataset experimen-
tal results, the PVLEDD (as best representative) and FV-USM
(as one worse representative) were selected for the finger vein
datasets, while in the case of hand vein, we only show the
results on the best performing dataset, PROTECT-HV.

1) Finger Vein Intra- and Inter-Dataset Evaluation: In
Table VII, the intra-dataset recognition performance results
using the finger vein datasets are presented. These results
indicate that it is possible to reconstruct gray-scale finger
vein images from binary templates for a single, given dataset.

Fig. 6. Performance improvement assessing EER on the UTFVP dataset
using the intra-dataset experimental protocol.

Fig. 7. Example samples of original a) and reconstructed b) UTFVP finger
vein images. On the UTFVP dataset a recognition performance improve-
ment compared to [30] is achieved by reducing the images’s background
information, i.e., samples a) and b), during the reconstruction experiments.
This leads to smaller feature templates c), d) the comparison of which can be
done with higher accuracy (see Fig. 6).

Furthermore, it also confirms that the proposed CNN archi-
tecture (see Section VI) is indeed capable of reconstructing
finger vein images for an unseen feature type (cross-feature-set
generalization). The reconstructed samples can be successfully
used for biometric recognition. The results in Table VII show
that it is possible to achieve a recognition performance which
is often very close to the baseline (given in Table IV) for most
datasets. Interestingly, for the PVLD and PVLEDD datasets,
a performance enhancement can be seen in the intra-dataset
evaluation, while for the PVLP and PVLEDP datasets only a
slight degradation is observed. On the downside, the results
on the UTFVP, FVUSM, MMCBNU and SDUMLA datasets
show a noticeable performance degradation.

In [30], it was shown that for the UTFVP dataset, the recog-
nition performance on the reconstructed data was much lower
(higher EER and FMR1000) compared to the baseline and
to the results presented in this study. We have improved the
recognition performance (see Fig. 6) by reducing the back-
ground information present in the images used during the
reconstruction process. In Fig. 7 it can be seen that this reduc-
tion results in considerably smaller feature templates as the
height of the templates is lower than the original and recon-
structed images. As a consequence, the comparison of original
and reconstructed feature templates can be done with higher
accuracy.

According to the defined inter-dataset evaluation protocol,
there are a number of different combinations possible, but we
decided to show only the worst (FVUSM, see Fig. 8) and the
best (PVLD, see Fig. 9).
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Fig. 8. Inter-dataset performance based on EER. Here, the proposed CNN
model is trained only on the FVUSM dataset and tested on the other datasets,
representing the overall worst performance obtained in the inter-dataset set-
ting. Reconstruction on the UTFVP dataset is slightly worse compared to
MMCBNU and much worse compared to the other datasets.

Fig. 9. Inter-dataset performance (EER). This time the CNN model is trained
only on the PVLEDD dataset and tested on the other datasets, representing the
overall best performance obtained in the inter-dataset setting. Here, the recon-
struction on the FV-USM and MMCBNU datasets is by far worst compared
to the others.

Apart from dataset specific variations, there is hardly any
difference between the overall recognition performance trend
observed on the intra-dataset evaluation and the inter-dataset
experiments. As mentioned before, a comprehensive set of
experiments have been conducted using almost all combina-
tions of training and evaluation sets.

Note that the inter-dataset experiments on the SDUMLA
dataset have not been included in this graphic for two rea-
sons. First, in the intra-dataset experiments we have shown
that a successful reconstruction on this dataset is possible.
Second, the overall baseline and the intra-dataset recognition
performance on the SDUMLA dataset is much worse com-
pared to the other datasets. Thus, we excluded the SDUMLA
specific inter-dataset evaluation results from the aforemen-
tioned figures as they would reduce the insights gained from
the remaining datasets.

In Fig. 8 it can be seen that the reconstruction on the UTFVP
was slightly worse compared to the MMCBNU one and both
are much worse compared to the other datasets. A comparison
with Fig. 9 clearly highlights that in case of UTFVP this obser-
vation is based on the dataset utilized during training. In Fig. 8

Fig. 10. Examples of original and reconstructed CIE images with their
corresponding MC and WLD feature templates.

TABLE VIII
HAND VEIN - INTRA-DATASET RECOGNITION PERFORMANCE (%). THE

BEST RESULT FOR EACH FEATURE EXTRACTION METHOD PER DATASET

IS HIGHLIGHTED IN BOLD

the EER on the UTFVP dataset is higher compared to the other
datasets, while in Fig. 9 utilizing PVLEDD instead of FV-USM
during training the EER is among the best. Furthermore, it
can be seen that the EER for PVLD, PVLP and PVLEDD is
quite stable independently from the dataset selected for train-
ing, while the recognition performance on the MMCBNU is
slightly better if PVLEDD is used as training dataset.

Finally, in Fig. 11 detection error trade-off (DET) plots are
shown using PVLEDD data and MC as feature type. The red
line corresponds to the baseline, while the blue one depicts
the intra-dataset evaluation and the green one the inter-dataset
experiment (training done on MMCBNU samples). The cir-
cular point for each curve marks the EER obtained for the
specific experiment. In this particular case the inter-dataset
experiment was superior to the intra case (green line is below
the blue line) which can be explained by the training con-
ducted on different samples in both experiments. Note that
this is observation is not an exception and can be detected
several times.

2) Hand Vein Intra- and Inter-Dataset Evaluation: For the
hand vein evaluation we used three datasets: PROTECT-HV,
CIE and VERA. The reconstruction did not work well on
the CIE dataset. Fig. 10 reveals that the reconstructed images
contain some grid-like pattern which distorts the actual vein
pattern and leads to many spurious vein lines. We have not
been able to determine the source of these gridlines. We are
still investigating this issue and do not include the CIE results
here.

Table VIII lists the intra-dataset evaluation results. On
the PROTECT-HV, the reconstruction works well. The best
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Fig. 11. DET curves (red - baseline, blue - intra-dataset, green - inter-dataset)
using PVLEDD data and MC as feature type where for the the inter-dataset
experiments MMCBNU samples have been utilized as training dataset.

Fig. 12. Inter-dataset performance (EER). This time the CNN model is trained
on the PROTECT-HV dataset and tested on the VERA dataset, representing
the overall best performance obtained in the inter-dataset setting.

performance is achieved using MC, followed by IUWT and
RLT. On the VERA dataset the reconstruction does not work
that well and the performance using the reconstructed data is
about 5 times worse than the baseline one (EER is 5 times
higher). The best performing feature on the VERA is IUWT,
followed by PC and MC.

Fig. 12 shows the performance in terms of EER for the
inter-dataset reconstruction when the model is trained on
PROTECT-HV and tested on the VERA dataset. Surprisingly,
the inter-dataset reconstruction performs better than that of
intra-dataset on the VERA dataset in two of the six fea-
ture extraction cases: MC (EER of 9.40%) and RLT (EER
of 13.52%). However, the best recognition performance for
this dataset is observed using IUWT (EER of 7.19%) for the
intra-dataset scenario.

Fig. 13. DET curves (red - baseline, blue - intra-dataset, green - inter-dataset)
obtained for the PROTECT-HV dataset and MC as feature type where for
the the inter-dataset experiments MMCBNU samples have been utilized as
training dataset.

In general, the reconstruction on the hand vein datasets are
worse compared to the finger vein ones. One reason might
be the more challenging nature of the hand vein datasets; they
contain (a) less vascular pattern information (only coarse struc-
tures are visible), and (b) additional artefacts in the images
originating from skin texture, wrinkles and skin hair which
lead to spurious vascular pattern information during feature
extraction.

Finally, in Fig. 13 detection error trade-off (DET) plots are
shown using PROTECT-HV data and MC as feature type. The
red line corresponds to the baseline, while the blue one depicts
the intra-dataset evaluation and the green one the inter-dataset
experiment (training done on CIE samples). The circular point
for each curve marks the EER obtained for the specific exper-
iment. Opposed to the DET curves presented in Fig. 11 the
intra-dataset experiments are always superior if compared to
the inter-dataset ones.

E. Inverse Biometrics Threat Assessment Results

Table IX shows the IAMR values (ranging from 0 to 1,
where 0 corresponds to no security threat at all and 1 corre-
sponds to an perfect attack which is successful in any case,
i.e., the highest possible security threat) evaluated for scenario
S3 and S4 at FMR levels 0.01%, 0.005% and 0.001% aver-
aged over all finger vein data sets per feature type. According
to the IAMR results the attack was most effective for RLT in
both (S3 and S4) scenarios. The values for all other feature
types are still > 0.95 in any scenario and at any of the eval-
uated FMR levels. Hence, the inversion attack poses a severe
risk for finger vein recognition systems, no matter if the same
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TABLE IX
FINGER VEIN DATASETS - IAMR EVALUATION. CASES S3 AND S4 WERE

EVALUATED AT DIFFERENT FMR LEVELS. THE VALUES GIVEN ARE

AVERAGED PER FEATURE TYPE FOR ALL FINGER VEIN DATASETS

TABLE X
HAND VEIN DATASETS - IAMR EVALUATION. CASES S3 AND S4 WERE

EVALUATED AT DIFFERENT FMR LEVELS. THE VALUES GIVEN ARE

AVERAGED PER FEATURE TYPE FOR ALL HAND VEIN DATASETS

(EXCEPT CIE)

sample from which the inverse sample is generated is stored
in the database of the target system (S3) or not (S4).

Table X lists the IAMR results for the hand vein datasets,
averaged over all data sets (except CIE) per feature type. The
inversion attack achieves a high performance for GF, IUWT,
MC and PC in both cases (S3 and S4) but especially for
RLT and WLD the IAMR values are quite low, suggesting
that the attack was not that successful for those feature types.
In general the inversion attack is less effective for hand vein
recognition than for finger vein one (see Table IX) and only
poses a risk to practical systems for the GF, IUWT, MC and
PC feature types.

VIII. SUMMARY AND FUTURE WORK

In this work, we used a neural network to reconstruct gray-
scale finger and hand vein images from their binary templates.
The proposed approach was evaluated on 8 different finger
vein datasets as well as 3 hand vein datasets using 6 different
types of binary templates. Following our previous work, the
experiments confirmed once more the generalizability of the
proposed approach across multiple datasets as well as different
modalities.

In particular, we improved the reconstruction performance
on the UTFVP dataset, while maintaining the same level of
performance on the remaining datasets. We showed that a
meaningful reconstruction is possible for hand vein datasets
as well.

This strengthens our previous finding that the security and
privacy of even binary templates can be compromised and
that improved security constructs are of vital importance in
practical applications of finger/hand vein biometrics.

Our future work will employ other types of CNN architec-
tures and test if they are able to improve the quality of images
generated by the reconstruction process. Furthermore, we plan

to investigate if the reconstruction performance can be main-
tained if the training is done on a fewer number of different
binary features. So far, our approach has been only applied to
feature extraction schemes resulting in binary templates. Thus,
we will extend our research to other feature types, including
key-point based ones (e.g., DTFPM [44]) as well as CNN
based ones [14], [37].
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