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Abstract—Iris is an established modality in biometric recognition applications including consumer electronics, e-commerce, border
security, forensics, and de-duplication of identity at a national scale. In light of the expanding usage of biometric recognition, identity
clash (when templates from two different people match) is an imperative factor of consideration for a system’s deployment. This study
explores system capacity estimation by empirically estimating the constrained capacity of an end-to-end iris recognition system (NIR
systems with Daugman-based feature extraction) operating at an acceptable error rate i.e. the number of subjects a system can
resolve before encountering an error. We study the impact of six system parameters on an iris recognition system’s constrained
capacity- number of enrolled identities, image quality, template dimension, random feature elimination, filter resolution, and system
operating point. In our assessment, we analyzed 13.2 million comparisons from 5158 unique identities for each of 24 different system
configurations. This work provides a framework to better understand iris recognition system capacity as a function of biometric system
configurations beyond the operating point, for large-scale applications.
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1 INTRODUCTION

B IOMETRIC recognition technology is being used in
widespread applications for verification and identification in

both commercial and government platforms. With the widening
horizon of applications, the technology is growing in its imple-
mentation from small cohorts (e.g. access control) to large scale
( e.g. criminal identification [1]) to the national level (e.g. de-
duplication of identity [2]). The capacity of a biometric system i.e.
the number of identities the biometric system can accommo-
date before it encounters an identity clash [3], is a quintessential
factor especially in large-scale or national level applications that
deal with 1:N or N:N matching. Ideally, biometric characteristics
captured from different identities should have separable features
due to their inherent property of uniqueness. Uniqueness is an
indispensable property of biometrics that allows biometrics to
define identity. Biometric uniqueness is characterized as no two
people should have the same identifier [4]. In automated biometric
recognition systems, we encounter cases of false accept errors
where two biometric samples from different identities match.
Insufficiently, the distinctiveness between identities is sometimes
explained in terms of error rates. This puts some doubt on the
uniqueness of biometrics. However, a case of false accept does not
necessarily mean the biometric characteristics of the two different
individuals are the same or similar. The decision is impacted by
multiple factors in a biometric recognition channel- noise induced
by how a biometric is presented to the system, variability in
sensors in terms of camera pixel distortions, variability in the
enrollment and the probe sample captured at different time points,
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the method for feature extraction, the choice of features being used
for matching, and the matching algorithm used. An illustration
of an iris recognition pipeline and factors that might impact a
decision is shown in Figure 1.

Fig. 1: Overview of an end-to-end iris recognition system where a variety of
factors induce variability and impact capacity at different stages

The inherent random variation and complexity in the iris
pattern are considered the basis for uniqueness in the iris. In an
automated operational iris recognition scenario where false accept
is a reality, we cannot logically argue based on only the “inherent”
unique characteristics. Biometric Doddington zoo menagerie [5]
[6] [7] was introduced to explain non-uniformity in biometric
recognition performance. Among many classes, “wolves” have
been denoted for individuals who are capable of easily imperson-
ating other classes leading to false accepts, and “lambs” has been
denoted for individuals that are easy to imitate, also contributing
to false accepts. However, this explainable concept does not
quantify the uniqueness of an operating system. Attempts have
been made to explain uniqueness in different modalities including
iris. Daugman has discussed “identity collision” in iris in terms
of entropy and established the high entropy per bit of feature
encoding in the IrisCode as the basis for high resistance to clash
in IrisCodes [8].

Given the challenge of establishing uniqueness, are there other
approaches which can be used to quantify the “uniqueness” of an
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iris recognition system? In this paper we investigate the unique-
ness of an iris recognition system for images captured under NIR
illumination following Daugman-based IrisCode feature templates
in terms of “constrained capacity” i.e. estimating the maximum
number of users a system can identify at an acceptable error
rate [3]. We evaluate iris recognition system capacity in terms
of parameters of
● Quality of biometric samples
● Filter resolution
● Template dimension
● Random feature reduction
● Number of identities in the system
● System operating point

In this assessment of constrained capacity, we take a data-
driven approach. We assessed 24 different system configurations,
each with approximately 13.2 million comparisons based on N:N
matching, from approximately 5.1k unique identities. To analyze
the impact of feature dimension, random feature reduction, and
filter resolution on capacity, we consider traditional iris features,
the IrisCode inspired by Daugman’s approach [9], implemented
in OSIRIS [10]. It is believed that most commercial deployments
of iris recognition systems utilize an IrisCode-type algorithm [8].
The main contributions of this paper on iris recognition capacity
are that it has:
● Empirically established the constrained capacity of NIR illu-

minated Daugman-based iris recognition system, studying the
impact of template dimension, filter resolution, random feature
reduction, image quality, and system operating points

● Established the relationship between errors encountered by a
system in terms of identity clash, the number of identities in a
system, and the number of features in an iris template

The rest of the paper is organized as follows- Section 2
summarizes the state-of-the-art research in the scope of identity
clash in iris recognition; Section 3 details our approach towards
assessing the constrained capacity of iris recognition system;
Section 4 reports on our analysis, findings and conclusion and
Section 6 provides an insightful discussion on our conclusions.

2 STATE OF THE ART

How many identities can a biometric system resolve? It is a
long persistent query that has been approached by researchers
with many different techniques, for different modalities like face
[3] [11] [12], fingerprint [13], iris [14] [15] [16] [8], including
designing models to estimate capacity [14], adapting concepts
from information theory [17] [18] [8] [12], score-based uniqueness
measure [11], and empirical computation of capacity [16].

We found the earliest reference to the study of iris capacity
in 2004 under the study of concepts like “individuality” or
“uniqueness”. Bolle et al. [14], in their modelling approach for
iris individuality, refers to the concept as “given a biometric
sample, determine the probability of finding an arbitrary biometric
sample from the target population sufficiently similar to it” i.e.
the lower bound on the false accepts. The work modelled iris
individuality as the probability of False Accept Rate (FAR) and
False Reject Rate (FRR) in terms of bit flips in the 256-byte
IrisCode and compared the performance with the empirical per-
formance concluding that their designed FAR model follows the
empirical performance and is not affected by probability of bit flip.
However, the modelled FRR does not corroborate with the empir-
ical performance; theoretically, the performance degrades rapidly

with an increased probability of bit flip, unlike their empirical
observation. In 2005, Yoon et al. [15] explored the individuality
of iris biometrics in an identification scenario, by transforming the
many-class problem to a binary problem of intra-subject and inter-
subject distinctiveness, as a factor of features, distance measures
and classifiers, by “showing the distinctiveness of the individual
classes with a very small error rate in discrimination”. The
study concluded that considering a distance measure of histogram
distances to compute intra-class and inter-class separability with
multi-level 2D wavelets as features provides the best methodology
to determine the individuality of iris biometrics out of the eleven
methodologies tested in the study. In 2006, Daugman published a
report [16] on the analysis of approximately 200 billion imposter
comparisons of the 256 bytes IrisCode from 632500 unique irides
in an operational dataset obtained by special access from the UAE
Ministry. In its assessment of the uniqueness of the IrisCode, the
report concludes that for non-mated pair of irides, 35% to 65%
of bits in the 2048 bits IrisCode do not match; in other words, at
least 35% of the iris bits being compared, after masking the 2048
bits IrisCode, from irides of two different persons, match. One
gap is that, the study does not report on genuine comparisons.
Considering multiple relative rotations of the IrisCodes during
matching to account for the angle of rotation of the iris with
respect to the camera during capture, the agreeing bits further
increase to approximately 45%. The report points to the impact
of correlation from two sources - internal correlation present in
IrisCodes due to the iris structure, and correlation introduced in
the IrisCode during Gabor filtering, on the effective independent
bit comparisons. In 2009 and subsequently in 2012 National
Institute of Standards and Technology (NIST) conducted large
scale (1.2 billion impostor comparisons from 8400 individuals
and 1.2 trillion imposter comparisons respectively) evaluation of
iris recognition systems from leading iris recognition industrial
providers in IREX-I [19] and IREX-III [20]. However, the tem-
plates from these systems are proprietary black boxes which are
“non-standard, non-interoperable and not suitable for cross-agency
exchange.” The report provided an extensive assessment of quality
factors (dilation, occlusion, centre displacement, quality score),
impact of image compression, template size (range: 257 bytes to
45080 bytes), computation time and accuracy trade-off, and their
impact on recognition accuracy. The most relevant observations
that relate to our study are:

● Approximate size of standard iris image record (not templates;
cropped, masked versions of the originally captured image)
is approximately thirty kilobytes for large-scale identification
(1:N) applications and is much lower for verification (1:1)
application [19]. Thus, iris images with less distortion and high
information content provide better performance in large-scale
applications.

● Removing poor quality images improves false non-match rate
[19]. Thus, consideration of data quality in large-scale applica-
tions is an important factor.

● False match rates are impacted by compression [19]
● False Positive Identification Rate (FPIR) has a linear depen-

dency on population size and threshold [20]; Thus, the thresh-
old should be adjusted in the operational scenario based on
population size

● False positive cases are attributed to defective images, biologi-
cal similarity and quality factors [20]

In 2015, Daugman [8] adapted information theory concepts
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including the Hidden Markov Model (HMM) to emulate the
IrisCode, to compute the per-bit entropy of the IrisCode, and to
further explain the anatomical and filter-induced correlations. An
analytical methodology of the capacity of IrisCode is discussed
which provides a quantitative understanding of the strong resis-
tance of IrisCode against false matches. The report concludes that
the high entropy of the IrisCodes per bit (0.469 bits of entropy
per encoded bit), even in presence of biological and induced
correlations, is the backbone of the high capacity of the IrisCode.
This is supported by HMM predictions and NIST evaluations [19]
[20] - accepting 36% disagreement in bits between two IrisCode
(i.e 64% agreement of bits) as a match, leads to one case of
the false match out of 24,000 imposter comparisons. However,
the assessments of Daugman consider 256 bytes whereas NIST
evaluations do not have information on the template dimension.

Our work extends the state-of-the-art work by Daugman [16]
and NIST [19] [20] on empirical assessment of system capacity.
While Daugman’s assessment was specific to the capacity of the
feature template, the IrisCode, we studied Daugman-style iris
recognition systems from an end-to-end perspective, consid-
ering six different parameters in the iris recognition channel
addressing-
● How does identity count in a system impact capacity?
● How does quality impact system capacity?
● How does filter resolution impact system capacity?
● Does a higher template dimension increase discriminable infor-

mation in terms of system capacity?
● Does template generation methodology impact system capacity?

NIST in their reports [19] [20] on large-scale N:N assessment
with commercial “black box” systems, discuss the importance of
some of the parameters like quality and template size. We report
a systematic study of different system parameters on constrained
system capacity with publicly available datasets (refer Table 3)
and open-source software (OSIRIS) with the scope of scientific
reproducibility and continuation to address global challenges.

3 METHODOLOGY

3.1 Constrained Capacity

Ideally, system capacity is the number of identities a system
can correctly identify without any error. However, practically
biometric systems are prone to errors and function at an operating
point which is a trade-off between an acceptable false accept rate
and a false reject rate. Thus, the system capacity is computed at an
acceptable error rate, and defined here as “constrained capacity”.

Hypothesis: There is an upper bound on the number of
identities, M a system can resolve and the number of features
required, n, to resolve the identities at an acceptable error rate.

We study the impact of n, i.e optimum information content,
on the capacity of the system. In our approach to optimize
information content to achieve highly constrained system capacity,
we study six different parameters: identity count in the system,
feature dimension, filter resolution, random feature reduction,
image quality and operating point, as further detailed below:
● Quality: ISO quality images (ISOQ) vs All quality images

(ALLQ)
● Filter Resolution: Multi-resolution template vs Single-

resolution template
● Template Dimension: Structured unwrapping at lower dimen-

sion - 26k bits (D2) vs 48k bits (D1)

● Random feature reduction: Template features: 100%, 75%,
50% ,25%, 20%, 15% ,10%

● Operating Point: 0.1% FAR vs 0.01% FAR vs 0.001% FAR
All biometric systems operate at a pre-defined threshold that

indicates the system’s expected FAR and FRR. Different thresh-
olds may be chosen based on the system configurations i.e. the
quality of images from which the templates are extracted, at what
resolution the iris templates are extracted, the number of bits
forming the template and how the feature points are selected, as
detailed in Section 3.2. We chose 24 different thresholds for the
24 different system configurations at fixed operating points (OP).
We acknowledge the impact of the system configurations on the
FRR and the necessity to choose system configurations at realistic
OP. The selected OPs and the corresponding FRR are tabulated in
Table 1. Summarizing the key observations from Table 1:
● Systems employing ISOQ dataset consistently renders low FRR

across all comparing system configurations. The impact of
quality on system errors is substantial.

● Systems employing single-resolution templates exhibit lower
FRR than systems employing multi-resolution templates

● Systems employing low dimensional template (D2) outperforms
high dimensional templates (D1) by 1% - 8 % FRR.

TABLE 1: False Reject Rate (FRR) at chosen operating points for 24
system configurations (S1 - S24) based on a different combination of feature
dimensions (D1, D2), operating point (FAR), filter resolution (Single and
Multi-Resolution), and quality (ALLQ, ISOQ)

Multi Resolution Single Resolution
Feature FAR ALLQ ISOQ ALLQ ISOQ

Dimension (%) FRR (%) at different Operating Point
0.1 S1: 16.6 S2: 3.05 S3: 11.19 S4: 2.61

D1 0.01 S5: 24.9 S6: 4.48 S7: 16.59 S8: 3.25
0.001 S9: 33.9 S10: 6.47 S11: 22.01 S12: 4.25
0.1 S13: 13.51 S14: 2.59 S15: 5.97 S16: 0.71

D2 0.01 S17: 20.38 S18: 5.30 S19: 9.5 S20: 1.18
0.001 S21: 27.99 S22: 9.56 S23: 14.48 S24: 1.76

For each system structure, we compute the identity clash (false
accepts) of each unique identity i.e. the number of times an iris
template matches with another iris template of a different identity,
at each OP. We compute the constrained capacity of the system
at the specific OP for each system structure as we increase, M,
the number of identities in the system, by gradually adding one
identity at a time in the ascending order of identities with no false
accepts with any other subjects. Then the identities are sorted in
terms of the number of false accepts per identity. Constrained
capacity is the number of subjects the system could resolve before
encountering the first case of false accept. The computation of the
constrained capacity is illustrated in Figure 5.

An illustration of the relationship between the error rate as
the number of identities is increased in a system is shown in
Figure 2 for one of the 24 system configurations studied. The
figure illustrates the variation in constrained capacity (CC) and the
error rate of the system as random radial features (columns: binary
codes at a fixed angle) are eliminated from the feature template
for seven different feature levels. We note that as identities are
gradually increased in the system (x-axis) in the ascending order
of false accepts, the cumulative false accepts (CFA) increases after
resolving a certain number of identities. Constrained capacity is
the point in the x-axis where the CFA is no longer zero.

Figure 6 shows error rate as a function of increased identities
for different feature levels for all 24 system configurations. The
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Fig. 2: D2, Multi-Resolution, All Quality, FAR=0.001% : Error rate as a result
of the increase in the number of identities in the system for different feature
levels. The number of identities the system resolves before encountering the
first error is the constrained capacity.

number of identities the system could resolve at a predefined OP
(acceptable number of identity clashes) is the constrained capacity
of that system.

3.2 Experimentation Setup
This section provides a detailed background of the concepts
leading to constrained capacity estimation analysis - iris code
generation impacting the template dimensions and resolutions,
random feature selection and image quality.

Fig. 3: Basic steps of IrisCode generation with multiple filter resolutions,
feature dimensions and random feature reduction

3.2.1 IrisCode Extraction
The annular iris area is extracted from the captured iris image
by segmentation and then unwrapped into a rectangular represen-
tation. It is then filtered using a Gabor filter bank and a patch-
wise phase representation of the filtered samples in a complex
plane is performed. The quadrant, where the resulting phasor
for that patch of the iris is projected on the complex plane,
is identified. Both the real and imaginary parts of the phase
representation are considered in the generation of the IrisCode
with a 2-bit representation (00,01,11,10). The same dimensional
mask is generated for each template which identifies areas of
obstruction like eyelashes, eyelids, etc. The methodology follows
Daugman’s approach [9]; iris feature extraction methodology is
graphically illustrated in Figure 3.

3.2.2 Feature Dimension and Resolution
For this study, the IrisCode is generated at different saptial
resolutions and dimensions to assess the impact of information
content. We extracted features of two different dimensions, ∼26k
bits and ∼48k bits, based on the filtering at the unwrapping stage,
i.e., patch-wise translation of the raw iris image to the phasor
representation, varying the patch size. Each of these dimensions
is extracted at 3 different resolutions of the Gabor filter (Filter
Dimensions: 9*51, 9*27, 9*15). Feature templates are developed
for single-resolution and multi-resolution (i.e., the combination of
features extracted at all three resolutions).

The optimal filter design as developed by Daugman remains
unpublished and proprietary. The three filters used in our analysis
were designed by the developers of OSIRIS for the original
template dimension of 64 * 512 (D1). D2 is a downsampled
representation of D1 by the unwrapping mechanism. For a direct
comparison, ideally, the filters could be proportionally downsam-
pled. However, we have used the same filters for the 64∗512(D1)
dimensional template and 70 ∗ 256 (D2) dimensional template.
By not changing the filter design for D2, we have essentially
used different filters in our analysis of the two dimensions. For
single-resolution template assessment, we use the first (dimension:
9 x 51) of the 3 filters in the filter bank. Thus, the feature
content extracted on filtering D2 with the single-resolution filter
is different from D1 given that the filtering is performed on a
larger spacial area of lower spatial resolution. For multi-resolution
template assessment, each consecutive filter is a downsampled
representation of the prior filter. Thus, by design, the multi-res
template partially extracts similar frequency bands in both D1 and
D2. Thus, D1 and D2 are templates generated with different spatial
resolutions and different frequency components for the same iris
sample.

To reduce noise from the extracted feature templates, approxi-
mately 27% of the area around the two edges of the iris is removed;
9% of the area from the pupillary boundary and 18% of the area
from the limbus boundary is eliminated, which has the highest
potential noise in terms of obstruction from eyelash, eyelids which
may remain undetected in the iris mask. A graphical representation
of the different resolution templates, the reduced dimensions are
shown in Figure 3. Table 2 tabulates the extracted feature dimen-
sion (D1, D2) of IrisCode at a single resolution (Col: Extracted
Dimensions), the reduced dimensions of the feature template after
removing potential noisy bits (Col: Reduced Dimensions), and
the operational pixels/bits at single and multi-resolution (Col: Bit
Count by Resolution).

TABLE 2: IrisCode Dimension Summary

Extracted Reduced Bit Count by Resolution
Dimensions Dimensions Single Multi

D1 64 *512 47 * 512 48128 (∼ 5kB) 144386 (∼ 18kB)
D2 70 *256 51 * 256 26116 (∼ 3kB) 78348 (∼ 9kB)

3.2.3 Random Feature Reduction

We explore random feature reduction at the bit-level to assess the
impact of feature content on system capacity. Feature content after
bit-level random feature reduction is shown in Figure 3.
Bit-level Random Feature Reduction: For each dimension, the
extracted feature template represents the entire raw iris image. We
randomly eliminate radial features (columns: binary codes at a
fixed angle) at the bit level for multiple random feature reduction
levels (0%, 25%, 50%, 75%, 80%, 85% and 90% of the extracted
feature templates of different dimensions). After elimination, the
remaining percentage of features in the template is referred to
as ‘Feature level’ in this report. The implementation induces
randomization. Random radial feature columns were selected. The
same columns were eliminated from the mating pair of samples
before matching. The process was repeated for every mating pair.
Different feature columns were eliminated for different pairs.

The idea is to compare bit-level random feature reduction,
with the structured generation of reduced feature dimensions at
the image unwrapping level, as described in Section 3.2.2.
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3.2.4 Quality

Quality impacts performance. We choose the best quality sam-
ples because we are trying to understand capacity when quality
problems are minimized. International standards have been set to
benchmark iris image quality for optimal performance [21]. We
assess the impact of quality on system capacity and its importance
on large-scale operations. We assess 2 scenarios-

● ISO Quality Data (ISOQ): All iris samples follow ISO
standard- ISO-IEC- 29794-6 [21]. Nine quality factors encom-
passing anatomical metrics and illumination are considered in
the selection of the samples - overall quality score, iris radius,
dilation, usable iris area, iris-sclera contrast, iris-pupil contrast,
grayscale utilization, iris-pupil concentricity, margin-adequacy.

● All Quality Data (ALLQ): The best quality sample from an
individual based on the overall quality irrespective of whether it
follows ISO standards is selected. The distribution of five quality
measures for both ISOQ and ALLQ is shown in Figure 4.

Fig. 4: Comparative boxplot of five quality score distribution of the entire
dataset vs ISO quality standard based cleaned dataset

3.3 Dataset

Empirically assessing the capacity of an iris recognition system
requires access to a large dataset. No single publicly available
dataset has a large number of subjects for this research. For our
study, we created a composite dataset of 5158 unique irides putting
together multiple independent, publicly available datasets from
different sources as summarized in Table 3 to form the ALLQ
dataset. A subset of 2982 unique irides is filtered based on ISO
quality standards to form the ISOQ dataset. Right and left irides
from the same subjects are considered different identities in terms
of uniqueness. For our analysis, samples were chosen based on the
best overall quality score. The experiment was designed such that
exactly one sample with the best quality score would be used for
enrollment. For non-mated comparisons, each sample of the M-
enrolled samples was matched against M-1 samples from different
identities; total imposter comparisons for ALLQ systems: 5158
* (5158-1) / 2 ≃ 13.2 million; total imposter comparisons for
ISOQ systems: 2982 * (2982-1) / 2 ≃ 4.4 million. For mated
comparisons, the two next-best-quality samples from each unique
iris were selected for matching against the enrolled sample; total
genuine comparisons for ALLQ systems: 5158 * 3 = 15474; total
genuine comparisons for ISOQ systems: 2982 * 3 = 8946.

TABLE 3: Dataset Summary

Database Unique Irides Sensor

ITR Clarkson 484 OKI IRISPASS
ND CrossSensor 2012 1353 LG2200

CASIA Lamps 820 OKI IRISPASS-h
CASIA Twins 400 OKI IRISPASS-h

CASIA Thousand 2000 IKEMB-100
CASIA Interval 395 CASIA Iris Camera

3.4 Algorithms
For quality assessment we used a commercial software VeriEye
11.0 SDK [22] following ISO/IEC 29794-6 [21]. The software
computes iris quality factors following ISO guidelines. For feature
extraction, we adapted the open-source software, OSIRIS [10].
OSIRIS was developed following Daugman’s approach of iris
feature extraction [9], IrisCode, and allows flexibility in feature
extraction in terms of dimension and resolution. This is an im-
portant element in exploring beyond the conventional standard in
iris recognition. Conventionally 256 bytes (1028 bits) of IrisCode
are generated and used for matching. OSIRIS allows exploration
of the customized dimensions of feature extraction by considering
different dimensional patches at the unwrapping stage. Addition-
ally, the software has the capacity to generate IrisCode at three
different resolutions of the Gabor filter. Exploring feature content
in the template goes to the core of our study on the impact of
structured template generation at different dimensions (D1, D2)
versus random feature reduction (0% to 90%) on the capacity of
the iris recognition system.

The extracted iris templates of different dimensions with
different frequency components (D1, D2), filter resolution (single
and multi-resolution), quality (ISOQ, ALLQ) and after random
feature reduction (0% to 90%), are used for template comparison
for mated and non-mated pairs of images. A corresponding mask
is generated for each template. We developed a method to perform
the M ∶ M − 1 matching for non-mated pairs (∼ 13.2 million for
ALLQ systems and ∼ 4.4 million for ISOQ systems) of images for
each set of the 24 system configurations, where M represents the
number of unique identities. The matching methodology involves
computation of the Hamming distance between two templates for
different system configurations following equation 1.

HD = ∣∣(IC1⊗ IC2) ∩M1 ∩M2∣∣
∣∣M1 ∩M2∣∣ (1)

where IC denotes IrisCode and M denotes Mask.
56 shifts (28 on each side) for D1 and 28 shifts (14 on each
side) for D2 of the iris template are performed during Hamming
distance (HD) computation to mitigate errors induced by the angle
of rotation of the mating irides. Each shift corresponds to 0.7
degrees and 1.4 degrees for D1 and D2 respectively, leading to a
cumulative flexibility of 19.6 degrees on each side. The minimum
HD (or best match) is considered the final score for each pair of
comparing templates.

Next, we compute the constrained capacity of the system, i.e.
the number of identities the biometric system can accommodate
before encountering an identity clash, for each of the 24 system
configurations.

3.5 M:M Matching and Computational Aspects
1.6 × 1010 iris code comparisons are needed to calculate the non-
match scores required for this study. Each of the 12 ALLQ system
configurations requires roughly 13.3 million iris comparisons and
12 ISOQ system configurations require roughly 4.4 million iris
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Fig. 5: An illustrative representation of Constrained Capacity Computation Algorithm: The database contains ‘M’ unique identities. Considering a single sample
per identity, each identity is matched with M-1 other identities computing M-1 match scores per identity. Based on the predefined threshold at x% FAR (OP),
each identity (i) encounters FAi false accepts. Identities are arranged in ascending order of the FAi, represented here as FAAO. The number of identities in the
system is increased based on FAAO. The number of identities the system could accommodate before encountering any identity clash is the constrained capacity.

comparisons. Since our iris matching algorithm includes an iris
alignment step, we need to consider all the possible non-match
scores computed by different alignments of the gallery and probe
irides. To compute the optimal iris alignment, we calculate the
distance matrix for each shift of the probe iris template up to
19.6 degrees on each side and then identify the minimum distance
of all possible shifts as the final score. This amounts to 57
and 29 probe iris code pixel shifts (and corresponding distance
matrices) for the D1 and D2 templates respectively. We then repeat
the computation for each system configuration (filter resolution,
feature dimension, random feature reduction). A large number
of comparisons required us to develop a custom framework as
we projected that sequential computation of the distances would
require 62 days to complete using a high-end computational server.
Since 99.96 % of comparisons in our analysis are in the non-
match distribution, we focus our optimization effort on this set.
Our final comparison engine is able to compute all computations
in 1.99 days using one server, with a proportional decrease in
time with each additional server tasked. Intel Xeon Cascade Lake
R computational server was leased using the Chameleon testbed
[23].

4 RESULTS

This section discusses constrained system capacity as a function
of multiple parameters–the number of identities in the system,
image quality (ALLQ, ISOQ), filter resolution (single and multi-
resolution), template dimension and filter design (D1, D2), random
feature reduction (0% to 90%) and operating points (0.1, 0.01,
0.001% FAR). Different combinations of these parameters define
the structure of a system. Overall 24 different system configura-
tions (refer Table 1) are studied and reported. Table 4 and Table 5
provide a detailed report on the impact of different system param-
eters on the imposter distribution of ∼ 13.2 million comparisons
((5158∗5157)/2) for ALLLQ dataset and ISOQ dataset. Figure 7
provides a graphical representation of constrained capacity for the
ALLQ dataset at 50% feature level, the best performing feature
level, to depict the impact of three parameters- operating point,
resolution and feature dimension. The ISO dataset representation
is similar and thus not included in this report. The tables report
the number of cases of false accepts (FA), the corresponding
false accept rate (FAR), constrained capacity (CC) and percent
capacity (PC) at specific operating points ( OP: 0.1% / 0.01% /
0.001% FAR). The operating threshold (Hamming distance (HD))
for OP is different for each system configuration (filter resolution,

template dimension and data quality). For example, a system
operating with ISO quality data would operate at a different HD
than a system operating with ALLQ data for the same FAR, as the
imposter distribution of both systems would be different. However,
for different feature dimensions (100% to 10% features), the HD
has been fixed at 100% features for that operating point.

We report on the impact of each of the system configurations
and discuss the trade-off between different parameters in a system
to achieve high system capacity in realistic operational scenarios.

4.1 Capacity Assessment: Impact of Identity Count on
System Capacity

As the number of identities increases in a system, the probability
of identity conflict increases. We study the impact of increased
subject count on the system errors for the 24 different system
configurations and report on the constrained system capacity. We
study how the error in a system varies, for each of the 24 system
configurations, as we gradually increase the number of identities,
up to 5158 for the ALLQ dataset and up to 2982 for the ISOQ
dataset, for 7 different feature levels- 100% to 10%. As the number
of identities in the ALLQ and ISOQ datasets are different, these
two segments are not directly comparable. We introduced percent
capacity to compare the performance, which is discussed in more
detail in the following sections. The relationship between the
unique identity count in a system and the corresponding error rate
for the 24 different system configurations for 7 different feature
levels- 100% to 10% is shown in Figure 6. It is important to note
that the HD corresponding to 100% feature level for each of the
24 configurations was considered for all 7 different feature levels.
The constrained capacity of the 24 systems are tabulated in Table 4
and Table 5.

With ALLQ data, the best-constrained capacity of 5111 identi-
ties out of 5128 identities is obtained for the system configuration-
ALLQ, Multi-resolution, D2, at OP 0.001% FAR (refer Fig 6i) and
is achieved with 50% random features for this system configura-
tion, rendering percent capacity of 99.09%. Arranging identities
in the ascending order of the number of false accepts, the system
encountered the first identity clash after resolving 5111 identities.
Thus, 47 identities (5158 - 5111) contributed to 64 error counts.
The number of identities contributing to the false accepts is
referred to in the following sections as NICF.

A detailed assessment of different variability factors on the
system capacity is reported later in this section. We report the
following observations from our assessment of the 24 system
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configurations as we vary the number of identities in the system
and provide further details in the next sections-
● System configurations are strongly correlated with the error

count as the number of identities increases in the system. We
note substantial variability in the constrained system capacity
(the number of identities the system can resolve before it starts
encountering errors at a particular OP) for different structures.

● For 19 of the 24 system configurations, considering 50% of the
total bits forming the iris template achieves the highest system
capacity. These observations could be indicative of the following
phenomenon as a result of the random elimination of radial
features:
– Retainment of stable bits and subsequent elimination of “in-

consistent bits” [24], leading to optimized feature template.
– Elimination of radially correlated bits which do not append

to the discriminating “unique” information [8]
– A combination of both the above two phenomenon
The best performance is recorded for resisting identity conflict
for 99.43% of the dataset considering 50% of the bits of a
26116 ∗ 3 bits multi-resolution template (D2) at 0.001% FAR
with ISO quality data; the best performance could be because
the D2 - multi resolution combination contains the highest
number of bits.

● Different system structures contribute to system error count
from as low as 18 errors (refer Table 5: ISOQ, Multi-resolution,
D2, 0.001% OP with 50% Features) to as high as 2.7 million
errors out of 13.2 million comparisons (refer Table 4: ALLQ,
Single-resolution, D1, 0.1% OP with 10% Features)

4.2 Capacity Assessment: Impact of Quality
Image quality is an instrumental factor in iris recognition per-
formance. The impact of image quality score on false accept
rate (FAR) and false reject rate (FRR) has been analyzed in
IREX-I [25]. We assessed two sets of data- ALLQ as defined
in section 3.2.4 and a subset of ALLQ, which meets the minimum
ISO image quality standards, ISOQ, to understand the impact of
quality on constrained system capacity. Table 1 reports the FRR
at the corresponding FAR for 24 different system configurations.
If we compare the 12 system configurations which operate with
ALLQ data with the other 12 system configurations that operate
with ISOQ data, we note substantial improvement in FRR by
double digits with ISOQ data. We should be mindful of the impact
of the chosen operating point of our system on the FRR which
heavily impacts the performance of the system.

Table 4 and Table 5 report the capacity of systems operating
with ALLQ and ISOQ data respectively. The thresholds for each
OP are selected with templates having 100% features. It is impor-
tant to note that our definition of capacity is in terms of subject
count, i.e. the number of identities a system can correctly resolve
at an acceptable error rate. However, in our study, the ISOQ
dataset is a subset of the ALLQ dataset that meets the quality
standards. Thus, the subject count in the two quality datasets is
different and thus we cannot compare the capacity for these two
segments in terms of the number of identities. For the sake of
comparing the two segments, we introduced percent capacity -
constrained capacity represented in terms of the percentage of the
number of identities in the system. We note an increase in percent
capacity for systems operating with ISOQ data by approximately
1% to 10% compared to systems operating with ALLQ data. For
example, with D2 single resolution template, the ALLQ dataset

performs with an FRR of 5.97 % at 0.1% FAR and the ISOQ
dataset performs with 1.76 % FRR at 0.001% FAR. Thus, with
the ISOQ dataset, a system can operate at a stricter OP (0.001%)
without compromising FRR and achieve a higher percent capacity
of 98.7% as opposed to 73.3% with the ALLQ dataset operating
at 0.1% OP.

We conclude from our analysis that using images which meet
the basic criteria set by ISO [21] positively impacts system
capacity. Additionally, ISOQ data impact FRR significantly. Thus,
ISOQ dataset will allow a system to operate at a stricter operating
point (e.g. 0.001% FAR) to achieve a higher system capacity
without a significant trade-off in FRR.

4.3 Capacity Assessment: Impact of Filter Resolution
This section explores how increasing features in terms of filter
resolution impacts system capacity. Does fusing the informa-
tion content in different resolutions of the iris increase the dis-
criminability between identities? For this study, we considered
templates generated at a single filter resolution versus templates
generated at 3 different filter resolutions. We analyzed 12 different
system configurations for each resolution type. For each of the 12
comparisons between the false reject rate of systems using multi-
resolution template versus single-resolution template, as reported
in Table 1, single resolution outperforms multi-resolution (e.g.
FRR: S24 - 1.76% vs S22 - 9.56%). However, our analysis of
constrained capacity shows where multi-resolution may have an
importance which is not reflected in considering only FRR and
FAR, and is further discussed below.

Table 4 and Table 5 compare the impact of resolution on
system capacity. As we compare the FA and CC between multi
and single-resolution, we note variable impact. Systems work-
ing with a lower OP (0.1%) perform considerably better with
multi-resolution templates. Said more simply, for operating points
with less strict FAR of 0.1% (and better FRR), fewer subjects
contribute to errors for multi-resolution templates compared to
a single-resolution, i.e., a multi-resolution has a higher system
capacity providing a more robust defence to false accepts from
different identities. For example, a D1 multi-dimensional template
generated from ALLQ data, with 100% features functioning at
an OP of 0.1%, 1290 identities (CC:3868) contribute to the 0.1%
FAR, whereas 1608 identities (CC:3550) contribute to the false
accepts with similar systems configuration with single resolution
templates. However, for systems working at a stricter OP (0.001%
), the performance variation between single and multi-resolution
templates is not significant. For example, a D1 multi-dimensional
template generated from ALLQ data, with 100% features func-
tioning at an OP of 0.001%, 83 identities (CC:5075) contribute
to the 0.001% FAR whereas 89 identities (CC: 5069) contribute
to the false accepts with similar systems configuration with single
resolution templates. The variation gradually fades with stricter
OP (0.01% and 0.001%). This pattern holds true across all
parameters- different quality datasets (ALLQ, ISOQ), different
template dimensions (D1, D2) and different feature dimensions
(100% to 10%).

4.4 Capacity Assessment: Impact of Spatial Resolution
This section explores the impact of spatial resolution or template
dimension on system capacity. Does increased spatial resolution
lead to higher discriminable information content and improve
system capacity? We assess two dimensions- ∼ 48k (D1) and ∼ 26k
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TABLE 4: ALLQ: Dataset: 5158 Unique Identities; Constrained Capacity at varying resolutions (multi and single resolution), template dimension (D1, D2),
feature dimension (100% to 10%) and operating points (0.1, 0.01 and 0.001% verification FAR)

Template Dimension Feature OP Multi Resolution Single Resolution
(%) (%) HD FA FAR (%) CC PC HD FA FAR (%) CC PC

D1

100

0.1 0.385

13460 0.101 3868 74.9%

0.418

14071 0.106 3550 68.8%
75 15766 0.119 3854 74.7% 15461 0.116 3525 68.3%
50 7484 0.056 4151 80.4% 10188 0.077 3669 71.1%
25 12290 0.092 3984 77.2% 25311 0.19 2952 57.2%
20 16946 0.127 3836 74.3% 49170 0.37 2250 43.6%
15 20012 0.15 3780 73.2% 85241 0.641 1412 27.3%
10 36807 0.277 3151 61.0% 274738 2.066 258 5%
100

0.01 0.368

1458 0.011 4748 92.0%

0.404

1483 0.011 4702 91.1%
75 1737 0.013 4740 91.9% 1623 0.012 4687 90.8%
50 756 0.006 4871 94.4% 947 0.007 4793 92.9%
25 1388 0.01 4798 93.0% 2796 0.021 4496 87.1%
20 2056 0.015 4690 90.9% 5982 0.045 4075 79.0%
15 2675 0.02 4661 90.3% 11970 0.09 3481 67.4%
10 5452 0.041 4277 82.9% 52485 0.395 1724 33.4%
100

0.001 0.351

138 0.001 5075 98.3%

0.388

135 0.001 5069 98.2%
75 164 0.001 5068 98.2% 140 0.001 5065 98.2%
50 76 0.001 5105 98.9% 79 0.001 5099 98.8%
25 164 0.001 5069 98.2% 236 0.002 5031 97.5%
20 236 0.002 5032 97.5% 544 0.004 4904 95.0%
15 330 0.002 5017 92.2% 1197 0.009 4723 91.5%
10 770 0.006 4889 94.7% 7593 0.057 3756 72.8%

D2

100

0.1 0.331

13502 0.102 3938 74.9%

0.382

14664 0.11 3782 73.3%
75 9057 0.068 4117 79.8% 9563 0.072 4008 77.7%
50 6968 0.052 4234 82.0% 8265 0.062 3924 76.0%
25 33236 0.25 3712 71.9% 55789 0.419 2909 56.4%
20 80554 0.606 3228 62.5% 136204 1.024 2170 42.0%
15 30399 0.229 3438 66.6% 106346 0.8 1545 29.9%
10 14803 0.111 3502 67.8% 194393 1.462 485 9.4%
100

0.01 0.31

1421 0.011 4779 92.6%

0.363

1482 0.011 4714 91.3%
75 866 0.007 4863 94.2% 843 0.006 4860 94.2%
50 654 0.005 4926 95.5% 730 0.005 4851 94.0%
25 5130 0.039 4512 87.4% 8342 0.063 4175 80.9%
20 15827 0.119 4151 80.4% 26399 0.198 3549 68.8%
15 4556 0.034 4432 85.9% 17680 0.133 3549 63.0%
10 2148 0.016 4537 87.9% 42261 0.318 1880 36.4%
100

0.001 0.291

134 0.001 5074 98.3%

0.343

140 0.001 5077 98.4%
75 85 0.001 5098 98.8% 87 0.001 5101 98.8%
50 64 0 5111 99.0% 68 0.001 5108 99.0%
25 702 0.005 4950 95.9% 916 0.007 4881 94.6%
20 2599 0.02 4728 91.6% 3743 0.028 4510 87.4%
15 648 0.005 4922 95.4% 2344 0.018 4493 87.1%
10 309 0.002 4990 96.7% 8292 0.062 3581 69.4%

CC =Constrained Capacity; PC = Percent Capacity; OP**= Operating Point of 0.1 is where the threshold is selected for 0.1% FAR with 100% features

Fig. 7: Constrained Capacity of ALLQ Dataset with 50% feature
level at different parametric compositions

bits (D2) at single resolution. For multi-resolution templates, the
pixel count is three times that of the single-resolution templates.
D1 and D2 templates also vary in their frequency information
content as detailed in Section 3.2.2.

We observe in Table 1 that a higher dimension/resolution (D1)
leads to a comparatively higher FRR by a substantial margin in
the range of 1% to 8%. For example, S5 and S7, both having
similar system configurations render an FRR of 24.9% with multi-

resolution data compared to 16.59% FRR with single-resolution
data. Similar results are observed across all configurations. Look-
ing at the performance in terms of percent capacity (PC) in
Table 4 and Table 5, lower template dimension (D2) performs
better consistently across different feature dimensions (100% to
10%), more dominantly in ISOQ data.

The observations could be indicative of the impact of spatial
resolution or/and filter design. D1 templates are generated at
the default dimension of OSIRIS and with the recommended
filters. D2, which is a downsampled representation of D1, is
comparatively more resistant to false rejects with the same filter
design extracting different sets of feature components.

In Table 5, with ISO Quality data at 0.1% OP, D2 renders
a PC of 81.8% (multi-resolution) and 75.2% (single-resolution)
compared to a PC of 77.9% (multi-resolution) and 65.6% (single
resolution) with D1. However, the variation in performance fades
at a stricter operating point. One exception is noted, where higher
dimensional templates (D1) when operating with 25% of the fea-
tures outperform lower dimensional templates (D2). This observa-
tion is true across all OP, quality and different resolution templates.
At 0.001% FAR, a multi-resolution template with 100% features
has a system capacity of 5075 with D1 and 5074 with D2, with
NICF of 83 and 84 respectively. In terms of constrained capacity
(CC), we note a similar pattern. High dimensional templates (D1)
leads to lower capacity in comparison to the lower dimensional
template (D2) for similar system configuration. Even a stricter OP
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TABLE 5: ISOQ: Dataset: 2982 Unique Identities; Constrained Capacity at varying resolutions (multi and single resolution), template dimension (D1, D2),
feature dimension (100% to 10%) and operating points (0.1, 0.01 and 0.001% verification FAR)

Template Dimension Feature OP Multi Resolution Single Resolution
( % ) ( % ) HD FA FAR (%) CC PC HD FA FAR (%) CC PC

D1

100

0.1 0.397

4520 0.102 2324 77.9%

0.427

5075 0.114 1957 65.6%
75 4867 0.11 2347 78.7% 4857 0.109 2029 68.0%
50 2794 0.063 2489 83.5% 4219 0.095 2115 70.9%
25 3724 0.084 2441 81.8% 9526 0.214 1679 56.3%
20 4677 0.105 2380 79.8% 18551 0.417 1224 41.0%
15 5439 0.122 2347 78.7% 36463 0.82 731 24.5%
10 11541 0.26 1998 67.0% 122072 2.746 119 3.9%
100

0.01 0.382

479 0.011 2796 93.7%

0.416

516 0.012 2739 91.8%
75 539 0.012 2799 93.8% 451 0.01 2749 92.2%
50 283 0.006 2858 95.8% 463 0.01 2749 92.2%
25 357 0.008 2854 95.7% 1120 0.025 2562 85.9%
20 468 0.011 2820 94.6% 2678 0.06 2310 77.4%
15 716 0.016 2798 93.8% 6259 0.141 1834 61.5%
10 1715 0.039 2603 87.3% 28264 0.636 701 23.5%
100

0.001 0.367

46 0.001 2943 98.7%

0.405

46 0.001 2945 98.7%
75 48 0.001 2950 98.9% 52 0.001 2940 98.6%
50 27 0.001 2960 99.3% 43 0.001 2950 98.9%
25 27 0.001 2962 99.3% 121 0.003 2903 97.3%
20 36 0.001 2958 99.2% 339 0.008 2807 94.1%
15 74 0.002 2945 98.7% 933 0.021 2614 87.6%
10 210 0.005 2864 96.0% 5930 0.133 1824 61.1%

D2

100

0.1 0.343

4680 0.105 2441 81.8%

0.395

4969 0.112 2242 75.2%
75 3458 0.078 2517 84.4% 3347 0.075 2368 79.4%
50 3154 0.071 2526 84.7% 3701 0.083 2337 78.4%
25 9723 0.219 2340 78.5% 17769 0.4 1767 59.2%
20 20490 0.461 2120 71.1% 39414 0.887 1340 44.9%
15 9524 0.214 2204 73.9% 44903 1.01 842 28.2%
10 6502 0.146 2180 73.1% 95873 2.157 226 7.5%
100

0.01 0.322

450 0.01 2828 94.8%

0.378

455 0.01 2797 93.8%
75 290 0.007 2870 96.2% 285 0.006 2856 95.8%
50 240 0.005 2892 97.0% 297 0.007 2845 95.4%
25 1380 0.031 2760 92.5% 2689 0.06 2523 84.6%
20 3450 0.078 2607 87.4% 7150 0.161 2179 73.1%
15 1052 0.024 2712 90.9% 7658 0.172 1897 63.6%
10 834 0.019 2706 90.7% 21709 0.488 962 32.2%
100

0.001 0.303

45 0.001 2949 98.9%

0.362

48 0.001 2944 98.7%
75 29 0.001 2957 99.1% 28 0.001 2959 99.2%
50 18 0 2964 99.4% 29 0.001 2956 99.1%
25 175 0.004 2916 97.8% 367 0.008 2849 95.5%
20 526 0.012 2854 95.7% 1137 0.026 2683 90.0%
15 117 0.003 2913 97.7% 1236 0.028 2557 85.7%
10 105 0.002 2909 97.5% 4865 0.109 1939 65.0%

CC =Constrained Capacity; PC = Percent Capacity; OP**= Operating Point of 0.1 is where the threshold is selected for 0.1% FAR with 100% features

does not mitigate the variation in performance between D1 and
D2. It is important to note, we assessed FAR with a precision of
up to three decimal places. Thus, even though the OP has been
fixed ( 0.1%, 0.01% and 0.001% FAR), the CC was determined at
the closest experimentally computed FAR to the selected OP. The
actual FAR at which the FA and CC are computed are reported in
Table 4 and Table 5 under the column “FAR.”

We conclude from our assessment that a higher template
dimension does not necessarily add to higher discriminable infor-
mation. Rather, we observe performance degradation with higher
template dimensions. From our observation, we hypothesize and
attribute this result to the infusion of more redundant features with
higher dimensions or more matching bits between non-mated pairs
of images. A deeper analysis at the bit level needs to be performed
to understand the root cause of this observation. We also note that
the optimum filter design which defines the frequency information
contained in the template remains unknown to the community.

We can only conclude with the dimensions and filters we have
tested in our experimentation. The optimum template dimension
and optimum filter design for optimum system capacity remain
open scopes of research. As biometric applications are moving
towards a national stage or global stage with applications like
huge-scale identification or de-duplication of identity at a national
level or global level, system capacity may need to consider
optimum information content in a template.

4.5 Capacity Assessment: Impact of Random Feature
Reduction vs Structured Feature Dimension
Does different methods of selection of template dimension impact
system capacity? Does reduced feature dimension impact perfor-
mance? If yes, then to what extent? Is there a trade-off between
constrained capacity and structured template generation at lower
dimension vs random feature reduction?

To address these research questions, we assessed two methods
of feature template generation - templates generated at different
dimensions as described in Section 3.2.2 and analyzed indepen-
dently in Section 4.4 versus bit level feature selection by random
feature elimination as detailed in Section 3.2.3. We assessed two
dimensions for structured template generation - 48128 bits (D1)
and 26116 bits (D2). To assess random feature reduction, we
assessed seven feature levels at 100%, 75%, 50%, 25%, 20%,
15% and 10% of the original template dimensions (D1 and D2).
50% of the D1 template, i.e. 24064 bits selected by bit-level
random elimination is comparable to the D2 template (26116 bits)
at 100%. The two templates contain a similar number of bits;
however, the fundamental difference between the two templates
is the information content. The templates with feature dimensions
D1 and D2 contain information from the entire usable iris area,
whereas the bit-level selection of template features contains partial
information based on a selective percentage (100% to 10%) of the
entire usable iris. All assessments were performed for different
quality datasets at different OP.
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Bit level random feature reduction: Analyzing the perfor-
mance in terms of percent capacity in Table 4 and Table 5, we
note an interesting pattern. Randomly eliminating radial features
from the templates (D1 and D2) from 100% to 50%, gradu-
ally improves percent capacity (PC) by a substantial percentage.
This observation is true across starting template dimension, filter
resolution, quality and across OP. The positive impact is more
dominating with system configurations operating with ISO-grade
multi-resolution templates at lower OP (0.1% / 0.01%). For
example, a system operating with ISO samples with D1 multi-
resolution template at OP 0.1% has a PC of 81.89% with 100%
features and a PC of 84.74% with 50% features. We conclude
that an iris image in its entirety is not an absolute requirement
for the optimal performance of an iris recognition system. The
improvement in performance after feature reduction by random
elimination could be attributed to a reduction in redundant fea-
tures. However, we also note that though 50% features contribute
to the highest resistance against identity clash, the variation in
PC with 100%, 75% and 50% features is in the range of 0.2%
to 5.5%. This observation could be indicative of two conclusions:
an improvement in performance with up to 50% features or no
substantial variation in performance with 100%, 75% and 50%
features. The improvement in performance after feature reduction
by random elimination could be attributed to the reduction in
redundant features. Alternatively, this could be indicative of no
loss in discriminating features leading to stable performance even
with the reduced features up to 50%. The apparent improvement
could be nullified if the random selection is iterated multiple times.

We also note that multi-resolution templates are more robust
in reducing feature dimensions compared to single-resolution
templates. For most system configurations, reducing the feature
dimension to 10% of the original template dimension leads to
a failure of the system ( as low as 3.9% PC) if the templates
are generated with single resolution; whereas with the multi-
resolution template, though we note substantial degradation in
performance, the worst performing system configuration obtained
a system capacity of 61.09% and the best performing configuration
obtained 96.74% with ALLQ data. Systems operating at stricter
OP (0.001%) have minimal impact on reducing features.

Structured Template Generation vs Random Feature Elim-
ination: we compared similar template dimensions generated from
two different methods- (a) a structured generation of a template
by varying the patch size during patch-wise translation of the raw
iris image to its phasor representation; (b) Random elimination of
radial features. The comparative performance of the two methods
based on comparative number of bits in the template is presented
in Table 6. We compare template D2 with 100% bits and 50%
bits with comparable number of bits in D1 at 50% bits and 25%
bits respectively. We note that with a higher bit count (∼24k and
26k) generated from 50% of D1 and 100% D2, there is little
performance variation with variations fading with stricter OP.
However, at 25% D1 and 50% D2, the performance variation
is high, especially with single-resolution data. For example, a
template with 13k bits generated from 50% D2 performs better by
a large percent capacity compared to 12k bits generated from 25%
D1. We surmise that this large degradation in performance is an
impact of information loss as we eliminate larger usable iris area in
25% of D1 compared to 50% of D2 in spite of having comparable
bit count in the template. This observation is true across OP, filter
resolutions and quality; however, it is less dominant at stricter
OP. 50% D2 (13k bits) outperforms 50% D1 (24k bits). However,

multi-resolution templates hold comparable performance even
with lower usable iris area (25% D1). Multi-resolution templates
are robust to performance degradation with less usable iris area;
this observation reflects the contribution of unique discriminable
information present in the different frequency bands of the iris.
It also reflects the upper limit to the discriminable information
content. With multi-resolution templates, percent capacity is not
proportionally increased with the more usable area (50% D2)
compared to templates with the less usable area (25% D1).

5 DISCUSSION, LIMITATION AND FUTURE WORK

Constrained capacity is a quantifiable measure of the “uniqueness”
of an iris recognition system and is a function of multiple system
parameters. This study reports on the empirical assessment of
constrained capacity for iris recognition systems operating at an
acceptable error rate, i.e., the upper bound for the number of iden-
tities a system can resolve before encountering an identity clash.
In our assessment, we studied iris templates captured under NIR
illumination following Daugman-based IrisCode feature templates
from 5158 identities comprising 13.2 million IrisCode compar-
isons for each of 12 different system configurations operating with
all-quality data and from 2982 identities comprising 4.4 million
IrisCode comparisons for each of 12 different system configu-
rations operating with ISO-quality data. We studied 24 different
system configurations varying six different IrisCode-based system
parameters- sample quality (ALLQ vs ISOQ), filter resolution
(multi-resolution template vs single resolution template), template
dimension (∼ 26k bits (D2) vs ∼ 48k bits (D1)), random feature
elimination, system operating points (0.1%, 0.01% and 0.001%
FAR), and the number of identities in the system.

Identity clash is a concept related to the imposter matches
impacting false match rate (FMR). However, biometric systems
operate with an error trade-off between false match rate (FMR)
and false non-match rate (FNMR) defined by a threshold. Though
very very low FMR can be achieved in an iris recognition system
by considering a highly stringent threshold, it would be impractical
to select a threshold with extremely low FMR that results in an
extremely high FNMR. NIST recommends iris biometric system
operation at lower FMR with the caution that elevated FNMR
should be an application-based decision [25]. In some applications
high FNMR is untenable, a very high FNMR can be beneficial for
a trade-off of near zero FMR [19]. We are of the view, that FNMR
is an equally important factor as FMR irrespective of applications,
as biometric applications are sensitive to security from a small
scale to a matter of national security. Thus, it is seminal to advance
research in the direction to improve performance specific to large-
scale applications where the FMR-FNMR trade-off is minimal. In
our study, we assess false matches at reasonable operating points
being mindful of false rejections.

In our random feature selection from a single iteration, we
recognize a possible limitation in generalizability. We observed
that all 12 systems operating with single-resolution templates
show patterns in the order of the first failure as a function of
the “feature level”. However, this pattern is not reflected with
multi-resolution templates. Additionally, 19 of the 24 systems
studied render the best constrained capacity with 50% feature
level. Since the feature selection is random, this may reflect the
effect of the particular set of selected features. However, though
we have performed a single iteration of random feature selection,
our process has induced randomness in 2 scenarios: (a) A single
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TABLE 6: Comparative performance of percent capacity as a function of template structure

OP Feature (%) Percent Capacity (%)
(Bits) ALLQ ISOQ

Multi Resolution Single Resolution Multi Resolution Single Resolution
D1 D2 D1 D2 D1 D2 D1 D2 D1 D2

0.1 50% (24064) 100% (26116) 80.48 76.35 71.13 73.32 83.5 81.89 70.95 75.21
25% (12032) 50% (13058) 77.24 82.09 57.23 76.08 81.89 84.74 56.32 78.4

0.01 50% (24064) 100% (26116) 94.44 92.65 92.92 91.39 95.87 94.87 92.22 93.83
25% (12032) 50% (13058) 93.02 95.5 87.17 94.05 95.74 97.01 85.94 95.44

0.001 50% (24064) 100% (26116) 98.97 98.37 98.86 98.43 99.3 98.93 98.96 98.76
25% (12032) 50% (13058) 98.27 99.09 97.54 99.03 99.36 99.43 97.38 99.16

template is compared with 5157 other templates. In each case, a
new random set of features are selected. This holds true for each
of the 13.2 million / 4.4 million comparisons with each of the
24 systems studied. (b) Additionally, though we are considering
a single template for comparison, random selection/elimination of
features replicates scenarios of 7 different templates, with reduced
features, essentially replicating scenarios of different templates
with obstructions, for each of the 24 systems studied. However,
this does not address scenarios of templates with different dilation
and angle of vision, which is a limitation of our study. If resources
in terms of time and processing power are not a constraint,
multiple iterations of random selection would add more confidence
to the conclusions.

This study extends the state-of-the-art in the field of empirical
assessment of the constrained capacity of iris recognition systems
from two major contributors- Daugman [16] and NIST [19] [20].
To the best of our knowledge, this is the most extensive research
on iris recognition system capacity in terms of six parameters
covering 24 configurations and their correlation, using open-
source algorithms with publicly accessible datasets. Thus, the
research reported here are entirely reproducible and can be
further extended, using the publicly available datasets listed in
Table 3 and the open-source software- OSIRIS. NIST reported
on N:N matching on large proprietary databases for commercial
software which are “black boxes.” Daugman’s assessments are
specific to the capacity of IrisCode. Conventionally, 2048 bits
IrisCode are used for iris recognition. We have gone beyond
the conventions of iris recognition in the scope of IrisCode
dimension and feature reduction in our study. We explored
capacity at higher dimensions (∼ 26k−bits and ∼ 48k−bits) with
different levels of feature content (100% to 10%) in the template
with the motivation to study the relationship between template
dimension, discriminable feature content and constrained capacity
of the system. This study provides a framework for users to
make a knowledge-based selection of parameters for their system
configuration based on user requirements.

Limitations in our work open up areas for advanced research.
Our study is limited by the publicly available dataset. The vision of
solving challenges at the global level requires access to large-scale
datasets representative of the variations in terms of identity count,
variations in real-life data collections, and demographic variability,
for the research community. Assessment of the impact of different
system parameters on constrained capacity with a larger dataset
would put to test the upper bounds of the system capacity.
Alternatively, there is a requirement to develop a methodology
capable of predicting quantifiable system capacity with a smaller
representative dataset.

Additionally, our study is limited in its scope of iris system
assessment. The scope of empirical assessment of iris recognition
systems has multiple aspects - datasets, algorithm design, features
and matcher. Each of these factors defines multiple system config-

urations. Each system design is unique in its parametric makeup.
Parametric comparisons of all systems may not be possible.
However, with our proposed framework, each system can be
assessed independently. Our study is designed around assessing
NIR-illuminated Daugman-style IrisCode-based system parame-
ters. Arguably, IrisCode is the most popular iris feature used across
different commercial systems. However, there are alternative NIR-
illuminaiton-based non-Daugman iris recognition systems with
open-source implementations. Given the extensive preparation
(acquiring datasets, dataset cleaning, quality assessment, feature
extraction, N:N matching), assessment time and analysis required
for each system capacity evaluation, additional system assessment
is not considered as part of this report. Alternative iris recognition
resilience to system capacity remains an open research area.

Our proposed framework for the assessment of iris recognition
system is parametric and is therefore best suited for open-source
algorithms which allow customization of parameters. However,
the framework can be generally applied to commercial software
as well, depending on the limitations of the software. In addition,
our proposed framework has been developed specifically for NIR-
illuminated Daugman-style IrisCode-based system. However, the
framework can be adapted to non-Daugman systems as well.

VeriEye [22] is a commercial software; hence a black box.
Neurotechnology, the company which developed VeriEye, uses
neural networks for biometric recognition. Thus, it can be assumed
that VeriEye is non-Daugman-based commercial iris recognition
software. We use VeriEye as an example to illustrate the usage
of our proposed framework for commercial software. The system
capacity of VeriEye can be tested by varying three parameters:
(a) the quality of image samples; (b) the number of identities
in the system; (c) the operating system point. VeriEye provides
feedback on the quality measure of iris images and has publicly
documented the calibrated operating points of the system. Thus
multiple configurations of the VeriEye algorithm with the three
customizable parameters can be assessed.

Our framework can be adapted by open-source non-Daugman
systems. For example, the University of Salzburg Iris Toolkit
(USIT) [26] for iris recognition is an open-source software that
supports the extraction of iris features by using multiple solutions
proposed in the literature. The options include: (a) 1D-LogGabor
feature, (b) complex Gabor filter bank, (c) SIFT-based IrisCode,
(d) SURF-based IrisCode, (e) local binary pattern (LBP) based
features, (f) support for the algorithms proposed by Ma et al. [27]
and Ko et al. [28]. Each of these options has different parameters.
For example, LBP features have several parameters including
the number of neighbours, radius for selection of neighbours,
indices-based neighbour selection, selection of thresholds, and
other relevant parameters. The image quality, number of samples
in the system, and operating point of the system remain common
underlying parameters for all systems. Iris recognition system
capacity for different system configurations of the LBP-based
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system can be assessed following our proposed framework.
The developed iris recognition technology is dependent on

NIR-illumination of the iris. Though NIR-illuminated samples
for iris recognition are standard and widely used for biometric
applications, the scope of visible-range-illumination-based iris
recognition is in-demand and has a large potential for appli-
cations upon technological maturity. Even though visible-range
iris recognition is not used in the mainstream presently, multiple
systems are proposed through research. Having the potential
of being an applicable technology, assessment of the capacity
of visible-illumination-based systems would add value to the
existing and under-development technologies. While the basic
framework for empirical assessment of iris recognition technology
proposed in this work could be followed, the assessment of visible-
illumination-based systems is an entire scope of research with
different parametric designs of the systems - visible-illumination
iris datasets, feature extractors and matching algorithms.

6 CONCLUSION

We conclude by summarizing our observations and answering the
questions this work primarily focused on-

How does identity count in a system impact capacity?
Increased identity count in a system increases the probability
of identity clash. However, the choice of system parameters
highly influences the number of identities contributing to identity
clashes. Systems working at stricter operating points (OP) achieve
extremely high percent capacity, across resolution, data quality,
template dimension and feature content, as the number of identities
increases in the system. However, our conclusions are limited by
the number of identities studied ( 5158 ). A large-scale database
might provide a deeper perspective of the upper bound of the
parameters.

How does quality impact system capacity? Image quality is
the most important criterion in system configuration determination
for high system capacity. Quality directly impacts the choice of the
OP for the system. ISOQ-based dataset performs with practically
acceptable FRR at a stricter OP (0.001% FAR) (refer Table 1). A
stricter OP leads to a substantial decline in identity clash in the
database (refer Table 5), across different parameters (resolution,
dimension, random feature reduction), which is desirable for all
biometric security applications.

How does filter design impact system capacity?
Filter design determines the information contained in the

template. Discriminable information extraction goes to the core
of system capacity and thus filter design plays an important
role. In our assessment, we tested one set of filters extracting
different feature content for different spatial resolution templates,
essentially testing different filter designs. We conclude that a
lower dimensional template (D2) with information content ex-
tracted using the recommended filter for a higher dimensional
template (D1) outperforms the OSIRIS recommended dimension-
filter combination template in terms of false reject errors and
system capacity. Thus, we conclude that the optimum filter design
determination is a core parameter for optimum system capacity.

How does filter resolution impact system capacity? The
choice of filter resolution is a trade-off between multiple parame-
ters of the system. A single-resolution template would benefit pro-
cessing time and power compared to a multi-resolution template.
However, system capacity depends on the choice of OP, quality
of the dataset, template dimension and feature level. A system

working at a stricter OP (0.001% FAR), performs similarly across
template resolution and template dimension. However, a system
working at less strict OP (0.1%, 0.01%) achieves higher system
capacity using multi-resolution templates at better FRR (3.05%,
4.48% vs 10.64% at 0.001% FAR).

Does higher template dimension increase discriminable in-
formation in terms of system capacity? A higher dimensional
(D1) multi-resolution template has comparable performance as
that of a lower dimensional (D2) single-resolution template. For
the two dimensions we have studied, angular precision (.7 degrees
for D1 and 1.5 degrees for D2) while unwrapping the iris did
not translate into i=higher system capacity. Across almost all 24
system configurations studied, systems achieve best-constrained
capacity with 50% of the random radial features. A higher number
of bits in a template does not necessarily translate to higher in-
formation content in terms of template discriminability. However,
our conclusions are restricted to the dimensions we have studied.

Does template generation methodology impact system ca-
pacity? With single-resolution templates, bit-level selection of a
higher feature level from a template of lower feature dimension
(D2) achieves high capacity compared to a template of similar
bit-size but generated from a template of higher feature dimension
(D1) at a lower feature level (refer Table 6). However, our analysis
of multi-resolution templates remains inconclusive with no pattern
in performance.
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