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Abstract—Gait-based age estimation is a key technique for
many applications. It is well known that age estimation uncer-
tainty is highly dependent on age (i.e., small for children and
large for adults), and it is important to know the uncertainty
for the above-mentioned applications. Therefore, we propose a
method for uncertainty-aware gait-based age estimation by intro-
ducing a label distribution learning framework. Specifically, we
design a network that takes an appearance-based gait feature as
input and outputs discrete label distributions in the integer age
domain. We then train the network to minimize a loss function,
which is defined as the dissimilarity between the estimated age
distribution and the ground-truth age distribution, in addition
to the conventional mean absolute error for the estimated age.
Additionally, we demonstrate that uncertainty-aware gait-based
age estimation is beneficial for two applications: person search
by age query and people counting by age group. Experiments
on the world’s largest gait database, OULP-Age, demonstrated
that the proposed method can successfully represent age esti-
mation uncertainty, and outperforms or is comparable with
state-of-the-art methods in terms of age estimation accuracy.
Moreover, we demonstrated the effectiveness of the uncertainty-
aware framework in applications to person search and people
counting through experiments on the database.

Index Terms—Gait, age, label distribution learning, people
counting, person search, uncertainty.
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I. INTRODUCTION

FOR THE last two decades, gait has been regarded as a
unique behavioral biometric that can even be used at a

distance from a camera without the subjects’ cooperation [1].
Because of the above-mentioned advantages, gait-based person
verification/identification is expected to be applied to many
applications, such as surveillance, access control, and criminal
investigation using closed-circuit television (CCTV) footage.
In fact, there have been several cases in which gait recognition
has been applied to criminal investigation and forensics [2]. In
addition to identity [3], [4], [5], [6], gait may contain a variety
of cues, such as gender [7], [8], [9], age [10], [11], [12], [13],
[14], [15], [16], ethnicity [17], disease [18], emotion [19], and
some qualitative gait attributes [20].

Gait-based age estimation has many potential applications.
For example, once a visitor’s age is estimated in a shopping
mall, an advertiser can change the content of digital signage
to be more suitable for the estimated age. Age-based access
control is also possible based on the estimated age, for exam-
ple, underage people can be prevented from buying alcohol or
cigarettes. Moreover, in a forensic scenario, a criminal inves-
tigator may obtain an eyewitness report regarding rough age
information about a perpetrator/suspect, and thereafter may be
able to automatically retrieve candidates from CCTV footage
whose estimated age by gait matches the eyewitness report.
It would also be possible to search CCTV footage for people
such as wandering elderly and lost children with the help of
a gait-based age estimator.

Technically, relevant work on gait-based age analysis mainly
falls into two families: age-group classification [10], [11], [22]
and age regression [12], [13], [14], [15], [23]. The above-
mentioned studies use classical machine learning techniques,
such as a support vector machine (SVM) [24] and support
vector regression (SVR) [25] because of the limited num-
ber of training data (e.g., [4]); however, recent studies on
gait-based age estimation mainly use deep learning-based
approaches [16], [26], [27] because much larger-scale gait
databases have been released recently that include over 60,000
subjects [28].

Regardless of the approach used for gait-based age estima-
tion, we almost always observe that age estimation accuracies
are indeed age-dependent. By closely observing the scatter plot
between the ground-truth age and estimated age using one of
the above-mentioned deep learning approaches [21] (see Fig. 1
(left)), we can clearly see that the uncertainty (or degree of
the spread of ground-truth ages) for each estimated age is
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Fig. 1. Example of a scatter plot between the ground-truth age (horizontal
axis) and estimated ages (vertical axis) using [21] (left), and probability dis-
tributions of estimated ages using the proposed method (right) given the input
of a silhouette-based gait feature (middle). We obtain a relatively sharp age
probability distribution (i.e., one with small uncertainty) for the upper subject
(a child); however, we obtain a relatively spread probability distribution (i.e.,
one with large uncertainty) for the lower subject (an adult). The proposed
method indicates that more age variations are likely to occur for the lower
subject’s gait feature than the upper one.

quite different between a child and an adult. Specifically, the
uncertainty is small for a child (e.g., less than ±2 years), but
quite large for an adult (e.g., ±20 years). In fact, it is relatively
difficult even for humans to accurately determine the age of
subjects from their gait.

As a trial, we would like readers to guess the ages of the
two subjects in Fig. 1 (middle) given the input of silhouette-
based gait features called the gait energy image (GEI) [29].
Regarding the upper subject, we expect that readers can deter-
mine a relatively fine-grained age estimation range (e.g., from
5 to 10 years old). Conversely, we expect that readers will
struggle in the age estimation for the lower subject. Some
readers may estimate it as 20 years old, whereas others may
estimate it as 30 or 40 years old.1 The age-dependent uncer-
tainty difference between gait-based age estimations occurs for
several reasons. First, the growth or decline of gait (and body
shape) is relatively fast for children and the elderly, whereas
it is quite slow for adults; hence, it is relatively difficult to
determine the age difference in adulthood because of the slow
change of the gait feature. Second, whereas facial images have
texture cues to enable the estimation of age (e.g., wrinkles and
dull skin appear more as age progresses), a gait image does
not have such texture-based cues. Third, although a gait image
still has some cues to enable age estimation, such as stoop
and middle-age spread, they not only depend on age but also
highly depend on individuality and individual lifestyle habits.
For example, the gait of a person in his/her 40s, who main-
tains a slim body through good dietary and exercise habits
may appear younger than his/her age, and vice versa; that is,
there may be some subjects whose gait features are almost the
same as those whose ages are different, which results in an
uncertain age estimation result from the gait.

This type of uncertainty (or confidence) in age estimation
plays an important role in some applications. We consider the
scenario of a person search by age query. In the case of search-
ing for a lost child of 5 years old, because the system is

1The answer is 30 years old.

relatively confident in its estimation of human age for chil-
dren, it would be sufficient to show a list of people whose
estimated age is within a limited age range (e.g., 5 ±2 years).
Conversely, in the case of searching for a suspect in his/her
30s, it would be necessary to show many people whose esti-
mated age is within a large age range (e.g., from 20s to 40s).
To summarize, if the system is aware of the uncertainty (or
confidence) of the estimated age, it can appropriately bound
the age range of candidates for a search target.

Most existing approaches to gait-based age estimation out-
put a single age as an estimation result; there is one excep-
tion [12] that outputs an estimated age and its uncertainty. The
study [12] used a framework of Gaussian process regression
(GPR) for gait-based age estimation, which outputs a Gaussian
distribution for an estimated age (i.e., a mean and variance)
given an input gait feature in addition to a training set of
gait features and corresponding ages. The uncertainty (i.e., the
variance of the estimated age) provided by the GPR frame-
work is mainly derived from the degree of closeness between
the test gait feature and the training gait features; that is, the
uncertainty decreases as the test gait feature becomes relatively
closer to one of the training gait features, and vice versa. In
this sense, the GPR framework cannot manage age uncertainty
derived from similar gait features with different ages, as men-
tioned above. Specifically, the system should ideally return a
large uncertainty if a test gait feature is close to a cluster of
similar training gait features but with different ages, whereas
the GPR returns a small uncertainty, even in such a scenario.

To overcome such a difficulty, we propose a deep neu-
ral network-based approach to gait-based age estimation that
outputs not a single estimated age but a probability distribu-
tion of the estimated age. The contributions of this work are
two-fold.

1) Uncertainty-aware gait-based age estimation using a
label distribution: Unlike the GPR framework, the proposed
method can better cope with the above-mentioned similar gait
features but with different ages. Specifically, we introduce
a label distribution [30] as the output of an age estimation
network given a gait feature as input. The age estimation
network is trained to minimize the joint loss function of (1)
the Kullback–Leibler (KL) divergence [31] for the uncertainty
representation; and (2) mean absolute error (MAE) for the
ordinary preserving property in the same manner as state-
of-the-art facial age estimation [32]. Thus, we can assign
probabilities to multiple ages, as shown in Fig. 1 (right).

2) State-of-the-art accuracy for gait-based age estimation:
We achieved state-of-the-art accuracy for gait-based age esti-
mation for standard evaluation metrics, such as the MAE
and cumulative score (CS) on OU-ISIR Gait Database, Large
Population Dataset with Age (OULP-Age) [28], which is the
world’s largest publicly available gait database that contains
over 60,000 subjects with wide age diversity ranging from 2
to 90 years old.

In addition to the above-mentioned original contributions in
our conference paper [33], we have made two extensions in
this version. One is the more effective use of the proposed
uncertainty-aware method in two applications: person search
by age query and people counting by age group. The other is
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the use of a more sophisticated backbone network for better
accuracy.

Regarding the person search, we consider a toy example in
which the two subjects in Fig. 1 are enrolled in a database, and
a conventional uncertainty-unaware method estimates the ages
of the upper and lower subjects in the figure as 8 and 33 years
old, respectively. If we search the database for a person of 20
years old, a straightforward yet reasonable approach is to cre-
ate a rank list based on the difference between the query age
(i.e., 20 years old) and the estimated age for each person in the
database. Using this method, the upper subject would be the
first candidate (i.e., the first rank) because its difference (i.e.,
20−8 = 12 years) is smaller than that of the lower subject (i.e.,
33 − 20 = 13 years), even though the lower subject (i.e., an
adult) is actually more likely to be 20 years old than the upper
subject (i.e., a child). Conversely, the proposed uncertainty-
aware method may create a rank list based on the likelihood
(i.e., the probability) of the query age, and consequently, the
lower subject would be the first candidate because its proba-
bility for the query age (i.e., 20 years old) is higher than that
for the upper subject (i.e., over 0.03 and approximately zero
for the lower and upper subjects, respectively, which are both
read from Fig. 1 (right)). Thus, the proposed uncertainty-aware
method contributes to a more efficient person search by age
query.

People counting by age group is another potential applica-
tion. For example, counting the number of visitors to facilities,
such as shopping malls and museums, by age group is impor-
tant for market research and providing services according to
customer attributes, such as age and gender. A straightfor-
ward yet reasonable approach to count people by age group,
is to estimate an age for each detected person and then cre-
ate a histogram by casting one vote to an age group bin
that includes the estimated age. A conventional gait-based age
estimator, however, suffers from biases, for example, elderly
subjects (i.e., over 60s) tend to be underestimated, as shown
in Fig. 1 (left); hence, the age group bin for the elderly
may receive fewer votes than the actual value. Conversely,
the proposed uncertainty-aware method may cast multiple
votes that are weighted by probability for each age group;
hence, we have more opportunities to cast votes to the elder’s
bin. Consequently, we may mitigate the above-mentioned
bias problem as a result of the estimated age probability
distribution.

To summarize, the extensions of this version of the study
are two-fold.

3) Uncertainty-aware person search and people count-
ing: We did not quantitatively evaluate the goodness of
the estimated uncertainty in the previous version of the
study [33], whereas we attempt this in the present study
through two applications: person search by age query
and people counting by age group. Both applications
use uncertainty, specifically, the age probability distribu-
tion using the proposed method, unlike conventional per-
son search and people counting, which do not consider
uncertainty. We show the effectiveness of the proposed
uncertainty-aware method quantitatively through the two appli-
cations.

4) More effective backbone network: We used a relatively
simple network architecture, that is, GEINet [34], as the
backbone network in the previous version of the study [33],
whereas we introduce GaitSet [35] as the backbone network
in the extension in the present study, which has been proven to
be more effective in gait recognition. Consequently, we further
advance state-of-the-art gait-based age estimation.

II. RELATED WORK

A. Gait-Based Age Estimation

Early stage studies on gait-based age analysis mainly con-
sidered age group classification problems (e.g., children vs.
adults) using body joint-based gait parameters. For exam-
ple, Davis [10] classified children and adults based on a
biological motion cue (i.e., point light sources on the body
joints) and Begg [11] classified young and elderly people
based on the minimum foot clearance from the ground [11].
Mannami et al. [22] analyzed the differences between an
image-based gait feature, such as GEI [29] (a.k.a. averaged
silhouette [36]), and a frequency-domain feature [5] from
multiple views among four age/gender groups: children, adult
females, adult males, and the elderly.

Studies on gait-based age estimation have been conducted
since 2010 using image-based gait features [5], [29] in
conjunction with classical machine learning techniques. For
example, Lu and Tan proposed ordinary preserving manifold
learning in [13], and also proposed its extensions: ordinary
preserving linear discriminant analysis (OPLDA) and ordi-
nary preserving margin Fisher analysis (OPMFA) in [14].
Xu et al. [28] constructed the world’s largest gait database
called OULP-Age and evaluated multiple benchmark methods
for gait-based age estimation, including [13], [14] and also a
method using SVR [25]. Li et al. [23] proposed a multi-stage
framework that combines age group classification and subse-
quent age regression for each age group using several machine
learning techniques, such as an SVM, manifold learning, and
SVR.

In addition to the above-mentioned classical machine
learning-based approaches, researchers have started to use
deep learning-based approaches for gait-based age estimation.
For example, Sakata et al. [21] used DenseNet [37], which is a
state-of-the-art deep neural network architecture, and validated
its effectiveness in the gait-based age estimation task. In addi-
tion to age, other attributes, such as gender, age group, and/or
identity, have been incorporated into multi-task learning frame-
works [16], [26] and a multi-stage learning framework [38].
Moreover, a gait-based age estimation method that is robust
against a carried object was proposed in [27].

All the above-mentioned approaches output a single value
as the estimated age without taking uncertainty into consider-
ation, whereas [12] used a GPR framework [39] for gait-based
age estimation, which outputs a Gaussian distribution of the
estimated age, specifically, its mean and variance (i.e., a type
of uncertainty). As we addressed in Section I, the GPR frame-
work, however, cannot well manage the uncertainty induced by
similar gait features but with different ages. We provide more
details of this issue with a preliminary simulation experiment
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in Section III. Unlike the GPR framework, our method can
better handle uncertainty using a label distribution framework,
where the system outputs a discrete probability distribution
over integer age labels as output given a gait feature as input.

The proposed method may be similar to a previous study
in terms of the representation of integer age labels [15].
Specifically, Lu and Tan [15] casted an age estimation problem
into a classification problem of integer-age classes (labels)
using multi-label guided (MLG) subspace learning. Although
they used integer age labels similarly to the proposed method,
they still output a single integer age label as a result of a clas-
sification process, unlike the proposed method, which outputs
an age probability distribution.

B. Face-Based Age Estimation Using Label Distribution

Because a face is the most frequently used biometric modal-
ity for age estimation, there is a rich body of literature on
face-based age estimation. We briefly introduce existing work
on face-based age estimation using label distribution because
it is most closely related to our work.

Geng et al. [40] introduced the concept of label distribu-
tion learning into face-based age estimation, and proposed
two learning algorithms: improved iterative scaling-learning
from label distribution and a conditional probability neural
network. Zhao and Wang [41] proposed strategic decision-
making learning from the label distribution, which copes with
different types of age label distribution, such as Gaussian-
type, triangle-type, and box-type distributions. He et al. [42]
proposed data-dependent label distribution learning, where
training samples neighboring a test sample are first selected
based on the face affinity graph, and the label distribution is
then constructed based on the cross-age correlations among
neighboring face samples.

Gao et al. [30] introduced deep learning-based approaches
to facial age estimation with a label distribution called deep
label distribution learning (DLDL), which uses KL-divergence
to measure the distribution similarity. They also extended
DLDL in [32] to cope with a regression problem in addition to
the label distribution estimation simultaneously by introducing
the joint loss function of an MAE and KL divergence.

As mentioned above, label distribution has already been
used in the facial age estimation community. The gait analysis
community has never used the useful label distribution for age
estimation; hence, in this study, we use it for the purpose of
gait-based age estimation for the first time, to the best of our
knowledge.

C. Person Search on Image Data

Most person search methods on image data typically detect
persons first, and then search a pool of detected persons for a
target person that matches the query.

Query types used in person search mainly fall into three cat-
egories: image, attribute, and natural language. Image query-
based approaches are the most direct approaches to search for
a person, where the queries are given as images and/or biomet-
ric features extracted from the images. Given a query, person
search is performed using person reidentification [43], [44],

[45], [46], where color and texture information are mainly
used, or biometric person authentication using a variety of
modalities, such as face and gait.

Attribute query-based approaches do not require a query
image, but instead use pre-defined attributes for the person
search [47], [48]. For example, the person search attributes
range from soft biometric-based attributes, such as age and
gender [7], [8], [9], [16], [26], [32], to height and hair
color computed from the image [48], which are estimated
for detected persons and also specified as a query. Other
types of attributes are action-based labels [49], [50], and
clothes information associated with color, texture, and clothing
types [48].

Natural language query-based approaches use a descrip-
tion in natural language as a query, and retrieve a person
that matches the description [51], [52]. For example, in [52],
at least eight words were used to describe the target per-
son, and information associated with clothes and actions were
described.

Although a variety of approaches to person search have
been proposed, as mentioned above, the person search research
community has never explicitly incorporated the uncertainty of
estimated cues for each detected person (e.g., the uncertainty
of age), to the best of our knowledge.

D. People Counting by Age

People counting by age group is typically performed by
detecting people, estimating the age groups of the detected
people, and counting them for each age group. For example,
Ko et al. [53] proposed a method for people counting for four
age groups using RGBD cameras installed on the front and
ceiling. The age groups were estimated based on facial feature
points and the texture of wrinkles.

Additionally, the industrial community has been developing
a large number of age-specific people counting tools, such as
People Face Analytics (Apexcount),1 PeopleCounting System
(MintM),2 Demographic Analysis (V-Count),3 Demographic
Facia (GikenTrastem),4 FieldAnalyst (NEC),5 and TrueView
People Counter (Cognimatics).6 This shows that there is a
high demand for people counting by age group.

III. OBSERVATION OF THE GPR-BASED APPROACH [12]

Before moving on to the proposed method, we briefly
mention the most closely related work, that is, the GPR-
based approach to uncertainty-aware gait-based age estima-
tion, which outputs the Gaussian distribution of the estimated
age, that is, the expectation and variance, to clarify its
drawback. Readers may refer to [12] for more details.

In the GPR-based approach, we assume that a training set
D = [X, y] is given, where X = [x1, . . . , xN] is a set of

1http://apexcount.com/people-face-analytics/
2https://mintm.com/people-counting-system/
3https://v-count.com/solutions/demographic-analysis/
4http://www.trastem.co.jp/eng/product/demographic.html
5https://www.nec-solutioninnovators.co.jp/en/sl/fieldanalyst/index.html
6https://netcam.cz/produkty/software-sprava-videa/pdf/trueview-people-

counter-ps.pdf
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Fig. 2. Preliminary simulation experiment for GPR with 10 training data
and hyperparameters r = 1.0 and � = 0.1. The uncertainty range μy ± σy
increases if an input is more distant from any of the training data (e.g., x = 5).
Conversely, uncertainty does not become large, even if an input is closer to
the training data with multiple outputs (e.g., x = 9 with y = 1 and y = 3).

N samples of gait features and y = [y1, . . . , yN] is the set
of corresponding ground-truth ages. Additionally, an affin-
ity/similarity function, that is, an inner product between two
feature vectors xi and xj, is defined, often using a nonlinear
kernel function, such as a radial basis function (RBF):

k
(
xi, xj; r

) = exp

(

−||xi − xj||2
2r2

)

, (1)

where ‖ · ‖ is the L2 norm and r is a hyperparameter for
the RBF kernel. Note that the function k(·, ·) measures the
closeness between two input arguments, and it approaches 1
if the two inputs are more similar, whereas it approaches 0 if
they are more different.

Thereafter, given an input gait feature x∗, the GPR estimates
the posterior probability distribution of age y∗ corresponding
to the gait feature x∗ based on the training set D. According
to Gaussian process theory [39], once we assume each age
yi in the training set D, follows a Gaussian distribution
N (y; yi,�

2), where �2 is the variance of age observation
noise, and the posterior probability distribution P(y∗|x∗, D)

also follows a Gaussian distribution N (y∗;μy, σ
2
y ), where

mean μy and variance σ 2
y are defined as

μy = kT∗ (K + S)−1y (2)

σ 2
y = k(x∗, x∗) − kT∗ (K + S)−1k∗ + �2, (3)

respectively, where K is an N×N square matrix whose (i, j)-th
component is k(xi, xj), k∗ is an N-dimensional vector whose
i-th row is k(xi, x∗), and S is an N ×N diagonal matrix whose
(i, i)-th component is age observation noise �2.

From Eq. (3), we note that the variance (i.e., the uncertainty)
is dependent not on the ground-truth ages y in the training set
but relations, specifically, affinity/similarity/closeness between
the input gait feature x∗ and those in the training data X, which
appear in K and k∗ in the above-defined equations.

To better observe and understand this, we conducted a
preliminary simulation experiment with 10 training data of
one-dimensional feature vectors (i.e., a scalar value) and an
estimation target (e.g., an age). The results are shown in
Fig. 2. We can see that uncertainty increases as the input
becomes more distant from any of the training data (e.g.,

Fig. 3. Schematic of the proposed age estimation model with label distribu-
tion learning. Either GEINet [34] or GaitSet [35] is adopted as the backbone
network.

x = 5). Moreover, in this simulation experiment, the train-
ing sample x = 9 had multiple outputs y = 1 and y = 3,
which is analogous to subjects who have similar gait features
but different ages. Even though it is preferable to represent
uncertainty caused by different ages well in the sample, the
uncertainty derived from the GPR did not become large. This
is the drawback of the GPR framework.

Conversely, the label distribution learning framework can
successfully cope with this type of uncertainty because it can
be trained to output multiple ages. For example, given the
sample x = 9 in the above-mentioned simulation experiment,
we intuitively expect that probability 0.5 will be assigned to
each of y = 1 and y = 3.

IV. UNCERTAINTY-AWARE GAIT-BASED AGE ESTIMATION

A. Overview

The proposed method attempts to estimate the age of a target
person from the gait. We provide an overview of the proposed
method in Fig. 3. Given a gait feature or silhouette sequence
as input, the backbone network (i.e., an age estimation model)
outputs the label distribution of the estimated age. GEINet [34]
and GaitSet [35] are used as backbone networks to compare
their performance. Once the label distribution is obtained, we
can also compute the expectation of the label distribution as a
single estimated age. We explain the details of the individual
components in the following subsections.

B. Input Data

The first step to achieve gait-based age estimation is to
prepare input data for the age estimation model. For this pur-
pose, first, we need to capture gait data, and then extract
an efficient gait feature from the gait data. We can consider
multiple sensors, such as image sensors (cameras), a depth
sensor, and an inertial sensor. Among them, cameras are the
most popular sensors, and are already installed in many places
(e.g., CCTV in public spaces). Therefore, we focus on the gait
image sequence captured using cameras as gait data.

However, the texture and color, which are important
information contained in the captured RGB images, are not
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the main cues that include useful age information for gait-
based age estimation. For examples, children and adults may
wear the same color and type of clothing, and people (e.g., a
suspect) may also change clothes every day. Additionally, the
faces, which contain rich age-related texture and color features,
cannot be well observed in surveillance scenarios, particularly
when observed at a distance from a camera, due to low reso-
lution or back observation view. On the other hand, the body
shapes and walking styles show apparent differences among
different age groups (e.g., large head-to-body ratio of children,
small stride of the elderly), which are also clearly reflected in
silhouette images. We therefore use silhouettes instead of RGB
images. We then extract the GEI [29] from the obtained gait
silhouette sequence, which is the most widely used image-
based gait feature, and use it as input to GEINet. Conversely,
a size-normalized silhouette sequence [5] is directly fed into
GaitSet, which is actually interpreted as a set of silhouettes in
the network.

C. Network Structure

As the backbone network, we first use a convolutional
neural network (CNN) designed for gait recognition called
GEINet [34] and modify it for age estimation. The modi-
fied GEINet is composed of two sequential triplets, which
include convolution, pooling, and normalization layers, fully
connected layers with normalization, and another fully con-
nected layer with the softmax activation function. Readers may
refer to the layer configurations in the conference version of
this paper [33].

The second backbone network we use is GaitSet [35],
which is a state-of-the-art set-based gait recognition network
that exhibits more effective gait recognition performance than
GEINet. The structure of GaitSet is much more complex than
that of GEINet. It contains a CNN for frame-level feature
extraction, a set pooling operation for set-level feature aggre-
gation, and a module called horizontal pyramid mapping for
discrimination learning (see the original paper [35] for more
details). A fully connected layer with the softmax activation
function is added after the original architecture of GaitSet to
output the estimated age label distribution.

The number of units for the last fully connected layer in
both GEINet and GaitSet is set to the number of bins for
discrete label distribution, as explained in Section IV-D.

D. Output Representations

Two major output/ground-truth representations exist: a
scalar value for regression-based methods [13], [14], [21],
[23], [38] and a one-hot vector for classification-based meth-
ods [15]. Different from these approaches, in this paper, we
incorporate the idea of label distribution [32], [40]. A label
distribution-based method assumes that the ground-truth is nei-
ther a scalar value nor a one-hot vector, but a discrete age
distribution. Fig. 4 shows the conceptual difference between
these three representations.

Let K be the number of bins for a discrete probability distri-
bution of integer ages; we set the minimum and maximum ages
to 0 and K−1, respectively. Let yi ∈ R be the ground-truth age

Fig. 4. Conceptual difference between output representations.

of the i-th training data. Additionally, let pi and pi,k be assigned
a discrete probability distribution and probability for age k
associated with the i-th data, respectively. In the proposed
method, we set pi,k so that it follows a Gaussian distribution
whose mean and standard deviation are the ground-truth age
yi and σ , respectively:

pi,k = 1√
2πσ

exp

{

− (k − yi)
2

2σ 2

}

, (4)

where σ is a hyperparameter that controls the uncertainty of
the ground-truth age.

E. Loss Function

Because the ground-truth label is described by a discrete
probability distribution, we can consider two criteria for evalu-
ating the goodness of the trained parameters. The first criterion
measures the similarity between the assigned target probabil-
ity distribution and the estimated probability distribution. The
other criterion is the dissimilarity between the ground-truth age
and the expected age calculated from the estimated probability
distribution.

Let p̂i = [p̂i,0, . . . , p̂i,K−1]T ∈ R
K be the estimated dis-

crete probability distribution for the i-th training data (i =
1, . . . , N), where N is the number of training data. Note that
the integer age for the k-th age label is k and its probability
is p̂i,k.

For the first criterion, we consider KL divergence [31]
between two distributions and set the loss function LKL as
follows:

LKL = 1

N

N∑

i=1

K−1∑

k=0

pi,k ln
pi,k

p̂i,k
. (5)

For the other criterion, we calculate the expected age from
the estimated distribution, and measure the MAE between the
ground-truth age and the expected age as follows:

LMAE = 1

N

N∑

i=1

|ŷi − yi|, (6)

where ŷi =
K−1∑

k=0

kp̂i,k. (7)

Finally, we define a joint loss function L using the two loss
functions as

L = λKLLKL + λMAELMAE, (8)
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where λKL and λMAE are hyperparameters that balance the
two loss functions.

V. APPLICATIONS TO PERSON SEARCH AND

PEOPLE COUNTING BY AGE

Two typical applications of gait-based age estimation are
person search and people counting in surveillance scenarios,
for example, searching for a lost child of a known age, and
estimating customers’ statistics by age group for marketing
research in a shopping mall. In this section, we introduce the
details of applications to person search and people counting
using the estimated age label distribution using the proposed
method.

Note that we assume that person detection is a pre-
processing step for the two applications that has been com-
pleted because person detection is out of scope of this study.
Specifically, we assume that we have already detected N
persons from video sources, such as CCTV footage, and con-
structed a database composed of the N persons with their
estimated ages.

A. Person Search by Age

Because the database has already been constructed, the
remaining task for person search is to create a ranking list
of all the persons in the database given a query, which will
be shown to the user who wants to search for a target person.
In the person search application, the greater the number of
persons with a true match to the given query located at high
ranks, the more effective the system.

As application scenarios, we consider two types of queries: a
specific age query and an age group (i.e., age range) query. For
example, parents may look for their lost child in a shopping
mall by specifying his/her exact age (e.g., 5 years old); and
the police may search for an escaped suspect with a possible
age range (e.g., around 30 to 40 years old) provided by an
eyewitness.

1) Person Search by Age Query (Uncertainty-Unaware
Baseline): Before describing the approach to person search
using the proposed uncertainty-aware method, we introduce
a baseline version that uses a single estimated age without
uncertainty to clarify the differences. Let ŷi be a single esti-
mate age for the i-th person in the database. Given a query
age yq ∈ {0, 1, . . . , M}, where M is the maximum age for
the query, a straightforward yet reasonable approach is to first
compute the dissimilarity to the query age for each person as
di = |ŷi − yq|, and then create a ranking list of all persons in
a database by sorting the dissimilarities di in ascending order.

Proposed uncertainty-aware method: As shown in the
example in Section I, the uncertainty-aware method is ben-
eficial for person search because it can provide a more
appropriate ranking list. To achieve this, the discrete proba-
bility distribution estimated by the proposed method is used
to construct the ranking list, which is different from the
uncertainty-unaware baseline. Let p̂i = [p̂i,0, . . . , p̂i,K−1]T ∈
R

K be the estimated age label distribution for the i-th person
in the database. We then select the probability (i.e., a type of
likelihood or similarity) for the query age yq as si = p̂i,yq and

subsequently create a ranking list by sorting the probability si

in descending order.
2) Person Search by Age Group Query: In this subsec-

tion, we describe a method for another type of query, that is,
age group query, whose age range is defined as [yq

min, yq
max)

(yq
min, yq

max ∈ {0, 1, . . . , M}, yq
min < yq

max).
Uncertainty-unaware baseline: Similar to the age query

case, first, we describe an uncertainty-unaware baseline. A
straightforward yet reasonable approach is to first consider
a representative age yq

rep = (yq
min + yq

max − 1)/2 of the age
group and then compute the dissimilarity to the representative
age for each person as di = |ŷi − yq

rep|. Finally, we create a
ranking list by sorting the dissimilarity di in ascending order.

Proposed uncertainty-aware method: Because the age group
query contains multiple age labels and any of the multiple ages
is considered as a true match, we compute the probability of
a sum event (i.e., the multiple ages) based on the estimated
age label distribution rather than using the probability of the
representative age yq

rep. Specifically, we define the probability
of the i-th person as a summation over the age group:

si =
yq

max−1∑

y=yq
min

p̂i,y. (9)

Finally, we create a ranking list by sorting the probability si

in descending order.
3) Performance Measures for Person Search: We intro-

duce a standard performance measure for person search (e.g.,
precision-recall curve) in this subsection to make this paper
self-contained.

First, we introduce a true/false match indicator for the query.
In the case of an age query, the indicator li for the i-th person
is defined as

li =
{

1, yi = yq (true match)

0, otherwise (false match),
(10)

where yi is the ground-truth age of the i-th person. In case of
the age group query, it is defined as

li =
{

1, yq
min ≤ yi < yq

max (true match)

0, otherwise (false match).
(11)

Next, the precision at rank k ∈ {1, . . . , N} is defined as
the ratio of the number of true positive samples to the total
number of true positive and false positive samples in the top-k
candidates based on the ranking list. With the true/false match
indicator li, the precision at k can be computed as

precision(k) =
∑k

j=1 lj

k
. (12)

The recall at rank k is defined as the ratio of the number
of true positive samples to the total number of true positive
and false negative samples, which can be converted using the
indicator to

recall(k) =
∑k

j=1 lj
∑N

j=1 lj
. (13)

A precision-recall curve is then introduced, which is drawn
using pairs of precision and recall over ranks. We further intro-
duce the average precision (AP) as a single numerical criterion
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to summarize the curve, which is an approximation of the area
under the curve for the precision-recall curve, and which is
defined as

AP =
N∑

k=1

precision(k) × �recall(k), (14)

where �recall(k) = recall(k) − recall(k − 1).
Finally, the overall performance of all queries is measured

using the mean AP (mAP), which is computed as the average
AP of all query ages/age groups.

B. People Counting by Age

1) People Counting by Age Group: In this subsection, we
describe people counting by age group, which is beneficial
for several applications, such as marketing research. For this
purpose, we prepare a histogram of the age groups and then
cast a vote for each detected person to the corresponding age
group bin that includes his/her estimated age.

Specifically, we define the j-th age group bin as
[yj,min, yj,max) (yj,min, yj,max ∈ {0, 1, . . . , M}, yj,min <

yj,max, j = 1, . . . , G), where M is the maximum age and G is
the number of age group bins. Then, once the vote of the i-th
detected person (i = 1, . . . , N) for the j-th age group bin vi,j is
computed based on his/her age estimation result, the histogram
of the age group is simply computed by summation as

hj =
N∑

i=1

vi,j, (15)

where hj is the histogram for the j-th age group bin. We can
also normalize the histogram among all age group bins with
the total people count N as h̄j = hj/N, where h̄j is the propor-
tion of the people count of the j-th age group bin to the total
people count. The key difference in the people count by age
group is how to set the vote vi,j; hence, we describe it in the
following paragraphs.

Uncertainty-unaware baseline: A straightforward yet rea-
sonable baseline involves setting a binary vote to an age group
bin that includes the estimated age. Formally, the vote vi,j of
the i-th person for the j-th age group bin is

vi,j =
{

1, yj,min ≤ ŷi < yj,max
0, otherwise.

(16)

Proposed uncertainty-aware method: Different from the
uncertainty-unaware baseline, which suffers from biases
because of the severe underestimation of elderly people, even
a single person can vote for multiple age group bins as a result
of the proposed label distribution learning-based method. To
achieve this, we set a weight for each age group bin by tak-
ing the uncertainty of age estimation into consideration, which
mitigates such a bias problem. The vote vi,j of the i-th person
for the j-th age group bin is formally defined using the prob-
ability of the sum event of multiple ages included in the age
group bin as

vi,j =
yj,max−1∑

y=yj,min

p̂i,y. (17)

2) Performance Measure for People Counting by Age
Group: To evaluate the performance of people counting,
we compare the estimated normalized histogram of all age
group bins {h̄j} with that of the ground truth {h̄gt

j }. We
adopt intersection over union (IoU) to measure the differ-
ences between the estimated and ground-truth normalized
histograms:

IoU =
∑G

j=1 min
(

h̄j, h̄gt
j

)

∑G
j=1 max

(
h̄j, h̄gt

j

) , (18)

where h̄gt
j is the ground-truth ratio of the people count of the

j-th age group bin.

VI. EXPERIMENTS

A. Dataset

We used the OULP-Age [28] to evaluate the performance
of the proposed method. OULP-Age is the world’s largest gait
database and includes gait images, in addition to the ground
truth of age and gender. It consists of 63,846 gait images
(31,093 males and 32,753 females) with an age range of 2
to 90 years old. GEIs and silhouette sequences of 88 × 128
pixels extracted for a side-view gait are provided for each
subject. Following the original setting in [35], we further
resized the silhouette sequences to 64 × 64 as the input for
the GaitSet backbone network. Based on the predefined pro-
tocol, we divided the database into a training set composed of
31,923 subjects (15,596 males and 16,327 females) and a test
set composed of 31,923 subjects (15,407 males and 16,426
females).

B. Training

We trained the network to minimize the joint loss function
(Eq. (8)) using adaptive moment estimation (Adam) [54] with
a batch size of 128 and 100 epochs. We set the initial learning
rate to 0.001 for the GEINet backbone network,† and 0.0001
for the GaitSet backbone network. We set the number of age
labels to K = 101, that is, the minimum and maximum ages
were 0 and 100 years old, respectively. We set the hyperpa-
rameter σ for label distribution to 1.0, and both balancing
parameters λKL and λMAE of the joint loss function to the
same value: 1.0. We set the number of input frames for the
GaitSet backbone network to 30 in both the training and test
phases.

C. Evaluation Measure

We evaluated the accuracy of gait-based age estimation
using two criteria. One is the MAE between the estimated
age (i.e., an expectation of the age label distribution) and
the ground-truth age, which is computed similarly to the
MAE-based loss function (Eq. (6)).

†The conference version of this paper [33] used TensorFlow, but we re-
implemented GEINet using PyTorch for an entirely fair comparison between
GEINet and GaitSet for the same framework.
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Fig. 5. Pairs of GEIs and estimated age distributions using the GPR-based method [12] (depicted in green), and the proposed method using the GEINet
(depicted in cyan) and GaitSet (depicted in orange) backbone networks for males/females and children/adults/the elderly. The digits shown after each method
are the corresponding estimated ages. In each caption, the ground-truth gender and age (in parentheses) are provided. The GPR-based method returned similar
ranges for the uncertainty (variance), regardless of age. Conversely, the proposed method using both GEINet and GaitSet successfully returned small and large
uncertainties for children and adults/the elderly, which coincides with the intuition regarding the gait-based age estimation accuracy addressed in Section I,
and also with the scatter plots in Fig. 6. Best viewed in color.

Fig. 6. Scatter plots between the ground-truth age and estimated age for
GEINet [34], and the proposed method using both GEINet and GaitSet.
Diagonal lines indicate equal lines of ground-truth age and estimated age.

The other is the CS, which is the error tolerance ratio.
Specifically, we define the number of test samples whose abso-
lute error between the estimated age and the ground-truth age
is less than or equal to y as n(y), and then the CS of the y-year
absolute error as

CS(y) = n(y)

N
. (19)

We evaluated the performance of person search by age using
the AP for each query age/age group (Eq. (14)) and mAP over
all queries, and evaluated the accuracy of people counting by

age using the IoU between the estimated and ground-truth
people statistics (Eq. (18)).

D. Qualitative Evaluation of the Label Distribution

First, as the most important aspect of the analysis, we
show and compare the age distributions using the GPR-based
method [12], and the proposed method using both the GEINet
and GaitSet backbone networks in Fig. 5 to verify that the age
estimation uncertainty is well represented.

Regarding the GPR-based method, we can clearly see that
the uncertainty (i.e., the variance of the Gaussian distribution,
depicted as green curves in Fig. 5) does not change much
among children, adults, and the elderly, despite the fact that
they should change to reflect the differences between ages in
the uncertainty, as described and shown in Fig. 1 (i.e., a small
uncertainty for children, and a large uncertainty for adults and
the elderly). This is because the uncertainty obtained using the
GPR-based approach mainly depends only on the closeness of
an input gait feature to any of the training gait features, and
hence cannot appropriately handle similar gait features with
different ages, as we discussed in Section III.

Conversely, the proposed label distribution learning-based
approach can successfully cope with age-dependent uncer-
tainty. Specifically, the proposed method returns a sharp
distribution (i.e., small uncertainty) for children (Fig. 5 (left)),
and spread distributions (i.e., large uncertainty) for adults
(Fig. 5 (middle)) and the elderly (Fig. 5 (right)), which is
consistent with a common insight on gait-based age estima-
tion, in addition to the scatter plots between the ground-truth
and estimated ages (see Fig. 6). Additionally, we can see
that the ground-truth age for each subject is covered by rel-
atively high probabilities in the estimated age distribution,
and in most cases, the estimated probability for the ground-
truth age using GaitSet is higher than that using GEINet,
which is consistent with the statistical results in Section VI-E.
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TABLE I
MAES [YEARS] AND CSS [%] AT 1-, 5-, AND 10-YEAR ABSOLUTE

ERRORS. BOLD AND ITALIC BOLD INDICATE THE BEST AND

SECOND-BEST PERFORMANCES, RESPECTIVELY. “-” INDICATES NOT

PROVIDED IN THE ORIGINAL PAPERS. THE LAST SIX METHODS ARE

DEEP LEARNING-BASED APPROACHES

Consequently, we confirmed that the proposed method is
suitable for uncertainty-aware gait-based age estimation.

Moreover, we note that the subject in Fig. 5(e) has a smaller
uncertainty than the subject in Fig. 5(b), but they are both 30
years old. This may be because the outfit of subject (e), which
is, generally speaking, a type of generation-specific fashion
style, could be a cue to narrow the possible age range. As such,
we can see that the proposed method is potentially capable of
handling not only age-dependent uncertainty but also sample-
dependent uncertainty.

E. Comparison With State-of-the-Art Methods

We compared the proposed method with the benchmarks of
existing gait-based age estimation. As a baseline algorithm,
we used a method using GPR with the RBF kernel [12] and
an active set method in the same manner shown in [55],
where the k nearest neighbors for each test sample were
used for GPR and k = 10, 100, 1000 were evaluated. We
also evaluated existing gait-based age estimation methods
using conventional machine learning techniques: SVR with
linear and Gaussian kernels, denoted by SVR (linear) and
SVR (Gaussian), MLG [15], OPLDA [14], OPMFA [14], and
AGDMLR [23]. Additionally, we used a slightly modified ver-
sion of GEINet [34] as a deep learning-based approach to
age estimation. Specifically, the original GEINet outputs class
(i.e., subject) likelihoods; hence, the number of nodes at the
last layer is equal to the number of subjects. Conversely, the
modified version of GEINet outputs an age; hence, the last
layer has only a single node. Moreover, we also evaluated
other state-of-the-art deep learning approaches [16], [21], [38]
to gait-based age estimation.

The MAEs and CSs for 1-, 5-, and 10-year tolerances are
summarized in Table I. The results showed that the deep
learning-based methods (i.e., GEINet [34], DenseNet [21],
multi-task [16], multi-stage [38], and the proposed method)
significantly outperformed the other conventional machine
learning-based methods. Additionally, the proposed method
also outperformed the state-of-the-art deep learning-based

TABLE II
MAES [YEARS] FOR THE SENSITIVITY ANALYSIS OF THE STANDARD

DEVIATION σ OF THE GROUND-TRUTH LABEL DISTRIBUTION

approaches [16], [21], [34], [38]. Compared with a rela-
tively simple backbone network (i.e., GEINet), the proposed
method worked better with a more state-of-the-art backbone
(i.e., GaitSet). Conversely, the proposed method clearly outper-
formed a regression-based method under the same backbone
network, that is, GEINet [34] by a large margin (e.g., the
proposed method improved the MAE and CS(1) by 0.79 years
and 6.3%, respectively). This is because the proposed method
with the age label distribution has a more powerful and flexible
expression capability than the regression-based method, which
outputs a single age value. Specifically, the regression-based
model (e.g., GEINet [34]) is highly affected by outlier sub-
jects who look much younger/older than their age, whereas
the proposed method can mitigate the effect of outliers by
assigning probabilities to multiple age labels.

As further analysis, Fig. 6 shows scatter plots between the
ground-truth age and the estimated ages for deep learning-
based methods with the same backbone network, that is,
GEINet [34] as a regression-based approach, and the proposed
method using both GEINet and GaitSet as label distribution-
based approaches. In all cases, we can observe a common
property in the gait-based age estimation, that is, the age
estimation uncertainty is small for children, whereas it is
large for adults and the elderly. We took a closer look at
the differences among them. The estimated ages for GEINet
[Fig. 6(a)] deviated more than those for the proposed method
[Figs. 6(b) and (c)] for all age ranges, particularly children
under 15 years old. Additionally, the proposed method signif-
icantly improved the estimation accuracy for subjects over 60
years old compared with GEINet. Specifically, most subjects
over 60 years old were underestimated (i.e., biased toward the
younger direction) for GEINet. The proposed method success-
fully mitigated the underestimate, where the GaitSet backbone
network [Fig. 6(c)] improved more than the GEINet backbone
network [Fig. 6(b)]. This led to the performance improvement
of quantitative criteria such as the MAE and CS.

F. Sensitivity Analysis

Because the standard deviation σ of the label distribution
is a key hyperparameter for the proposed method, we analyze
its sensitivity to gait-based age estimation accuracy.

Table II shows the MAEs when changing the standard devi-
ation σ . According to Table II, the MAE became worse when
σ is greater than 1.0 or less than 0.5. This is partly because
the ground-truth age in OULP-Age was given in the integer
domain. In fact, the age annotation of OULP-Age was provided
by each subject’s self-declaration in a long-run exhibition of
video-based gait analysis [55]; hence, unless the subject pro-
vided incorrect information, the rounding error for integer age
annotation (e.g., both a just 10 years-old subject and a 10
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TABLE III
MAES [YEARS] AND MCE FOR DIFFERENT SETTINGS OF BALANCING

PARAMETERS λKL AND λMAE

years + 11 months + 30 days-old subject input 10 years-old.)
is ideally less than 1 year, and the mean absolute error of
annotation is around 0.5 years. Therefore, it is reasonable to
set σ in the range of 0.5 to 1.0. Furthermore, the results of
σ = 0.5 and σ = 1.0 are similar to each other for both the
GEINet and GaitSet backbones. Additionally, the results of the
GaitSet backbone network are better than those of the GEINet
backbone network for all σ values, which is consistent with
the results in Section VI-E. Moreover, we confirmed that the
tendency of the sensitivity analysis of the GaitSet backbone is
similar to that of the GEINet.

G. Effects of Loss Functions

Moreover, we evaluated the effects of the two loss functions,
that is, the KL divergence-based loss function LKL and MAE-
based loss function LMAE with both the GEINet and GaitSet
backbone networks.

Table III shows the results for different settings of bal-
ancing parameters. The results show that the MAE became
worse when we made either of the loss functions invalid
(i.e., set the balancing parameter to 0); that is, both the KL
divergence-based and MAE-based loss play important roles in
a complementary manner to each other. Moreover, the MAEs
were quite similar for λMAE = 1, 2, 5, and became worse when
λMAE is larger than 10. This is because the balance between
the MAE-based loss and KL divergence-based loss gets worse
if λMAE is too large, which results in the accuracy of the esti-
mated age label distribution being too much sacrificed, and
further leads to the worse performance of age estimation.

We further validated the above-mentioned point by evalu-
ating the performance not only of mean (or expectation of)
age with MAE but also of age label distribution estimation
itself (i.e., including uncertainty). For this purpose, we intro-
duced the mean cross-entropy (MCE) between the estimated
and ground-truth distribution as a criterion. Following [56], we
defined the ground-truth label distribution as a delta function
of the ground-truth age; hence, the MCE is computed as [56]

MCE = 1

N

N∑

i=1

log p̂i,yi , (20)

where N is the number of test samples, and p̂i,yi is the esti-
mated probability of the ground-truth age label yi for the i-th

sample. The MCE will be greater if the estimated probability
of the ground-truth age is greater.

The results in Table III show that the MCE became worse
with the increase of λMAE, which means the decrease of
the accuracy of the estimated age label distribution. When
λMAE = 1000, both MAE and MCE got closer to the results
of using only the MAE-based loss (i.e., the second row). As a
result, the setting of λKL = λMAE = 1 yielded the best overall
performance of age estimation and age label distribution esti-
mation. Additionally, the GaitSet backbone network achieved
better results than the GEINet backbone network in almost all
cases, which shows the effectiveness of a powerful backbone
network for age estimation.

H. Simulation Experiments for Person Search and People
Counting by Age

We conducted simulation experiments for person search
and people counting by age on OULP-Age. As introduced
in Section V, we investigated two application scenarios for
person search, that is, person search by age query [Fig. 7(a)]
and person search by age group query [Fig. 7(b)], whereas we
considered only the age group for people counting [Fig. 7(c)].
Similar to [57], we set the query age groups to [0, 5), [5, 10),
[10, 15), [15, 20), [20, 30), [30, 40), . . . , [80, 90), [90, 101),
where the age interval was set to 5 years for children and
teenagers, and 10 years for adults, considering the changes
in the growth rate of a human body. We used age estimation
results from both the GEINet and GaitSet backbone networks
for evaluation. For comparison, we also evaluated the corre-
sponding regression-based models, that is, GEINet [34] and
GaitSet [35], as baseline methods. Additionally, we did not
use the expected ages (Eq. (7)) in the two applications (i.e., no
MAE-related criteria were included); hence, we also report the
results of models trained with only the KL divergence-based
loss function LKL for comparison.

Regarding person search, the proposed uncertainty-aware
methods clearly outperformed the regression-based methods,
as shown in Fig. 7. Specifically, for the person search by age
query, the APs of the regression-based methods were worse
than those of the uncertainty-aware methods for query ages of
less than 20 years old, whereas the performances were sim-
ilar to each other for those over 20 years old. Conversely,
the results of the person search by age group query with
the uncertainty-aware methods were always better than the
regression-based methods for all query age groups. This is
because the uncertainty of age estimation was larger for adults
compared with children; hence, the exact age query (i.e.,
uncertainty of ±1 years) for adults was quite difficult for
both the regression-based and the uncertainty-aware meth-
ods. Conversely, the age group query considered a reasonable
uncertainty for children and adults, which resulted in the
superior performance of the uncertainty-aware methods.

Regarding people counting by age group, we evaluated the
normalized histogram of the age groups (i.e., people statis-
tics), as shown in Fig. 7(c). As a result, the regression-based
method tended to assign more votes to young and middle-
age people (i.e., 20–40 years old) and fewer votes to the
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Fig. 7. Results of person search and people counting using the estimated age using regression-based methods (i.e., GEINet and GaitSet), and the estimated
label distribution using the proposed method trained with only the KL divergence loss, and both the KL divergence and MAE losses. Additionally, the results
of people counting using the model trained with the augmented training set are also shown in (c) (depicted in red). The results shown in the top row are
based on the GEINet backbone network, whereas those in the bottom row are based on the GaitSet backbone network.

elderly compared with the ground truth. This is because
the ages estimated by the regression-based method were
biased toward the population’s mean to avoid large errors
in case of misestimation, which was also seen in the scatter
plots [Fig. 6(a)]. Conversely, the proposed uncertainty-aware
methods were essentially similar to the ground-truth peo-
ple statistics because they had more opportunities to cast
a vote to the elder’s bin because of the label distribution
representation.

The estimation accuracies were different between mod-
els trained with and without the MAE loss, as shown in
Section VI-G, whereas the performances of person search
and people counting with the model trained only with KL
divergence loss were quite similar to those with both KL
divergence and MAE losses. This is understandable because
the age estimation accuracy is evaluated using the MAE;
hence, the inclusion of the MAE loss naturally yielded better
results. Conversely, the performance of uncertainty-aware per-
son search and people counting was never computed using an
MAE-related metric (e.g., absolute difference from the query
or age group bin’s representative age) but was computed using
the probability distribution instead; hence, the inclusion of the
MAE loss did not necessarily result in better performance.
Additionally, the GaitSet backbone network obtained slightly
better results than the GEINet backbone network in most
cases, which is essentially consistent with the results of age
estimation in Section VI-G.

I. Discussion

1) Analysis of Person Search by Age Query: Because of the
large uncertainty of age estimation for adults, which largely
increases the difficulty of person search by age query, the
proposed method yielded relatively low APs for query ages in
the adult group, as shown in Fig. 7(a). In order to take a closer
look, we further discuss the results of precision and recall by
taking the real application scenarios into consideration.

Fig. 8. Precision and recall over ranks for the query age of 5, 20, 40, and
60 years old obtained by the proposed method using the GaitSet backbone
with both the KL divergence and MAE losses.

To check the precision and recall at each rank, we chose four
typical query ages, i.e., 5, 20, 40, 60 years old to compare the
performance. Figure 8 shows the results of precision and recall
over ranks for the proposed method using the GaitSet back-
bone with both the KL divergence and MAE losses. According
to the results, a list of approximately 3,000, 25,000, 23,000,
and 18,000 candidates was created for the query age of 5, 20,
40, and 60 years old, respectively, when all persons whose
ground-truth ages matches the query age (i.e., true match) were
included in the list (i.e., the rank for 100% recall). Consider
the application to search for a suspect with his/her exact age,
because the total database for searching contains 31,923 per-
sons, the proposed method eliminated about 20% of candidates
even in the worst case (i.e., query age of 20 years old), which
still reduced considerable time efforts for criminal investiga-
tors. If we consider a slightly lower recall (e.g., 80% recall),
the search work on 31,923 persons would be greatly reduced
to 1,500, 10,000, 12,000, 6,000 persons for query age of 5,
20, 40, and 60 years old, respectively.

Another possible application scenario is searching for a
known person (e.g., a family member such as a lost child or
a wandering grandparent), where the query age may be more
biased towards children and the elderly groups. In that case,
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Fig. 9. Age group-dependent people counting (ratio) with different test distributions. Each column shows the results of each test subset. We compared the
results of regression-based methods (i.e., GEINet [34] and GaitSet [35]), and the proposed method using the same backbone networks that were trained with
only the KL divergence loss, and both the KL divergence and MAE losses, as well as using the model trained with the augmented training set. The results
shown in the top row are based on the GEINet backbone network, whereas those in the bottom row are based on the GaitSet backbone network.

the recall and precision are relatively better compared with the
adults, which results in much fewer search efforts.

Besides, in this work, we used the size-normalized silhou-
ettes as input data, which may discard a couple of useful
information containing age-related cues. To improve the accu-
racy of person search as well as the performance of age
estimation, a possible way is to include normalization factors
such as the height and walking speed (e.g., heights of chil-
dren are smaller, and walking speeds of the elderly are slower).
Additionally, rather than using the appearance-based represen-
tations that entangle the body shape and motion factors, we
may also improve the performance by disentangling them via
disentangled representation learning [58] or human model fit-
ting [59], which helps to maximize the use of each body shape
and motion factor for better generalization capability.

2) People Counting Over Various Statistics: We then
analyzed the effects of the statistical distribution on the
performance of people counting. For this purpose, we trained
the proposed method still using the original training set,
whereas the following three test subsets with different sub-
ject distributions were prepared for evaluation: a subset of
8,012 subjects with uniform age group distribution as much
as possible, a younger-biased subset of 7,833 subjects, and an
elderly-biased subset of 2,756 subjects. Specifically, because
of the limited number of subjects over 50 years old, we set up
the first test subset by randomly choosing 300 subjects for each
gender and age group in 5-year intervals under 50 years old
while keeping all the subjects over 50 years old in the entire
test set to maintain a uniform distribution as much as possi-
ble. Regarding the second subset that contained more young
subjects, we randomly selected a quarter of subjects from the
entire test set for each gender and age group in 5-year intervals
under 50 years old, and randomly selected 30 subjects for each
gender and age group in 5-year intervals over 50 years old.‡

‡All subjects over 80 years old were used because of a lack of data (i.e.,
fewer than 30 subjects for each gender and age group).

To ensure that the third subset contained more elderly sub-
jects, we randomly selected 30 subjects for each gender and
age group in 5-year intervals under 50 years old, whereas we
used all subjects over 50 years old in the entire test set.

The results are shown in Fig. 9. Generally, the accuracy of
people statistics estimation is highly dependent on the distribu-
tion similarity between the training set and test subset; hence,
the younger-biased subset achieved the best performance
among the three subsets, whereas the elderly-biased subset per-
formed relatively worse than the others. Similar to the results
in Section VI-H, the proposed uncertainty-aware methods
yielded much better performances than the regression-based
methods for all three subsets, where the GaitSet backbone
network also yielded somewhat better performance than the
GEINet backbone network.

Although the estimated people statistics of the uniform sub-
set still had differences from the ground truth, the difference
in counting ratios among all age ranges was relatively smaller
compared with the original test set [see Fig. 7(c)], which shows
a trend of uniform distribution, to some extent. Because more
young subjects were contained in the younger-biased subset,
whose subject distribution was essentially similar to that of
the training set and the entire test set, its estimation accuracy
was quite close to that of the entire test set. Conversely, more
subjects were counted as middle-aged for the elderly-biased
subset, which had a relatively large estimation error from the
ground-truth. This was caused by the significant difference
between the age distribution of the training and test sets.

Therefore, the prior distribution of training data is quite
important for the performance of people counting with differ-
ent statistics. To improve the accuracy of the elderly-biased
subset, one possible solution is to train the proposed method
using a training set with a uniform age distribution as much
as possible. However, because of the bias toward young sub-
jects in OULP-Age, an extremely uniform training distribution
may result in much fewer training samples compared with the
original training set. Conversely, to maintain a large amount of
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training data, a considerable bias may still exist in the training
distribution in terms of age. Consequently, it is necessary to
consider a trade-off between a sufficient number of training
samples and an appropriately uniform age distribution when
constructing the training set.

3) Balancing Training Data via Augmentation: As men-
tioned in Section VI-I2, the non-uniform training distribution
of OULP-Age causes the model to be biased towards young
subjects. Therefore, we balanced the training set of each
age group through conventional data augmentation methods
to compare the performance. More specifically, we applied
random rotation between -8◦ and 8◦ in ±2◦ intervals, rescal-
ing between 90% and 110% in 5% intervals, and translation
between −5 and 5 pixels in ±2-pixel intervals to generate the
augmented samples. Additionally, we made the most of the
subjects in the original training set to maximize the subject
diversity after augmentation. Finally, we prepared a training set
containing 90,000 samples, where 2,500 samples are included
in each gender and age group in 5-year intervals.

Using the proposed method trained by the augmented train-
ing set, the MAE of the model using the GEINet backbone
was reduced from 5.43 year to 5.41 year, while that using
the GaitSet backbone was reduced from 5.01 year to 4.91
year, which shows the slight performance improvement of
age estimation. We also showed the corresponding results
of people counting on the original test set in Fig. 7(c)
(depicted in red). It is obvious that the estimated people statis-
tics became quite closer to the ground-truth, which obtained
approximately 95% IOU with the model using the GaitSet
backbone.

We again evaluated the performance of people counting on
three test subsets introduced in Section VI-I2, and the results
are shown in Fig. 9 (depicted in red). Similarly to the origi-
nal test set, the accuracies of estimated people statistics were
all improved on three test subsets, and the improvements on
the uniform subset and elderly-biased subset were relatively
larger than that on the younger-biased subset. This is under-
standable because the augmented training set increased much
more children and elderly samples compared with the young
people, which is more favorable for the uniform and elderly-
biased subsets. On the other hand, although the accuracy on
the elderly-biased subset was improved to some extent, there
is still a large margin between the estimation results and the
ground-truth. This is due to too few elderly subjects in the
original dataset (e.g., only 21 subjects in the 81 to 90 age
group), which greatly limits the subject diversity even after
data augmentation, and hence, easily leads to overfitting of
the trained model. Therefore, it is important to capture suffi-
cient subjects to maintain the balance between generations in
the dataset.

4) Considerations for Real-World Applications: Although
OULP-Age is the world’s largest gait database with age anno-
tations, the gait videos were captured under well-controlled
indoor conditions, which makes the silhouette extraction much
easier than those obtained in real-world scenarios. Occlusions,
illumination, and complex backgrounds, which are difficult
variations often exist in real captured scenes, have great
influences on the silhouette segmentation results, and may

further affect the age estimation performance of the proposed
method. Fortunately, recent state-of-the-art deep learning-
based semantic segmentation methods, such as RefineNet [60]
and Mask R-CNN [61], achieved significant improvement in
human segmentation in complex scenes. In fact, some recent
gait recognition involves semantic segmentation (e.g., [58])
and also involves silhouette extraction in an end-to-end gait
recognition framework (e.g., [62]), which could be the support
of future applications of gait recognition in the real world.
Therefore, we can also consider combining the proposed
method with these segmentation methods when applying to
real applications.

VII. CONCLUSION

In this paper, we described an uncertainty-aware gait-based
age estimation method. Unlike existing uncertainty-aware
approaches, such as the GPR-based method [12], the proposed
method can successfully and naturally handle similar gait
features with different ages by introducing a label distribu-
tion learning framework. Experiments on the world’s largest
gait database OULP-Age showed that the proposed method
can represent the age estimation uncertainty well and out-
performed or was comparable with state-of-the-art methods.
Additionally, experiments on two applications, that is, person
search and people counting by age, showed the effectiveness
of the estimated uncertainty in a quantitative manner.

One future research avenue is to make the estimated age
distribution smoother. The probabilities between adjacent age
labels sometimes change abruptly (Fig. 5), which is unrea-
sonable in reality. We will therefore include frameworks to
retain the ordinary properties of age labels (e.g., a smoothness
loss or adaptive setting of the uncertainty of the ground-truth
age distribution considering the degree of shortage of training
samples for the age). Additionally, because this study focused
only on side-view gait, another research direction is to make
the age estimator robust against various covariates, such as
view, carrying status, and walking speed.
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