
TO APPEAR IN IEEE TRANSACTIONS ON BIOMETRICS, IDENTITY AND BEHAVIOR (T-BIOM) 1

GANTouch: An Attack-Resilient Framework for
Touch-based Continuous Authentication System

Mohit Agrawal, Pragyan Mehrotra, Rajesh Kumar, and Rajiv Ratn Shah

Abstract—Previous studies have shown that commonly studied (vanilla) implementations of touch-based continuous authentication
systems (V-TCAS) are susceptible to active adversarial attempts. This study presents a novel Generative Adversarial Network assisted
TCAS (G-TCAS) framework and compares it to the V-TCAS under three active adversarial environments viz. Zero-effort, Population,
and Random-vector. The Zero-effort environment was implemented in two variations viz. Zero-effort (same-dataset) and Zero-effort
(cross-dataset). The first involved a Zero-effort attack from the same dataset, while the second used three different datasets. G-TCAS
showed more resilience than V-TCAS under the Population and Random-vector, the more damaging adversarial scenarios than the
Zero-effort. On average, the increase in the false accept rates (FARs) for V-TCAS was much higher (27.5% and 21.5%) than for
G-TCAS (14% and 12.5%) for Population and Random-vector attacks, respectively. Moreover, we performed a fairness analysis of
TCAS for different genders and found TCAS to be fair across genders. The findings suggest that we should evaluate TCAS under
active adversarial environments and affirm the usefulness of GANs in the TCAS pipeline.

Index Terms—Continuous Authentication, Behavioral Biometrics, Touchstrokes, Adversarial Attacks, Fairness, and GANs.

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

F

1 INTRODUCTION

U Ser authentication is an established area of research.
Various methods have been used, including PIN,

password, fingerprint, and face. With the changing
landscape of human-computer interaction, the need for
non-intrusive and continuous authentication systems is
rising and evident. The study of behavioral footprints
originated from human-computer-interaction for identity
authentication has become an interesting area of research
over the past decade. Among several behavioral footprints
(e.g., gait [1], keystroke [2], touchstroke [2], voice [3],
body-movements [4]), touch-strokes have been widely
studied and have shown promise for non-intrusive
continuous authentication [2], [5], [6], [7], [8], [9], [10].

1.1 Continuous Authentication via TCAS

One of the significant drawbacks of traditional means
(e.g., fingerprint, face, PIN, password) is that they
require user attention. In other words, they are intrusive.
The other significant weaknesses are that they offer
only entry point authentication. One can use coercion,
intoxication, social engineering, or other means to unlock
the device and use it afterward. Thus, the researchers
have been focusing on developing non-intrusive continuous
authentication systems that are user-friendly and resilient
to active adversaries. The non-intrusiveness here means that
the authentication system would require minimal or no

• Mohit Agrawal (mohita@iiitd.ac.in), Pragyan Mehrotra
(pragyan18168@iiitd.ac.in), and Rajiv Ratn Shah (rajivratn@iiitd.ac.in)
are with IIIT Delhi, India. Rajesh Kumar (rajesh.kumar@bucknell.edu) is
with Bucknell University, USA.

attention from users to verify their identity. The continuous
part implies that the user’s identity would be verified at
frequent time intervals, either fixed or triggered by user
actions on the device. Multiple continuous impostor alarms
would lock users out of the system or require users to
present additional credentials to continue. The frequency
of the authentication and the number of impostor alarms
required to lock users out of the system (say na) depend on
the application scenario. For example, the frequency of the
authentication would be relatively high in a high-security
environment (e.g., military bases), and na would be low.
In contrast, in a low-security environment (e.g., a defensive
driving course), the frequency of authentication would be
kept low and na high.

The continuous authentication error rate need not be
close to zero (i.e., comparable to fingerprint or face),
which is often expected from an entry-point authentication
system because an attacker will have to bypass multiple
checks during a meaningful adversarial session of a
continuous authentication system. The chances of the
attacker doing so would be p ∗ qn for n number of checks
assuming q is the probability of bypassing a check in
a continuous authentication setup, and initial verification
was using the entry-point authentication system. The value
of p ∗ qn will decline exponentially and catch up or
will become lower than the probability of the attacker
fooling the entry-point authentication system [11], [12].
Besides, continuous authentication systems do not have to
replace entry-point authentication systems. Instead, they
can be deployed with entry-point authentication systems to
achieve higher security and usability.

The suitability of touchstrokes for non-intrusive
continuous authentication has been credited to its

ar
X

iv
:2

21
0.

01
59

4v
1

 [
cs

.C
R

]
 2

 O
ct

 2
02

2

TO APPEAR IN IEEE TRANSACTIONS ON BIOMETRICS, IDENTITY AND BEHAVIOR (T-BIOM) 2

universality, collectability, distinctiveness, acceptability,
permanence, performance, and difficulty in reproduction by
someone else [5], [13], [14], [15]. The authentication systems
proposed in most previous studies consisted of a typical
machine learning pipeline, i.e., data collection, feature
engineering, classification, and performance evaluation. The
introductory studies [5], [6], [16] focused primarily on
collecting touchstrokes while users browsed pages, images,
and answered questions; extracting a set of features from
each touch stroke; using the feature vectors to train and
test authentication models, and evaluating the models using
genuine reject, i.e., False Reject Rate (FRR) and impostor
accept, i.e., False Accept Rates (FAR). Later studies [2], [7],
[8], [10], [13], [17] explored several variants such as usage
contexts (sitting and walking) [10], separate templates for
different types (left, right, up, and down) of swipes [7],
fusion with phone movements [1], [2], and bench-marking
different classifiers on multiple datasets [13].

The majority of the previous studies have treated
identity authentication as a two-class problem [5], [7],
[13]. In contrast, the rest have considered it a one-class
classification problem [1]. Two-class classification-based
approached achieved lower authentication error rates [1].
The performance of authentication systems was reported in
terms of Equal Error Rate (EER–a point on ROC where FAR
and FRR are equal) [5], [10] or [1] Half Total Error Rates
(HTER–an average of false accept and false reject rates)
[18]. EER is generally used for setting the threshold during
training/validation as we cannot change the threshold
during testing. HTER is recommended for reporting
testing performance [18], [19]. To summarize, previous
studies suggested that touchstrokes are a viable means for
non-intrusive continuous authentication and have reported
average error rates around 10% percent, which could be
good enough, especially for continuous authentication in
the civilian domain [20]. The problem, however, is that
the studies have assumed the non-existence of active
adversaries. Since the data generated or stored on smart
devices are invaluable, active adversaries would likely exist.
The following section describes some adversarial scenarios.

1.2 Adversarial Scenarios for TCAS

The plausible attacks on TCAS can be grouped into three
categories based on time, expertise, and equipment that the
attackers expend [2], [5], [7], [21], [22], [23], [24]. In the
specific case of TCAS, an attacker needs to meet one or more
of the following requirements. R1: ability to inject data into
the authentication pipeline [22], R2: access to the target’s
biometric samples [24], and R3: reproduction of samples by
training imitators (human, machine, or human+machine) in
real-time [23]. Based on the amount of effort needed to meet
these requirements, ongoing discussion on the Strength of
Function for Authenticators by the National Institute of
Standards and Technology (NIST) [21], and a recent survey
[25], we group the adversarial scenarios into the following
three groups.

1.2.1 Minimal-effort attack
Attackers need to meet the first requirement i.e. R1: ability to
inject data into the authentication pipeline [2], [5], [7], [22],

[24], to launch attacks falling under this category. Attack
strategies that have been studied for TCAS in the past and
fall under this category are listed and described below:

Zero-effort attack: under this attack, the attack vectors
are randomly borrowed from each possible impostor (users
other than the genuine user). The name zero-effort means
that the impostors made zero effort to copy or imitate
the genuine user. Consequently, zero-effort is one of
the most widely adopted and studied attacks, primarily
due to convenience. Consequently, most previous studies
have evaluated and reported TCAS’s performance under
zero-effort attack [2], [5], [7]. Therefore, the performance
under a zero-effort attack is considered the baseline
performance of TCAS in this paper.

Population-based attack: in this attack, the attack vectors
are generated by taking feature vectors from all possible
impostors into account. For example, attack vectors can
be created by taking means of each of the individual
features [24]. It is similar to creating a master key (like
creating a master face by averaging all possible faces
available to breach face-based authentication). Alternatively,
one can create multiple groups of impostors using clustering
techniques to create multiple master keys as suggested in
[26] for gait-based biometrics. This type of attack assumes
that the attackers have access to public datasets.

Random-vector attack: in this attack setup, the attackers
generate random attack vectors by utilizing prior
knowledge, i.e., the length of the feature vectors and range
of feature values. Researchers often scale feature values in
a fixed range, such as k-nearest neighbors demand so, as
some classification algorithms. Zhao et al. [22] evaluated
the impact of a Random-vector attack on TCAS and
concluded that a Random-vector attack is highly effective
on behavior-based authentication systems.

1.2.2 Moderate-effort attack
This category of attacks is required to meet the first two
criteria, i.e., R1: ability to inject data into the authentication
pipeline and R2: access to the target’s biometric samples.
The performance of TCAS against this category of attacks
has not been reported. This attack category has been mostly
studied on behavioral biometrics other than touchstrokes.
We include the description of this attack category for
completeness.

Snoop-forge-replay: This kind of attack has been studied
in the context of keystroke-based continuous authentication
systems [27]. As the name suggests, this attack works in
three steps. Snoop: the attacker uses social engineering or
other possible means to gain access to the biometric samples
(or feature vectors). Forge: the attacker reproduces desired
number of attack vectors by using the stolen genuine
samples. Replay: the attacker then replays/feeds the forged
samples to the authentication API for the time it wants to
gain access to the resources protected by the continuous
authentication system.

1.2.3 High-effort attack
This category of attacks is difficult to launch as the attackers
need to meet R2: access to the target’s biometric samples
and R3: reproduction of samples by training imitators in
real-time. These attacks are difficult to detect because they

TO APPEAR IN IEEE TRANSACTIONS ON BIOMETRICS, IDENTITY AND BEHAVIOR (T-BIOM) 3

do not require any modifications to the device or leave any
footprints to be traced later. These attacks involve training
individuals or machines (robots) or one with the help of the
other to reproduce samples that are close enough to that
of the target or an average gestures derived from publicly
available databases [23], [24]. Serwadda et al. [24] trained
a Lego robot to match the swipes of the target user. In
comparison, Khan et al. [23] trained human imitators to
produce the attack vectors. One could combine and attack
TCAS using a robot imitator assisted by humans or robots.

1.3 Possible Countermeasures
Previous studies such as [28] have suggested that biometric
systems based on raw data level distance-based matching
are more resilient to the attacks; however, they exhibit
very high error rates; in general, [22], [29], [30]. On the
other hand, machine learning-based matches achieve much
lower error rates; therefore, they are heavily used for
implementing TCAS [7], [13], [31] than the distance-based
matches. The primary issue with the previous machine
learning-based TCAS implementation is that they assumed
that Random-vector would belong to the impostor class.
However, Zhao et al. [22] argued that Random-vectors
might also belong to the genuine class. Therefore, we chose
to evaluate the machine learning-based implementations of
TCAS under the most common adversarial scenarios.

Two approaches have been suggested as a possible
defense against minimal effort attacks on machine
learning-based TCAS. The first utilizes two Generative
Adversarial Networks (GANs) [32], [33] (see Figure 1).
The second focuses on reducing the acceptance region
by generating synthetic data (noise) around the genuine
samples and considering the generated data as impostors
[22]. The reduced acceptance region decreases the chances
of classifying any Random-vector as genuine.

To summarize, there are multiple ways to implement and
attack TCAS. This paper focuses on machine-learning-based
implementations of TCAS and its evaluation under
minimal-effort attack scenarios, including zero-effort,
Population, and Random-vector attacks on multiple
datasets under the same and cross dataset scenarios. We
could launch and evaluate only minimal-effort attacks in
this paper. The evaluation of the moderate or high-effort
attack is a tedious task as it requires attack data collection
from trained human or robot imitators. We plan to
investigate this part in the future.

1.4 Main Contributions
The main contributions are as follows:

• We summarize traditional TCAS implementations,
establish a classification of possible adversarial
scenarios for TCAS, and summarize the existing
defense approaches.

• We implement a traditional machine learning
pipeline for TCAS. We refer to the same as
vanilla TCAS (V-TCAS) hereafter and test the same
under three adversarial scenarios, viz. Zero-effort,
Population-based, and Random-vector. V-TCAS’s
false acceptance increased significantly under these
attack scenarios.

• Next, we implement (extend the idea presented
in the conference paper [33]) a novel Generative
Adversarial Networks assisted TCAS framework
(G-TCAS) and test the same under the three
aforementioned adversarial scenarios. The results
suggest that G-TCAS is more resilient to adversarial
environments than V-TCAS.

• We benchmarked four widely studied classifiers
(each with a diverse learning paradigm). The
superiority of G-TCAS over V-TCAS was evident
across the experimental setups.

• Additionally, we analyze the fairness of V-TCAS and
G-TCAS using kernel density plots, only to find out
that TCAS is fair among different genders.

The rest of the paper is structured as follows. Section
2 discusses the closely related works. Section 3 presents
the design of experiments. Section 4 presents and discusses
the results, respectively. Finally, we conclude the paper and
provide future research directions in Section 5. The code is
publicly available1.

2 RELATED WORK

This work extends the idea presented in the conference
paper [33] in the following dimensions:

Additional attack scenario: The conference paper
evaluated V-TCAS and G-TCAS under Zero-effort and
Population-based adversarial scenarios. We extend the
analysis to random-input attacks, which were shown to be
very effective in penetrating V-TCAS in a recent study [22].

Additional datasets: In the conference paper [33], we
had used only two datasets viz. Serwadda-touch and
BBMAS-Touch. In this paper, we include two more
datasets, viz. Hand Movements, Orientation, and Grasp
(HMOG), and UMDAA-02Touch Datasets. The additional
datasets were used to create the population-based attack
environment.

Gender-wise fairness analysis and statistical significance: To
the best of our knowledge, no prior study has explored
whether TCAS discriminates between different genders.
Therefore, we conduct additional analysis on V-TCAS and
G-TCAS to determine whether TCAS is fair across gender.
Unfortunately, the analysis consisted of males and females
and the BBMAS-Touch dataset. Because none of the publicly
available touch stroke datasets included contained gender
information (to the best of our knowledge). We also include
a series of kernel density plots to show that the results and
conclusion hold across users and gender groups.

Besides [33] and the literature cited in it, we review
papers that have investigated the vulnerability of TCAS.
Additionally, we discuss studies that have utilized GANs
as a countermeasure beyond TCAS.

Zhao et al. [22] demonstrated that previously studied
designs of behavioral pattern-based authentication systems,
including TCAS, are susceptible even to uniform
Random-vectors. Their investigation showed that the
acceptance region of the machine learning models is much
bigger than the one occupied by the genuine samples. In
other words, the probability of the Random-vector being

1. https://github.com/midas-research/GANTouch-TBIOM

https://github.com/midas-research/GANTouch-TBIOM

TO APPEAR IN IEEE TRANSACTIONS ON BIOMETRICS, IDENTITY AND BEHAVIOR (T-BIOM) 4

accepted as a genuine is much higher than the false accept
rate of the model. They demonstrated that if attackers know
the length of the feature space and the range of values
each feature takes, they can launch a successful attack by
generating random feature vectors. The idea was evaluated
on gait, touch, face, and speech. Results showed that the
random attack was very successful in the case of TCAS. This
paper also motivated us to evaluate our defense scheme
against random attacks.

Deb et al. [34] conducted a preliminary study in which
they applied Auxiliary Classifier Generative Adversarial
Network (AC-GAN) to achieve error rates between 2 to 11%
under synthetic data attack. The study, however, included
only ten users randomly selected from the Touchalytics
dataset, consisting of 41 users. Nonetheless, the paper
suggested that there is a promise in using GANs to
train user authentication models. Gomez-Alanis et al. [35]
concluded that GAN-based automatic speaker verification
models are more robust against original and adversarial
spoofing attacks. Last but not least, GAN-based defense has
been applied in the image classification area to enhance the
robustness of classification models against black-box and
white-box adversarial attacks [36].

.
TABLE 1

The list of datasets used in this study, # of subjects, avg. number of
(valid) swipe gestures per user, and demographics availability.

Dataset Users Swipe/User Demographics?
BBMAS-Touch 117 173 Yes

Serwadda 190 273 No
HMOG 100 2275 No

UMDAA-02Touch 48 4063 No

3 DESIGN OF EXPERIMENTS

Most of the previously proposed implementations of TCAS
consist of a typical machine learning pipeline, including
data collection and preprocessing, feature engineering,
classification, and performance evaluation. The details of
these steps are as follows.

3.1 Datasets
This study primarily uses BBMAS-Touch [37]. The decision
to use this dataset as the main dataset was based on several
factors, such as it has a good number of users (117), the
number of swipes per user (173), and gender information
which was desired for gender/fairness analysis, and the
data were collected in a realistic setup. Three more datasets,
viz. Serwadda [7], HMOG [10], and UMDAA-02Touch [17]
were used to create cross dataset zero-effort adversarial
environment. A summary of these datasets is provided
in Table 1 besides briefly describing each dataset in the
following paragraphs.

BBMAS-Touch [37]: This dataset consists of the
touch portion of Syracuse University and Assured
Information Security-Behavioral Biometrics Multi-Device,
and Multi-Activity Data (SU-AIS BB-MAS) [37]. The
participants were handed over a phone loaded with the data
collection app during the data collection. The participants
typed two fixed sentences.

Then the participants presented a series of ten questions
that required varying cognitive loads to be answered
with a minimum of 50 characters. The exercise required
the participants to swipe between questions. The data
collection app implicitly recorded touch, keystroke, and
corresponding movements (accelerometer and gyroscope
readings) throughout the process.

Serwadda [7]: This dataset contains touch gestures
collected from 190 participants. The participants used
Google Nexus S, an Android-based smartphone, to answer a
series of multiple-choice questions after reading or scrolling
through images and textual paragraphs. Browsing through
the passages and images to answer the questions generated
hundreds of touch gestures. The data collection exercise
consisted of two independent sessions, separated by at least
a day. Each participant generated 400 swipes on average.

HMOG [10]: This dataset was created using 10 Samsung
Galaxy S4, Android-based phones. A total of 90 individuals
participated who were randomly assigned a reading,
writing, or map navigation session. Each session lasted
about 5-15 minutes. The participants were either sitting or
walking while working on each session. Every participant
performed 24 sessions (eight for each reading, writing, and
map navigation session). The recorded signals consisted
of raw touch events, tap gestures, scale gestures, scroll
gestures, fling gestures, keypresses, and corresponding
device movements captured by inertial sensors, viz.
accelerometer, gyroscope, and magnetometer.

UMDAA-02Touch [17]: This dataset consists of swipe
gestures collected from 48 participants for two months. The
participants were not given any particular task to generate
swipes. This dataset, thus, consists of touch gestures closer
to how users interact with the phone through touch. Google
Nexus 5, an Android-based phone, was used in the data
collection. The data was collected for over two months,
unrestricted.

3.2 Separation of Training and Testing Data

BBMAS-Touch, the base dataset, was divided into two
parts with a 60:40 ratio, with 60% being the training
dataset while 40% for testing. The training dataset was used
for training the model and deciding upon the values of
hyperparameters using a 5-fold cross-validation technique.
The test data was kept unseen during the training phase.
The testing environment used Serwadda, HMOG, and
UMDAA-02Touch datasets.

3.3 Preprocessing and Feature Engineering

We excluded the swipes that had five or fewer data
touchpoints. This process resulted in swipes that likely
consisted of unique individual behavior. For BBMAS-Touch,
the preprocess step removed about 10.33% of swipes
resulting in 20286 swipe gestures. Other datasets were
cleaned similarly. UMDAA-02Touch did not have the
pressure information, so we appended zero. The next step
was to extract features from the swipes to derive hidden
characteristics of the swipe gestures. A swipe gesture S can
be defined as a set of tuples representing n touch events

TO APPEAR IN IEEE TRANSACTIONS ON BIOMETRICS, IDENTITY AND BEHAVIOR (T-BIOM) 5

TABLE 2
The list of all the features extracted from individual swipes.

Feature Id Feature name Equation Description
1 swipe duration tend - tstart Duration between start and end of a swipe

2− 5
start x, start y,
end x, end y

x0, x0, xn−1,yn−1 Coordinates of a swipe

6 dp
√

(xn−1 − x0)2 + (yn−1 − y0)2 Displacement of swipe

7 l l =
∑n−1

i=1

√
(xi−1 − xi)2 + (yi−1 − yi)2 Length of the swipe

8 velocity dp/(tend − tstart) Velocity of a swipe
9 initial v Velocity of first 5% of the points Initial velocity
10 final v Velocity of final 5% of the points Final velocity
11 mean v (vx)i =

xi−xi−1

ti−ti−1
, (vy)i =

yi−yi−1

ti−ti−1
Pairwise average velocity (magnitude)

12 direction θ = tan−1(
xn−1−x0

yn−1−y0
) Angle of line joining start and end points

13 area A = 1/n×
∑n

i=1
π × ai × bi Average area of the fingertip over the swipe

14 acceleration (ax)i =
(vx)i−(vx)i−1

ti−ti−1
, (ay)i =

(vy)i−(vy)i−1

ti−ti−1
Acceleration between start and end points

15 mean a Pairwise average acceleration (magnitude) Average acceleration
16 initial a Acceleration of first 5% points Initial acceleration
17 final a Acceleration of final 5% points Final acceleration

18− 20 aP25, aP50, aP75 Acceleration (aPm) of m% swipe Acceleration percentile
21− 23 vP25, vP50, vP75 Velocity (vPm) of m% swipe Velocity percentile

24 speed l/(tend − tstart) Speed of a swipe
25− 26 initial s, final s Speed of first 5% points, Speed of final 5% points Initial speed, Final speed
27− 29 sP25, sP50, sP75 Speed (sPm) of m% swipe Speed percentile

30− 34
mean vx, mean vy ,
mean ax, mean ay ,
mean d

Average of vx, vy , ax, ay , dp Mean of features

35 max d di =
|yi−m×xi−c|√

1+m2
Maximum of deviations

36− 38 vxP25, vxP50, vxP75 Velocity (vxPm) of m% swipe Mean velocity percentile
39− 41 vyP25, vyP50, vyP75 Veocity (vyPm) of m% swipe Mean velocity percentile
42− 44 axP25, axP50, axP75 Acceleration (axPm) of m% swipe Mean acceleration percentile
45− 47 ayP25, ayP50, ayP75 Acceleration (ayPm) of m% swipe Mean acceleration percentile

between touching the screen with fingers and lifting the
fingers from the screen ans represented as follows:

S = (x, y, t, a, b)i=1 to n (1)

where x, y, t, a, and b represent, x-coordinate, y-coordinate,
time, and major-axis and minor-axis of the fingertip of each
touch event, respectively.

Building upon previous studies [5], [7], we extracted 30
features and added 17 new features. The process resulted in
47 features as listed and described in Table 2.

3.4 Class Imbalance
Since we used the rest of the users as impostors, the number
of genuine feature vectors turned out to be far less than the
number of impostor feature vectors. To address such as class
imbalance, we used the Adaptive Synthetic Over-sampling
approach for imbalanced learning (ADASYN) [38] after
trying several variants of Synthetic Minority Oversampling
Technique (SMOTE) [39].

3.5 Choice of Classifiers
Previous studies have used several classifiers. For example,
Serwadda et al. [7] evaluated ten classifiers. Frank et al.
[5] used SVM and k nearest neighbors, while Fierrez et
al. [13] used SVM, GMM, and their fusion. Kumar et al.
[1], [2] experimented with eight classifiers. Previous studies
did not agree on which classifier was the best, so we
developed three criteria to select classifiers for evaluation.
First, the classifiers should have achieved less than 10%

error rates in the previous studies. Second, the classifier can
be trained with small training data. The third criterion was
the diversity of learning paradigms. The selection process
resulted in Support Vector Machine (SVM), Random Forest
(RF), and Multilayer Perceptron (MLP). We added Extreme
Gradient Boosting (XGB) to the list primarily because it was
not tested in the previous TCAS studies and has performed
very well in online data science competitions. We used these
many classifiers primarily because we wanted to ensure that
the idea of including GAN in the training process is not
limited to certain algorithms or learning paradigms.

3.6 The Continuous Framework
The continuous part of the authentication systems was
implemented using the sliding window scheme. A window
initially contains p consecutive swipes. The following
windows are created by sliding the window that drops
q least recent swipes and adds q following swipes.
Preliminary experimentation led us to set p and q to 5 and
1, respectively. Instead of taking an average of the features
as done in the past, we concatenated them, which resulted
in 235 features. These many features prompted us to use a
mutual information-based feature selector in the pipeline.
The number of features used for each user authentication
model thus varied [29]. The varying number of features
across the authentication offers another challenge for the
attackers to figure out the length of the feature vectors in
some adversarial environments [22]. In our implementations
of those scenarios, we assumed that the attacker would have
access to the feature vector length information.

TO APPEAR IN IEEE TRANSACTIONS ON BIOMETRICS, IDENTITY AND BEHAVIOR (T-BIOM) 6

START Train? Feature Extractor
Sliding Window

Mechanism

Class Label Vectors

Yes

Serwadda-Touch UMDAA-02 BBMAS-Touch-Test

Random? Zero-Effort?Population?

Genuine-GAN

Oversampling

Impostor-GAN

Train and
Validate Auth.

Models

Authentication
Model

Random-vector
Attack

Population Attack Zero-Effort Attack

Performance
Evaluator

Average Error Rates

YesYesYes

Single Swipe Feature
Vectors (FVs) Mutli-swipe FVs

Balanced FVs

Genuine FVs Impostor FVs

Synthetic + Real
Genuine FVs

Synthetic + Real
Impostor FVs

Mutli-swipe FVs

Genuine
Testing?

Yes

Random Attack FVs

Genuine Testing

No

HMOG BBMAS-Touch-Train

BBMAS-Touch-Test

Fig. 1. The system architecture of TCAS implemented in this paper. The novel part in the pipeline is highlighted with dotted blue lines, which makes
use of two generative networks, viz., Genuine-GAN and Impostor-GAN. Additionally, we test the V-TCAS and G-TCAS under three adversarial
environments viz., Zero-effort (traditional), Random-vector, and Population-based.

3.7 Training of V-TCAS and G-TCAS
The training of G-TCAS-based user authentication models
is depicted in Figure 1. In comparison, the training
of V-TCAS-based authentication systems excludes the
GAN-based component surrounded by blue dashed lines in
the training pipeline. To train the authentication model ui,
we labeled the feature vectors extracted from the training
session data of ui as genuine and the feature vectors
extracted from the rest of the users, i.e., U \ ui impostors,
where U is the set of all the users.

As rendered in Figure 1, the G-TCAS framework
uses a pair of Generative Adversarial Networks (GANs).
The first viz. Genuine-GAN generates swipes similar
(closer) to the Genuine swipes, while the second viz.
Impostor-generated swipes are similar (closer) to the
impostor swipes. Genuine-GAN consist of a discriminator
D(xl) and a generator G(zl). Where xl represents feature
vectors extracted from real swipes belonging to the genuine
user. While zl represents the input noise for the generator.
Both D(xl) and G(zl) are trained simultaneously as they
play a min-max game with the value function given in
Equation 2.

min
G

max
D

Vl(D,G) = E1 + E2 (2)

E1 = Ex∼pl(x)[logD(xl)] (3)

E2 = Ezl∼pzl
(zl)[log(1−D(G(zl)))] (4)

where, pl represents distribution of the generator over
genuine swipes xl, and pzl represent noise for generating
(synthetic) genuine swipes.

Similarly, Impostor-GAN consists of G(za) and a
discriminator D(xa). Where, xa represents feature vectors
extracted from real swipes belonging to the impostors.
While za represents the input noise for the generator G(za).

Both D(xa) and G(za) are trained simultaneously as they
play a min-max game with the value function given in
Equation 5.

min
G

max
D

Va(D,G) = E3 + E4 (5)

E3 = Ex∼pa(x)[logD(xa)] (6)

E4 = Eza∼pza (za)
[log(1−D(G(za)))] (7)

where, let pa represents distribution of the generator over
impostor swipes data xa and pza represent noise for
generating (synthetic) impostor swipes.

It is difficult to evaluate the quality of generated data
by GANs, especially when we deal with non-visual data.
Nevertheless, we examined the data generated by both
Genuine-GAN and Impostor-GAN at the feature level using
Kernel Density Estimation (KDE) plots. Figure 2 illustrates
the distribution of real and generated feature values for one
of the top features.

The outputs of both Genuine-GAN and Impostor-GAN
are appended to genuine and impostors, respectively.
Preliminary experiments suggested that the number of
synthetic swipes included in the TCAS training/validation
impacted the overall error rate, i.e., HTER. Therefore, we
decided to consider the number of synthetic swipes as a
hyperparameter during the model training and validation.
The number of swipes that achieved the minimum HTER
was selected. We experimented with (generated) swipes
ranging between [100, 1000] and found 250 achieving the
lowest validation HTER.

3.8 Testing of V-TCAS and G-TCAS
Once trained, each of the authentication models were tested
for genuine fail and impostor pass. Test for genuine failure

TO APPEAR IN IEEE TRANSACTIONS ON BIOMETRICS, IDENTITY AND BEHAVIOR (T-BIOM) 7

0.4 0.2 0.0 0.2 0.4 0.6 0.8
Initial Speed

0.000

0.005

0.010

0.015

0.020

0.025

0.030
De

ns
ity

Gen(generated)
Gen(real)
Overlap: 66.9 %

(a) Genuine (real vs. generated densities).

0.4 0.2 0.0 0.2 0.4 0.6 0.8
Initial Speed

0.00

0.01

0.02

0.03

0.04

0.05

De
ns

ity

Imp(generated)
Imp(real)
Overlap: 78.7 %

(b) Impostor (real vs. generated densities).

Fig. 2. Visual evaluation of GAN generated data at the feature level. The
illustration is only for demonstration purposes, and such overlap might
not hold for all the features and users.

is straightforward. We test the models using the data
(preferably collected in a different exercise than the training
data) collected from genuine individuals. The percentage
of failed genuine attempts is the Genuine or False Reject
Rate (FRR). Test for the impostor pass, on the other hand,
could be done in several possible ways. We test each model
for impostor pass under three adversarial environments,
viz. Zero-effort, Population, and Random-vector (see Figure
1). The percentage of successful impostor attempts is
called Impostor or False Accept Rates (FAR). We compute
the FAR under each adversarial environment separately.
The implementation of each adversarial environment is
described below.

3.8.1 Zero-effort attack

This is the most widely adopted adversarial environment
for TCAS. As the name suggests, the authentication models
are tested against a dataset produced with no intention
or effort to imitate or copy the genuine users. The
traditional way to implement the zero-effort adversarial
environment is to consider all users except the genuine
user as impostors. Previous studies used users from
the same dataset as impostors, so we refer to that
scenario as the same dataset zero-effort environment. An
impostor can come from anywhere, i.e., any dataset. So
we implemented same-dataset as well as cross-dataset
zero-effort attack scenarios. The step-by-step process is
described in Algorithm 1.

3.8.2 Population attack
This adversarial environment was created in two steps.
First, we computed the mean (µi) and the standard
deviation (σi) for each feature (i) across all feature vectors
from all the datasets except the dataset used in the training.
Second, we generated feature vectors using the formula
µi+ r×σi for each feature, where r ∈ N (0, 3). We followed
this process to generate 10000 feature vectors to attack each
authentication model. Algorithm 2 explains the process in
more detail.

Algorithm 1: zero effort attack(M[], D[], X[])
Input: A: list of authentication models for user ui ∈ U

D: List of datasets containing feature vectors
Output: C: List of dictionaries with keys

(authentication models) and values (predicted labels)
C ← []
for dataset in D do

temp← {}
X← get feature matrix(ui, dataset)
X’← normalize(X)
for model in A do

pred labels← []
for feat vector in X’ do

pred labels.append(model.predict(feat vector))
end
temp[model]← pred labels

end
C.append(temp)

end
return C

Algorithm 2: population attack(A[], M, S, N)
Input: A[]: list of authentication models for user ui ∈ U

M: list of means, computed over all the datasets
S: list of standard dev corresponding to the means
N: number of feature vectors to be generated

Output: C: A dictionary with keys (authentication
models) and values (predicted labels)

C← {}, X ′ ← []
for i← 0 to N do

attack vector← []
for µ, σ in zip(M,S) do

r ← N (0, 3)
attack vector.append(µ[j] + r × σ[j])

end
X’.append(attack vector)

end
X’← normalize(X’)
for model in A do

pred labels← []
for feat vector in X’ do

pred labels.append(model.predict(feat vector))
end
C[model]← pred labels

end
return C

3.8.3 Random-vector attack
This adversarial environment was motivated from [22]. We
selected uniform random values between 0 and 1 for each
feature in the feature vector to implement this. We followed
this process to generate 10000 feature vectors to attack

TO APPEAR IN IEEE TRANSACTIONS ON BIOMETRICS, IDENTITY AND BEHAVIOR (T-BIOM) 8

each authentication model. Algorithm 3 shows the steps to
implement the random-vector attack.

3.9 Performance Evaluation
To evaluate the performance of the authentication systems,
we used FRR (defined in Equation 9) and FAR (defined
in Equation 8), respectively. We also report Half Total
Error Rate (HTER), defined in Equation 10, recommended
by Bengio et al. [18] so we can compare different
implementations and attack environments. It is worth
noting that under attack environments, the FRRs remain
unaffected. Therefore, we report the FRR separately in
addition to reporting the FARs and HTERs for each of the
adversarial scenarios.

FAR =
number of successful impostor attempts

total number of impostor attempts
(8)

FRR =
number of failed genuine attempts
total number of genuine attempts

(9)

HTER = (FAR + FRR)/2 (10)

Algorithm 3: random vector attack(A[], L, N)
Input: A[]: list of authentication models for user ui ∈ U

L: length of feature vector to be generated
N: number of feature vectors to be generated

Output: C: A dictionary with keys (authentication
models) and values (predicted labels)

C← { }, X’← []
for i← 0 to N do

attack vector← []
for j ← 0 to L do

r ← U(0, 1)
attack vector.append(r)

end
X’.append(attack vector)

end
for model in A do

pred labels← []
for feat vector in X’ do

pred labels.append(model.predict(feat vector))
end
C[model]← pred labels

end
return C

4 RESULTS AND DISCUSSION

The performance of the TCAS under different adversarial
environments is presented in terms of FRR, FAR, and HTER.
The FRRs for each of the authentication models remain
unaffected across the adversarial scenarios and turned out
to be between 2.9 − 4.5% for different classifiers and
architectures (V-TCAS and G-TCAS) (see Figure 3). FARs
and HTERs are presented in Figures 4 and 5 across different
experimental setups. We break down and present our results
for V-TCAS and G-TCAS based on adversarial setups. First,
we present the performance of V-TCAS and G-TCAS under
Zero-effort (same dataset), Population, and Random-vector
attack setups. Further, we present the performance of
Zero-effort for same- and cross-dataset attacks. In the end,
we present the gender-level analysis of the performance of
V-TCAS and G-TCAS.

RF
-V

TC
AS

RF
-G

TC
AS

SV
M-

VT
CA

S

SV
M-

GT
CA

S

ML
P-

VT
CA

S

ML
P-

GT
CA

S

XG
B-

VT
CA

S

XG
B-

GT
CA

S

0.031 0.036 0.029 0.03 0.041 0.037 0.034 0.033

FRR

0.00

0.25

0.50

Fig. 3. FRRs of V-TCAS and G-TCAS for different classifiers.

4.1 Zero-effort vs. Population vs. Random-vector
Figure 4 summarizes the results obtained under each of the
attack scenarios for all classifiers and architectures (V-TCAS
and G-TCAS). The TCAS models achieved between 5 −
7% HTERs and 7 − 12% FARs for Zero-effort attacks.
Population and Random-vector attack severely impacted
most V-TCAS models as the FARs increased to 24 − 34%
and 9 − 27%, respectively. In contrast, the G-TCAS models
show more resilience than V-TCAS across adversarial
scenarios obtaining FARs between 9− 20% and 4− 23% for
Population- and Random-vector attacks, respectively. The
FAR heatmap (Figure 4(a)) suggests that the SVM-G-TCAS
is the most robust TCAS architecture, closely followed by
RF-G-TCAS, on average. Interestingly, XGB-based models
did exceptionally well under the traditional (i.e., the
Zero-effort setup) but did not show much resilience under
the Population and Random-vector attack scenarios.

Although the Zero-effort attack serves as an appropriate
baseline for comparison with literature [5], [7] one should
not judge the quality of authentication models only based
on the performance under the Zero-effort attack scenario.
Another inference we can draw from Figure 4 is that
a Population-based attack is more damaging than the
Random-vector and Zero-effort (same dataset) attacks.
From this set of results, we encourage future researchers
to test their authentication models at least under these
three different attack scenarios because the performance
evaluated only under the Zero-effort attack scenario could
be misleading.

4.2 Zero-effort (same) vs. Zero-effort (cross)
Figure 5 presents the FARs and HTERs under the same
dataset Zero-effort attack and cross dataset Zero-effort
attacks. As we can see, the cross dataset Zero-effort attacks
cause significantly more damage than the same dataset
Zero-effort attacks across the classifiers. The heatmap
suggests that the traditional, i.e., same dataset, zero-effort
attack setup alone is insufficient to evaluate the impostor
pass rate for TCAS. Therefore, we recommend that future
studies on TCAS evaluate the system under cross dataset
Zero-effort attack setup and the same dataset Zero-effort
attack setup.

More importantly, we can observe that G-TCAS is
outstandingly resilient to the cross-dataset Zero-effort
attacks compared to V-TCAS consistently across the
classifiers. The heatmap clearly shows the importance of
including the pair of GANs in the pipeline. In other words,
the effectiveness of the proposed architecture G-TCAS is
evident. The HTER heatmap suggests that SVM-based

TO APPEAR IN IEEE TRANSACTIONS ON BIOMETRICS, IDENTITY AND BEHAVIOR (T-BIOM) 9

RF
-V

TC
AS

RF
-G

TC
AS

SV
M-

VT
CA

S

SV
M-

GT
CA

S

ML
P-V

TC
AS

ML
P-G

TC
AS

XG
B-

VT
CA

S

XG
B-

GT
CA

S

ZeroEffort-Attack

Population-Attack

Random-vector Attack

0.08 0.08 0.1 0.12 0.07 0.08 0.07 0.07

0.28 0.13 0.26 0.09 0.32 0.14 0.24 0.2

0.12 0.1 0.09 0.04 0.25 0.13 0.27 0.23

FAR

0.0

0.1

0.2

0.3

0.4

0.5

RF
-V

TC
AS

RF
-G

TC
AS

SV
M-

VT
CA

S

SV
M-

GT
CA

S

ML
P-V

TC
AS

ML
P-G

TC
AS

XG
B-

VT
CA

S

XG
B-

GT
CA

S

ZeroEffort-Attack

Population-Attack

Random-vector Attack

0.05 0.05 0.06 0.07 0.05 0.06 0.05 0.05

0.15 0.08 0.14 0.06 0.18 0.09 0.13 0.11

0.07 0.06 0.06 0.03 0.14 0.08 0.15 0.13

HTER

0.0

0.1

0.2

0.3

0.4

0.5

Fig. 4. The performance of V-TCAS and G-TCAS under different adversarial scenarios. The benefit of including Genuine and Impostor-GANs in the
pipeline, i.e., G-TCAS architecture, is evident as it consistently achieves lower FARs (in turn HTERs) across the classification algorithms and attack
scenarios compared to V-TCAS (the architecture without the two GANs).

RF
-V

TC
AS

RF
-G

TC
AS

SV
M-

VT
CA

S

SV
M-

GT
CA

S

ML
P-V

TC
AS

ML
P-G

TC
AS

XG
B-

VT
CA

S

XG
B-

GT
CA

S
ZeroEffort-Attack

UMDAA-Attack

HMOG-Attack

Serwadda-Attack

0.08 0.08 0.1 0.12 0.07 0.08 0.07 0.07

0.17 0.08 0.14 0.05 0.26 0.14 0.28 0.18

0.14 0.09 0.12 0.06 0.3 0.17 0.27 0.19

0.13 0.11 0.08 0.06 0.28 0.15 0.27 0.25

FAR

0.0

0.1

0.2

0.3

0.4

0.5

RF
-V

TC
AS

RF
-G

TC
AS

SV
M-

VT
CA

S

SV
M-

GT
CA

S

ML
P-V

TC
AS

ML
P-G

TC
AS

XG
B-

VT
CA

S

XG
B-

GT
CA

S

ZeroEffort-Attack

UMDAA-Attack

HMOG-Attack

Serwadda-Attack

0.05 0.05 0.06 0.07 0.05 0.06 0.05 0.05

0.1 0.05 0.08 0.04 0.15 0.09 0.15 0.1

0.08 0.06 0.07 0.04 0.17 0.1 0.15 0.11

0.08 0.07 0.05 0.04 0.16 0.09 0.15 0.14

HTER

0.0

0.1

0.2

0.3

0.4

0.5

Fig. 5. The performance of V-TCAS and G-TCAS models under Zero-effort (same dataset) and Zero-effort (cross-dataset) attack scenarios.
Interestingly, the Zero-effort attack using a different dataset was more damaging than the one launched using the same dataset. This finding
suggests that even for Zero-effort attack scenarios, it is essential that we use different datasets because, in practice, it is very much possible.

RF-
VTC

AS

RF-
GTC

AS

SVM
-VT

CAS

SVM
-GT

CAS

MLP
-VT

CAS

MLP
-GT

CAS

XG
B-V

TCA
S

XG
B-G

TCA
S

Model

0.000

0.025

0.050

0.075

0.100

0.125

0.150

HTE
R

HTER
M
F

(a) Zero-effort (same dataset)

RF-
VTC

AS

RF-
GTC

AS

SVM
-VT

CAS

SVM
-GT

CAS

MLP
-VT

CAS

MLP
-GT

CAS

XGB
-VT

CAS

XGB
-GT

CAS
Model

0.0

0.2

0.4

0.6

HTE
R

HTER
F
M

(b) Zero-effort (cross dataset average)

RF-
VTC

AS

RF-
GTC

AS

SVM
-VT

CAS

SVM
-GT

CAS

MLP
-VT

CAS

MLP
-GT

CAS

XG
B-V

TCA
S

XG
B-G

TCA
S

Model

0.2

0.0

0.2

0.4

0.6

HTE
R

HTER
F
M

(c) Population

RF-
VTC

AS

RF-
GTC

AS

SVM
-VT

CAS

SVM
-GT

CAS

MLP
-VT

CAS

MLP
-GT

CAS

XGB
-VT

CAS

XGB
-GT

CAS

Model

0.0

0.2

0.4

0.6

HTE
R

HTER
F
M

(d) Random

Fig. 6. Fairness analysis of V-TCAS and G-TCAS. Its evident from the plots that both architectures (V-TCAS and G-TCAS) regardless of the
classification algorithms or adversarial environments achieve similar error rates for across genders. It worth noting that the HTERs seems breaching
the boundary of zero primarily because the these plots are kernel density estimation (with Gaussian kernel) of the error rates.

TO APPEAR IN IEEE TRANSACTIONS ON BIOMETRICS, IDENTITY AND BEHAVIOR (T-BIOM) 10

Genuine Impostors

Fig. 7. An example of feature space separation by a linear boundary
between two classes. An oversimplified version of TCAS demonstrating
the acceptance and rejection regions and the overlap area used to
compute the error rates. The GANs helped generate more cohesive
genuine and impostor data points.

G-TCAS is the best architecture, closely followed by
Random Forest-based G-TCAS. In comparison, the HTERs
achieved by XGB-G-TCAS exceed 10%, followed by
MLP-G-TCAS.

When multiple datasets are unavailable, the proper way
to evaluate the impact of the cross-dataset zero-effort attack
is by collecting more data in various experimental settings,
from a different user population, or both. Alternatively,
one could divide the dataset into multiple groups of users
and follow a strategy similar to the k-fold cross-validation.
Besides, one can generate multiple datasets algorithmically
using population statistics extracted from existing datasets
or by altering the distribution of feature values for each user
as recommended by Ballard et al. [40].

4.3 Male vs. Female

One vital aspect that has not been covered much in
the TCAS literature is whether TCAS is fair among
genders. One of the reasons fairness analysis has not
received attention is that most of the public datasets do
not contain the gender information of the participants.
A recently published dataset, BBMAS-Touch, contained
gender information. Therefore, we could conduct a fairness
analysis. The results are presented via Figure 6. The
error rates across the TCAS architectures and adversarial
scenarios suggest that TCAS does not discriminate among
different genders. This conclusion, however, is limited by
a limited user dataset. The fairness aspect of TCAS needs
to be paid attention to and studied further for people of
different demographics. In the future, we would like to
include a recently published dataset such as [41] which
consists of demographic information of 600 users in the
fairness analysis.

4.4 Motivation Behind the G-TCAS Architecture

In the conference paper [33], we demonstrated that the
inclusion of synthetic genuine and impostor data generated
by Genuine- and Impostor-GANs helped separate the
data better. Consequently, G-TCAS showed more resilience
than V-TCAS. Further discussion on the motivation is
drawn from [22]. Technically, TCAS is trained to classify
a particular region (aka acceptance region) as genuine and
a separate region as an impostor (aka rejection region).
Although Figure 7 presents an oversimplified scenario, it
provides insight into the success of the adversarial scenarios
besides the Zero-effort (same) included in this paper. As

depicted in Figure 7, the Genuine-GAN helped us fill
in the green stars, and Impostor-GANs helped us fill in
the red stars. The classifiers, thus, were able to draw a
better boundary. Recently published datasets such as [41]
consisting of a significantly high number of users, gestures
per user, and type of devices used in the experiment, can be
used to train the generative methods better.

5 CONCLUSION AND FUTURE WORK

We evaluated V-TCAS and G-TCAS under three active
adversarial environments. G-TCAS showed significantly
more resilience than V-TCAS across the classifiers and
adversarial environments. We also found that traditionally
studied Zero-effort attack does more damage if launched
using a different dataset than the same dataset the genuine
user comes from. In addition, we found that TCAS is
not unfair to different genders. We evaluated V-TCAS
and G-TCAS under a variety of minimal effort attacks.
In the future, we will assess the robustness of V-TCAS
and G-TCAS under moderate and high-effort attacks.
In addition, we aim to investigate whether the idea of
including dual GAN in the classification pipeline extends
to other behavioral biometrics such as sensor-based gait.
Further, we would like to study the effectiveness of
variations of GAN such as Composite Travel Generative
Adversarial Networks (CT-GAN) and AC-GAN. Moreover,
we plan to use explain-ability tools to open the pipeline and
show why G-TCAS is more resilient than V-TCAS.

ACKNOWLEDGMENTS

We would like to thank anonymous reviewers for providing
invaluable feedback. Rajiv Ratn Shah was partly supported
by the Infosys Center for Artificial Intelligence and the
Center of Design and New Media at IIIT Delhi, India.

REFERENCES

[1] Rajesh Kumar, Partha P. Kundu, and Vir V. Phoha. Continuous
authentication using one-class classifiers and their fusion. In IEEE
ISBA, 2018.

[2] Rajesh Kumar, Vir V Phoha, and Abdul Serwadda. Continuous
authentication of smartphone users by fusing typing, swiping, and
phone movement patterns. In IEEE BTAS, 2016.

[3] Huan Feng, Kassem Fawaz, and Kang G Shin. Continuous
authentication for voice assistants. In MobiCom, 2017.

[4] Rajesh Kumar, Partha Pratim Kundu, Diksha Shukla, and Vir V
Phoha. Continuous user authentication via unlabeled phone
movement patterns. In IEEE IJCB, 2017.

[5] Mario Frank, Ralf Biedert, Eugene Ma, Ivan Martinovic, and Dawn
Song. Touchalytics: On the applicability of touchscreen input as
a behavioral biometric for continuous authentication. IEEE T-IFS,
2012.

[6] Tao Feng, Ziyi Liu, Kyeong-An Kwon, Weidong Shi, Bogdan
Carbunar, Yifei Jiang, and Nhung Nguyen. Continuous mobile
authentication using touchscreen gestures. In IEEE HST, 2012.

[7] Abdul Serwadda, Vir V Phoha, and Zibo Wang. Which verifiers
work?: A benchmark evaluation of touch-based authentication
algorithms. In IEEE BTAS, 2013.

[8] Soumik Mondal and Patrick Bours. Swipe gesture based
continuous authentication for mobile devices. In IEEE ICB, 2015.

[9] Vishal M Patel, Rama Chellappa, Deepak Chandra, and Brandon
Barbello. Continuous user authentication on mobile devices:
Recent progress and remaining challenges. IEEE Signal Processing
Magazine, 2016.

TO APPEAR IN IEEE TRANSACTIONS ON BIOMETRICS, IDENTITY AND BEHAVIOR (T-BIOM) 11

[10] Zdeňka Sitová, Jaroslav Šeděnka, Qing Yang, Ge Peng, Gang
Zhou, Paolo Gasti, and Kiran S Balagani. Hmog: New behavioral
biometric features for continuous authentication of smartphone
users. IEEE T-IFS, 2015.

[11] Ruby B Lee and Wei-Han Lee. Method and system for implicit
authentication, August 10 2017. US Patent App. 15/428,306.

[12] Wei-Han Lee and Ruby B. Lee. Implicit smartphone user
authentication with sensors and contextual machine learning. In
2017 47th Annual IEEE/IFIP-DSN, 2017.

[13] Julian Fierrez, Ada Pozo, Marcos Martinez-Diaz, Javier Galbally,
and Aythami Morales. Benchmarking touchscreen biometrics for
mobile authentication. IEEE T-IFS, 2018.

[14] Andreas Skalkos, Ioannis Stylios, Maria Karyda, and Spyros
Kokolakis. Users’ privacy attitudes towards the use of behavioral
biometrics continuous authentication (bbca) technologies: A
protection motivation theory approach. Journal of Cybersecurity
and Privacy, 2021.

[15] Neil Zhenqiang Gong, Mathias Payer, Reza Moazzezi, and Mario
Frank. Forgery-resistant touch-based authentication on mobile
devices. In AsiaCCS, 2016.

[16] Lingjun Li, Xinxin Zhao, and Guoliang Xue. Unobservable
re-authentication for smartphones. In NDSS, 2013.

[17] Upal Mahbub, Sayantan Sarkar, Vishal M Patel, and Rama
Chellappa. Active user authentication for smartphones: A
challenge data set and benchmark results. In IEEE BTAS, 2016.

[18] Samy Bengio, Christine Marcel, Sebastien Marcel, and Johnny
Mariéthoz. Confidence measures for multimodal identity
verification. Information Fusion, 2002.

[19] Norman Poh and Samy Bengio. Database, protocols and
tools for evaluating score-level fusion algorithms in biometric
authentication. Pattern Recognition, 2006.

[20] Upal Mahbub, Jukka Komulainen, Denzil Ferreira, and Rama
Chellappa. Continuous authentication of smartphones based on
application usage. IEEE T-BIOM, 2019.

[21] NIST. Presentation attack detection (pad). https://pages.nist.gov/
SOFA/SOFA.html, 2022. Online; accessed February 28, 2022.

[22] Benjamin Zi Hao Zhao, Hassan Jameel Asghar, and Mohamed Ali
Kaafar. On the resilience of biometric authentication systems
against random inputs. NDSS, 2020.

[23] Hassan Khan, Urs Hengartner, and Daniel Vogel. Targeted
mimicry attacks on touch input based implicit authentication
schemes. In ACM MobiSys, 2016.

[24] Abdul Serwadda, Vir V Phoha, Zibo Wang, Rajesh Kumar, and
Diksha Shukla. Toward robotic robbery on the touch screen. ACM
TISSEC (now TOPS), 2016.

[25] René Mayrhofer and Stephan Sigg. Adversary models for mobile
device authentication. ACM Computing Survey, 2021.

[26] Tiantian Zhu, Lei Fu, Qiang Liu, Zi Lin, Yan Chen, and
Tieming Chen. One cycle attack: Fool sensor-based personal gait
authentication with clustering. IEEE T-IFS, 2020.

[27] Khandaker A Rahman, Kiran S Balagani, and Vir V Phoha.
Snoop-forge-replay attacks on continuous verification with
keystrokes. IEEE T-IFS, 2013.

[28] Elena Pagnin, Christos Dimitrakakis, Aysajan Abidin, and
Aikaterini Mitrokotsa. On the leakage of information in biometric
authentication. In Indocrypt. Springer, 2014.

[29] Rajesh Kumar, Can Isik, and Vir V Phoha. Treadmill assisted gait
spoofing (tags): An emerging threat to wearable sensor-based gait
authentication. ACM DTRAP, 2021.

[30] Rajesh Kumar. Treadmill assisted circumvention of wearable
sensors-based gait authentication, phd thesis. Syracuse University,
USA, 2021.

[31] Elakkiya Ellavarason, Richard Guest, Farzin Deravi, Raul
Sanchez-Riello, and Barbara Corsetti. Touch-dynamics based
behavioural biometrics on mobile devices–a review from a
usability and performance perspective. ACM Computing Surveys,
2020.

[32] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu,
David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua
Bengio. Generative adversarial nets. NeurIPS, 2014.

[33] Mohit Agrawal, Pragyan Mehrotra, Rajesh Kumar, and Rajiv Ratn
Shah. Defending touch-based continuous authentication systems
from active adversaries using generative adversarial networks. In
IEEE IJCB, 2021.

[34] Debzani Deb and Mina M Guirguis. Use of auxiliary classifier
generative adversarial network in touchstroke authentication. In
ICMLA, 2020.

[35] Alejandro Gomez-Alanis, Jose A Gonzalez-Lopez, and Antonio M
Peinado. Ganba: Generative adversarial network for biometric
anti-spoofing. Applied Sciences, 2022.

[36] Pouya Samangouei, Maya Kabkab, and Rama Chellappa.
Defense-gan: Protecting classifiers against adversarial attacks
using generative models. ICLR, abs/1805.06605, 2018.

[37] Amith K Belman et al. Insights from bb-mas–a large dataset for
typing, gait and swipes of the same person on desktop, tablet and
phone. arXiv preprint arXiv:1912.02736, 2019.

[38] Haibo He, Yang Bai, Edwardo A Garcia, and Shutao Li. Adasyn:
Adaptive synthetic sampling approach for imbalanced learning.
In IEEE IJCNN, 2008.

[39] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and
W Philip Kegelmeyer. Smote: synthetic minority over-sampling
technique. JAIR, 2002.

[40] Lucas Ballard, Daniel Lopresti, and Fabian Monrose. Forgery
quality and its implications for behavioral biometric security. IEEE
T-SMC, Part B (Cybernetics), 2007.

[41] Alejandro Acien, Aythami Morales, Julian Fierrez, Ruben
Vera-Rodriguez, and Oscar Delgado Mohatar. Becaptcha:
Behavioral bot detection using touchscreen and mobile sensors
benchmarked on humidb. Engineering Applications of Artificial
Intelligence, 2021.

Mohit Agrawal is a Ph.D. student at IIIT
Delhi, India. He also works as a Senior Machine
Learning Engineer at Qualcomm. He was
associated with India Naval Academy as a guest
faculty member. He earned his Master’s degree
in Computer Science and Engineering from the
National Institute of Technology, Tiruchirappalli.
His research interest includes Biometrics, Social
Network Analysis, Computer Vision, and Machine
Learning.

Pragyan Mehrotra is a software engineer at
Amazon Dublin, Ireland. He received his B.Tech
in Computer Science and Engineering from the
IIIT, Delhi, India. During his bachelor’s degree,
he has also worked as a software engineering
intern at Microsoft Bangalore, India. His
area of interest includes Biometrics, Machine
Learning, Deep Learning, Cybersecurity, and Image
Processing.

Rajesh Kumar is an Assistant Professor at Bucknell
University, USA. Before joining Bucknell University,
he was an Assistant Professor at Hofstra University,
USA, and a visiting faculty at Haverford College,
USA. He earned his Ph.D. in Computer and
Information Science and Engineering (CISE) from
Syracuse University, USA, after receiving his masters
in Mathematics from Louisiana Tech University,
USA, and in Computer Applications from Jawaharlal
Nehru University India. His research focuses on

harnessing the power of ever-evolving smart devices, wearables, and machine
intelligence to solve security, privacy, and healthcare problems.

Rajiv Ratn Shah is an Assistant Professor
in the Department of Computer Science and
Engineering (joint appointment with the Department
of Human-centered Design) at IIIT-Delhi. He is
the founder of the MIDAS lab at IIIT-Delhi. He
received his Ph.D. in Computer Science from the
National University of Singapore, Singapore. Dr. Shah
is the recipient of several awards, including the
prestigious Heidelberg Laureate Forum (HLF) and
European Research Consortium for Informatics and

Mathematics (ERCIM) fellowships. His research interests include multimedia
content processing, natural language processing, image processing, multimodal
computing, data science, social media computing, and the internet of things.

https://pages.nist.gov/SOFA/SOFA.html
https://pages.nist.gov/SOFA/SOFA.html

	1 Introduction
	1.1 Continuous Authentication via TCAS
	1.2 Adversarial Scenarios for TCAS
	1.2.1 Minimal-effort attack
	1.2.2 Moderate-effort attack
	1.2.3 High-effort attack

	1.3 Possible Countermeasures
	1.4 Main Contributions

	2 Related work
	3 Design of Experiments
	3.1 Datasets
	3.2 Separation of Training and Testing Data
	3.3 Preprocessing and Feature Engineering
	3.4 Class Imbalance
	3.5 Choice of Classifiers
	3.6 The Continuous Framework
	3.7 Training of V-TCAS and G-TCAS
	3.8 Testing of V-TCAS and G-TCAS
	3.8.1 Zero-effort attack
	3.8.2 Population attack
	3.8.3 Random-vector attack

	3.9 Performance Evaluation

	4 Results and Discussion
	4.1 Zero-effort vs. Population vs. Random-vector
	4.2 Zero-effort (same) vs. Zero-effort (cross)
	4.3 Male vs. Female
	4.4 Motivation Behind the G-TCAS Architecture

	5 Conclusion and Future Work
	References

