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Abstract—Although current deep models for face tasks surpass human performance on some benchmarks, we do not understand
how they work. Thus, we cannot predict how it will react to novel inputs, resulting in catastrophic failures and unwanted biases in the
algorithms. Explainable AI helps bridge the gap, but currently, there are very few visualization algorithms designed for faces. This work
undertakes a first-of-its-kind meta-analysis of explainability algorithms in the face domain. We explore the nuances and caveats of
adapting general-purpose visualization algorithms to the face domain, illustrated by computing visualizations on popular face models.
We review existing face explainability works and reveal valuable insights into the structure and hierarchy of face networks. We also
determine the design considerations for practical face visualizations accessible to AI practitioners by conducting a user study on the
utility of various explainability algorithms.
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1 INTRODUCTION

Deep Neural Network (DNN) models have recently shown un-
precedented progress for various face processing tasks like face
recognition, emotion recognition, head pose estimation, age and
gender recognition – often surpassing human benchmarks. This
rapid growth in the face domain using deep learning models led to
its use in safety-critical applications, including fraud avoidance in
rental cars by face verification, identifying hallucinated faces and
detecting the driver’s head pose to avoid accidents on the road.
Models for face tasks are already available from major businesses
like Microsoft, IBM, and Amazon, all of which claim to be very
accurate. However, a limited understanding of how these models
work restricts their applicability and trustworthiness.

There is a growing recognition of the importance and relevance
of explainability across Artificial Intelligence (AI) applications.
Critical applications such as automated driving and financial
decision-making systems need to be highly reliable, as any errors
may be catastrophic. Recent works have shown how self-driving
cars are susceptible to adversarial attacks [5], [6]. Explainability
improves the systems’ trustworthiness and allows the users to
evaluate potential failure modes and pinpoint the causes of such
failures. Many critical AI applications are protected by ethical
and legal requirements that the systems should avoid algorithmic
discrimination, are unbiased/fair and can explain their decision
process. Algorithmic drug discovery [7], for another example,
needs to be interpretable, as the US Food and Drug Administration
(FDA) requires an explanation of the biological mechanisms of a
result. The Right to Explanation [8] guarantees an individual’s
right to be given an explanation for decisions that significantly
affect the individual, particularly legally or financially. According
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Fig. 1. Although there is extensive research on general explainability
methods in recent years, many general algorithms do not work well
on faces directly without explicit modification [1], [2]. Pictured above
is the comparison of applying a generic model explanation method,
GradCAM [3] (top), against Occlusion [4], a method known to work on
faces (bottom). In the original image, the face seems to have conflicting
emotions: the lips are ‘smiling’ while the eyes are ‘crying’. GradCAM fails
to highlight relevant parts for each class, whereas Occlusion produces
a better explanation for each class.

to the EU General Data Protection Regulation (GDPR) [9] Article
22, people have the right not to be subject to an automated
decision which would produce legal effects concerning them. We
cannot guarantee these rights without proper explanations of our
algorithms.

While many explainability surveys exist [10]–[16], surpris-
ingly, there is no survey or meta-analysis of explainability for
deep face models, despite the widespread use of face-based DNN
models. Most current explainability methods are designed for
object recognition and cannot directly be applied to the face
domain due to their differences from the natural image domain,
as shown in Figure 1. Unlike the wide variety of objects, faces are
highly structured, and the variations in features, colors and shapes
differ from other domains. Tasks in the face domain are often
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Fig. 2. We categorize explainability methods across four dimensions:
Why represents the end goal of applying the algorithm; What describes
the part of the model we are explaining; When describes if the algorithm
is applied during or after training; Scope describes if the algorithm
explains a single input or the entire model. The What component can
be divided into decision analysis and structural interpretation. We focus
on the latter aspects in this work.

fine-grained. Some popular face tasks are inconsistently defined,
and the relationship between facial features and tasks is subtle.
For example, a smile may not always indicate joy, and a frown
may be due to surprise, anger or disapproval. There may be no
direct mapping between wrinkles and age. Some attributes, such
as criminal propensity or intelligence, do not correlate with facial
features. We need to be sensitive to these issues while processing
or generating faces. There are also dependencies between face
tasks. For example, a man’s smile (in an expression recognition
task) may differ from a woman’s due to structural differences (gen-
der recognition task), or hair color may depend on a person’s age.
There is hence a need to understand and process faces holistically,
with specialized algorithms for explaining face models.

This work aims to bridge the gap in explainability literature
for the face domain. We present promising directions for the
interpretability of deep neural network models, with a focus on
face processing models. We show the results of their application
to various face processing tasks and explore their caveats. We
also share deep insights on DNN-based face processing models
obtained using these explainability methods and examine their
relation to human understanding of faces.

Classification of Explainability Methods. Before we state our
contributions on assessing visual explanation methods for DNN-
based face processing models, we briefly review the general litera-
ture on explainability methods. Existing methods for explainability
have been categorized in recent literature surveys [10], [11], [13]–
[15]. In this work, we classify the methods along four dimensions:
Why, What, When and Scope, as shown in Figure 2..

The first dimension, “Why”, explores the reason for applying
the explanation algorithm. General explanation algorithms are
usually applied to explain the working of a DNN model. For
example, Section 2 discusses using saliency visualization to un-
derstand biases in some face processing models. However, in the
face domain, explanation algorithms are also used to assist humans
in determining the correctness of a model’s decisions or making
better judgements in face tasks. We discuss some examples in
Section 2.4.

In the “What” dimension, based on which model components
we are explaining, explainability methods can be divided into
decision analysis – that explore what factors go into the predic-
tions, and structural interpretation – that visualize the internal

representations and learned weights. Under decision analysis, attri-
bution analysis determines which parts of an input highly influence
the outcome using saliency heatmaps. Surrogate explainers try to
reduce a DNN model to a naturally interpretable AI model like a
decision tree, rule-based model or linear classifier. Counterfactual
explanations describe the smallest change to the feature values that
changes the prediction to a predefined output. We do not cover
surrogate explainers and counterfactual explanations in this work
as they are not visual explainability methods per se. We primarily
discuss two types of structural visualizations in this work: (i)
Feature visualization methods visualize the internal representa-
tions of different components of a DNN model projected into the
input domain; (ii) Feature inversion methods take the internal
representation corresponding to an input image and project it
back to the input domain. Often, these visualizations may not
correspond to recognizable human abstractions and constructs.
We also discuss a third kind, Concept-based explanation methods,
that attempt to align the internal features and representations with
human concepts in Section 5.

The “When” category of methods refers to which part of
the training/deployment process the explainability algorithm is
applied. Models with intrinsic explainability have interpretability
baked into their structure. The network architecture, losses and
training procedure need to be changed; hence, they may not be
model-agnostic. Intrinsic explainability in deep models means that
each component/neuron of the model represents a single or limited
type of well-defined object part. Enforcing this often leads to re-
duced performance. On the other hand, post-hoc methods consider
the model a black box and are applied to pre-trained models. They
are primarily model-agnostic. They are generally more flexible
than intrinsic methods as they do not require modification to the
training procedure. However, they tend to be approximate methods
as they guess at the ’intention’ of the models. Finally, the “Scope”
dimension refers to whether the explainability algorithm explains
the model for a few inputs (local) or the entire model at once
(global). We now discuss our contributions.

Our Contributions. As stated earlier, while there have been
earlier efforts on reviewing existing work on machine learning
explainability [10]–[16], ours is the first to focus on a meta-
analysis of face explainability. This survey will be helpful to
researchers looking to understand the structure of face models
and to apply explainability algorithms to face models to increase
their interpretability.

Our contributions are as follows:

1) We present an overview of explainability methods, espe-
cially visualization/structural explainability methods, and
show their application to the face domain. We describe the
issues that arise from directly applying general explainability
methods to faces and how to modify the algorithms to work
on face models. We also discuss the insights we gain from
them on the workings of face models.

2) We review explainability literature specifically targeted to
face processing models. To our knowledge, we are the first
work to survey face explainability works. We emphasize on
the need for face-specific methods of evaluation for explain-
ability.

3) We identify factors required to make face explainability
methods more accessible to AI practitioners by conducting a
user survey on the utility of different kinds of explainability
algorithms.
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Name Authors Year Type Use
Canonical Saliency Maps: Decoding Deep Face Models [1] John et al. 2021 Image and model saliency Interpreting models
Explainable Face Recognition [17] Williford et al. 2020 Image saliency Interpreting models
Exploring Features and Attributes in Deep Face Recognition Using
Visualization Techniques [18]

Zhong & Deng 2019 Various Interpreting models

Enhancing Human Face Recognition with an Interpretable Neural
Network [19]

Zee et al. 2019 Various Assisting humans

Towards Interpretable Face Recognition [20] Yin et al. 2019 Intrinsic explainability Interpreting models
Deep Difference Analysis in Similar-looking Face recognition [2] Zhong & Deng 2018 Image saliency Assisting humans
Visual Psychophysics for Making Face Recognition Algorithms
More Explainable [21]

RichardWebster et al. 2018 Evaluation for explainability Interpreting models

Visualizing and Quantifying Discriminative Features for Face
Recognition [22]

Castanon & Byrne 2018 Image saliency Interpreting models

Learning to Predict Saliency on Face Images [23] Xu et al. 2015 Human visual saliency -
TABLE 1

Summary of explainability papers on the face domain categorized according to the classification in Section 1.

Fig. 3. Saliency algorithms designed for general object recognition often
do not work well on faces. Here we see GradCAM [3] applied to three
models trained on different face tasks. Despite differences in identity,
expression and pose, we see that the algorithm focuses generally on
the center of the face. Original images are taken from the VGG-Face
dataset [24]. See also Figure 1.

The remainder of this paper is organized as follows. Sections
2, 3 and 4 present an overview of different well-known post-hoc
visualization methods and their application to the face domain.
Section 5 presents a discussion on how to align features to human
concepts. Section 6 subsequently describes evaluation protocols
for face algorithms inspired by psychophysics. Finally, in Section
7, we report a user study on the utility and human-interpretability
of well-known visualization methods for face processing models.

2 SALIENCY MAPS

We begin by discussing one of the most well-known post-hoc
visualization methods: saliency maps. All input features do not
have equal importance to a model’s prediction. Saliency algo-
rithms attribute the model’s final decision to the input features.
They are usually presented as a heat map of attribution over input
features, called a saliency map or attribution map. The objective
of saliency maps is to reveal the rationale behind model decisions.
Observing salient input features can also help uncover implicit

biases in a model. If the prediction is wrong, saliency maps may
help pinpoint the features that resulted in the error. Selvaraju et
al. demonstrated using GradCAM [3] that a biased model may
rely more on facial and appearance features while classifying
occupation, whereas an unbiased model focuses on the tools (see
Figure 5). Saliency maps also help us explore the nature of a task
and the discriminative parts of an image concerning a class. For
example, in face recognition, certain facial features of a person
may resemble someone else. While recognizing emotions, the eyes
may frown while the mouth is smiling, as shown in Figure 1.
Generic image saliency algorithms do not always work on face
images. For example, Figure 3 shows that GradCAM is bad at
highlighting features within a face.

Quantitatively, a saliency map has to be faithful i.e. the
heatmap should accurately reflect the ‘real’ attribution of features.
Qualitatively, the saliency map has to be helpful i.e. humans can
derive actionable insights from them.

There are three considerations for saliency algorithms: helpful-
ness [31], [32] or utility for humans to make decisions, trustwor-
thiness [33] or reliability and fidelity (discussed in detail in Section
2.5). Doshi-Velez and Kim [31], [32] mention five factors related
to the usefulness of explanations to humans, in essence measuring
the simplicity of the explanations and how intuitive they are to
interpret:

• Form of cognitive chunks. What are the basic units of the
explanation? (input pixels, collections of pixels, concepts?)

• Number of cognitive chunks. How many cognitive chunks
does the explanation contain?

• Level of compositionality. Are the cognitive chunks organized
in a structured way?

• Monotonicity and other interactions between cognitive
chunks. Does it matter if the cognitive chunks are combined
in linear or nonlinear ways?

• Uncertainty and stochasticity. How well do people under-
stand uncertainty measures?

Silva et al. [33] introduce the ‘three Cs of interpretability’,
which deal with the trustworthiness of an explanation, in addition
to its simplicity:

• Completeness: Users should be able to apply the explanation
to cases where it is known and can validate it.

• Correctness: The explanation should be accurate.
• Compactness: The explanation should be succinct. This

condition was related to rule-based explanations. Regarding
saliency maps, this can mean that the level of detail and
number of discontinuous chunks should be manageable.
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Fig. 4. Comparison of various saliency visualization methods on the VGG-Face model [24] for the task of face recognition. For each image, the target
class of the visualization is the ground truth class. Red to yellow represents increasing positive saliency, blue to cyan represents increasing negative
saliency and black stands for neutral. (a) Original image; (b) Smoothgrad [25]; (c) Integrated gradients [26]; (d) GradCAM [3]; (e) ScoreCAM [27];
(f) Deconvolution [4]; (g) Guided Backpropagation [3]; (h) LRP [28]; (i) DeepLIFT [29]; (j) Excitation Backprop [30]; (k) Canonical Saliency maps [1].
The original images are taken from the VGG-Face dataset [24]. Rows (1, 2), (3, 4), (5, 6) and (7, 8) have the same identity. Original images are
taken from the VGG-Face dataset [24].

Fig. 5. How are saliency maps useful for understanding incorrect predic-
tions? Here we show examples in case of two biased predictions. (Left:)
GradCAM is used to show that a biased model focused on the face and
appearance features to classify occupation, whereas an unbiased model
used the tools in the input image (Image adapted from [3]). (Right:) A
biased model classifies a woman’s face as male when she is not wearing
makeup. The CMS (saliency) map shows that the model relies on the
eyes for gender classification (Image adapted from [1]).

We broadly classify existing saliency algorithms into
perturbation-based and backpropagation-based algorithms, of
which gradient-based algorithms are a subclass. Figure 4 shows
a comparison of saliency maps for faces. Below, we present an
overview of some popular saliency algorithm classes.

Fig. 6. Left column shows the fixation heatmap when humans were
asked to freely view a face image ( [23]). Other columns show aggre-
gated saliency maps for different face tasks calculated using Canonical
Model Saliency Maps [1].

2.1 Perturbation-based Saliency Maps
Perturbation-based methods find the saliency of the input features
compared to a baseline sample by perturbing input features and
observing the effect on output. These algorithms are architecture
and implementation-agnostic but computationally expensive, as
they pass the input sample through the model several times with
different perturbations.

Occlusion maps [4] systematically slide a window over an in-
put sample, flipping the pixels to the baseline image and observing
the change in output class confidence. The saliency of a patch is
given by:

Hp = f(x)− f(x⊙ (1− p)) (1)
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where x is the input sample, p is the patch and f(·) is the class
confidence. Occlusion maps produce interpretable and intuitive
maps whose coarseness can be controlled by the window size.
Zhong and Deng [18] used occlusions at predefined locations to
calculate the importance of coarse facial features for face recogni-
tion. They also highlighted the difference between similar faces by
occluding the same features of two images at once and calculating
the feature distance [2]. John et al. systematically occluded the
input face image and projected the resulting saliency map onto a
neutral frontal face [1]. This ‘canonicalization’ procedure allowed
them to collate multiple saliency maps to obtain model-level
saliency maps (See Figure 6).

Shapley values [34] provide a theoretical framework for
perturbation-based methods which obeys the axioms of complete-
ness, symmetry (two features must be attributed equally if they
have an equal effect on the output) and sensitivity. Shapley values
consider the input features to be players in a coalition game where
the outcome is the payout. The algorithm fairly distributes the
payout between each player based on their contribution. Given a
model f and n features, the payout for a feature i is computed as:

ϕi(f) =
∑

S⊆{1...n}/i

|S|!(n− |S| − 1)!

n!

(
f(S ∪ {i})− f(S)

)
(2)

where S is a subset of the features and x is the vector of feature
values of the input instance. While Shapley values satisfy many
theoretical constraints, they are not practical to calculate for input
with many features like image data. Variations such as SHAP and
Kernel SHAP [35] make the computation more practical.

Local Interpretable Model-Agnostic Explanation (LIME) [36]
uses local surrogate models to explain individual predictions.
LIME generates a dataset by perturbing the input sample’s features
and recording the model’s corresponding predictions, given a
model and an input sample. LIME then trains an interpretable
model on this generated dataset. This learned model is a good
approximation of the model locally but not globally (local fidelity).

2.2 Backpropagation-based Saliency Maps

Backpropagation-based algorithms start with a trained model and
a desired output. A high gradient at the desired output is then
backpropagated to the model elements, starting with the layers
closest to the output, all the way down to the input. This procedure
finally assigns a score to each input feature based on their
contribution to the output. They are easy to calculate as they
require only a single backward pass. However, they tend not to
be implementation-agnostic by their very nature.

Layer-wise relevance propagation (LRP) [28] uses the struc-
ture of layered neural networks to assign prediction score to
elements of a layer, ensuring that the relevance flowing into a
unit should equal the relevance flowing out to a lower layer. If we
observe column (h) of Figure 4, we notice that the output of LRP
on faces visually resembles guided backpropagation. LRP tends to
highlight image edges, and in most cases, it highlights all facial
features equally. The high number of separate salient areas makes
it difficult to interpret.

Excitation Backprop or EBP [30] uses a probabilistic winner-
takes-all formulation. Let the relevance of a prediction be specified
by the prior distribution P (A0) over the output neurons. Let
P (At|At−1) be the probability of selecting neuron At in layer t

as the winning neuron given At−1 is selected in the layer before.
We calculate the marginal winning probability as:

P (ai) =
∑

aj∈Pi

P (ai|aj)P (aj) (3)

which gives the relevance of each neuron. Here, ai denotes a
specific neuron, and At refers to a variable over the neurons).
This work specifies the conditional winning probability based on
the weights between each neuron and the activation. Contrastive
EBP (c-EBP) is a variation that calculates the contrastive saliency
between pairs of classes. Column (j) of Figure 4 shows the results
of applying unmodified EBP on face images. We observe that
it highlights almost the entire face. Thus, unmodified EBP does
not give actionable insights on face images. Researchers have
proposed modified versions of EBP designed to work on faces.
Castanon and Byrne [22] used a variant of Excitation Backprop’
(EBP) and ’contrastive Excitation Backprop (cEBP) [30] called
’truncated cEBP’ to compute the network saliency on faces, where
the network attention signal is propagated from the output neurons
back to the input pixels. Williford et al. [17] focused on explaining
the matches returned by a facial matcher to understand why a
probe was matched with one identity over another. The unit for
explanation is a triplet of (probe, matching face and non-matching
face). They adapted EBP, cEBP and tcEBP by using triplet loss
instead of cross-entropy loss.

DeepLIFT [29] breaks down the difference between a neuron’s
output and reference output to all the upstream neurons connected
to it such that the sum of contributions equals the difference
between output and reference output. Column (i) of Figure 4
shows DeepLIFT applied to faces. Compared to LRP, DeepLIFT
has fewer salient areas highlighted and thus is easier to interpret.
However, the results do not seem to agree with other saliency map
methods.

2.3 Gradient-based Saliency Maps

The gradient of the output with respect to an input pixel represents
how much difference a tiny change in the pixel would make to
the output. Thus it may be used to highlight salient pixels [37].
Gradient-based saliency maps are noisy and discontinuous due to
the ’shattered gradient effect’ [38]. For deep rectifier networks, the
discontinuities in the gradient increase exponentially with number
of layers. Also, the gradient values change much more rapidly
than the corresponding change in input [12], adding more noise
to the heatmap. Moreover, these methods are not implementation-
independent.

Smilkov et al. proposed an improvement called ’SmoothGrad’
[25], which attempted to reduce the noise by averaging over
several saliency maps of the same input image, each produced
after adding some random noise to the input image. Column (b) of
Figure 4 shows that the results are highly discontinuous and chal-
lenging to interpret even after smoothing. Gradient-based methods
break the axiom of ’Sensitivity’ as the prediction function may
flatten at the input and have zero gradients despite the function
value at the input being different from the baseline. Sundararajan
et al. proposed ’Integrated Gradients’, which preserves sensitivity.
They start with a baseline image and calculate the gradient at
equally spaced intervals on the straight-line path between the
baseline image and the input image. They then integrate these
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gradients to get the final saliency heatmap. The integrated gradient
along the ith dimension is given by:

Hi = (xi − x0
i )

∫ 1

α=0

∂f(x0 + α(x− x0))

∂xi
(4)

where x is the input sample and x0 is the baseline image. In
practice, integrated gradients look similar to SmoothGrad with
many disparate areas (Column c). Although there are theoretical
guarantees, our experiments showed it to not be as useful for the
face domain, where one object dominates the entire image.

Class Activation Mapping (CAM) is a category of gradient-
based saliency algorithms which focuses on localizing the objects
of importance in the input image. Zhou et al. [39] proposed
highlighting salient objects without discontinuities for architec-
tures where the feature maps directly preceded the softmax layers.
Selvaraju et al. [3] extended the algorithm to cover a wide range of
architectures in their popular method, ’Grad-CAM’. Given a class
c and an output neuron yc, it sums the weighted feature maps Ak

of a layer of interest:

Hc = ReLU
(∑

k

αc
kA

k
)

(5)

where each feature map is weighted by the gradient of the class
output with respect to the activation maps as follows:

αc
k =

1

N

∑
i

∑
j

∂yc

∂Ak
ij

(6)

Finally, the map is upsampled using bilinear interpolation to match
the input image’s size. Many extensions of Grad-CAM exist, such
as GradCAM++ [40] and ScoreCAM [27]. Columns (d) and (e)
of Figure 4 show the results Grad-CAM and ScoreCAM on faces.
Although they successfully localize the object of interest, they do
not provide finer details, rendering them not as useful for face
images (See also Figure 1).

Luo et al. [41] introduced a related concept called ‘effective
receptive field’ (ERF), defined as the region of the input image
containing any pixel with a non-negligible impact on the central
output unit. The impact of a single input pixel xi,j on the central
output unit y0,0is measured by the partial derivative ∂y0,0

∂xi,j
. They

define the ERF as the expectation over the input distribution of
the impact of each input pixel. They discovered that the effective
receptive field occupies only a fraction of the entire theoretical
receptive field and that, in many cases, ERF follows a Gaussian
distribution.

2.4 Insights on Face Saliency
Generic vs. face-specific saliency: Faces exhibit a distinctive
shared structure, with features such as a central nose, mouth
below the nose, and eyebrows above the eyes. Successful face ex-
plainability algorithms acknowledge this inherent structure while
accommodating pose variations. Yin et al. [20] proposed an intrin-
sically interpretable face recognition model, trained with image
pairs wherein one had a precisely occluded facial region using face
alignment. Williford et al. [17] introduced an evaluation metric for
face explainability,which uses a curated dataset with select facial
regions manually altered. Likewise, Zhong and Deng [2] utilized
cosine similarity to compare face pairs with the same regions
occluded using face alignment. Respecting the facial structure is
critical in adapting generic saliency algorithms to face-specific
ones. Williford et al. [17] achieved this by transforming the

generic explainability algorithm RISE [42] into the face-specific
DISE by employing random occlusions focused on important
facial regions. John et al. [1] converted generic occlusion maps
to the face-specific CMS by occluding a face with reference to a
canonical face and mapping the resulting confidence drop back to
the canonical face.

Patterns of saliency on face images: Face models focus on
different facial features depending on their task. Figure 6 shows
the focus patterns for different face tasks in comparison to the
focus pattern of the human gaze. John et al. [1] discussed the
implications of these focus patterns and insights into the tasks.
Recognition focuses on the eye-nose triangle, whereas gender uses
the corners of the eyes (see also Figure 5). Xu et al. [23] recorded
the gaze of humans when freely viewing faces. We notice that this
resembles the focus patterns of recognition models. [43] showed
that eyebrows are most instrumental in the human recognition of
faces.

Explainability for assisting humans: While most existing ex-
plainability works focus on explaining how models work or
why they make certain decisions, we now discuss explainability
methods that aid humans in verifying models’ decisions or help
them make better decisions. Zee et al. [19] used existing explain-
ability methods to enhance human face recognition performance,
specifically the ability to distinguish between two similar-looking
celebrity faces. They trained CNNs for the recognition and verifi-
cation of these two identities. Using explainability visualizations,
they found that the changes between the two identities are primar-
ily on the forehead, cheeks and lower face and not on the eyes
or the mouth. On instructing novice participants to focus on the
forehead and cheekbones, the participants had higher accuracy in
distinguishing between the identities. Zhong and Deng [2] created
a visualization method to assist human evaluators in identifying
people who try to invade the biometric system using similar-
looking faces. Given a pair of aligned faces, they systematically
occluded portions of the face pair and mapped the resulting
drop in cosine distance to a heatmap. They then normalized
this heatmap with a learned threshold to highlight differences in
negative pairs but not in positive pairs. Their visualization enabled
human evaluators to increase their accuracy from 76% to 83%.

Level of detail in saliency maps: Figure 4 compares different
saliency map methods on the VGG-Face model for the task of
face recognition. The figure shows that different saliency map al-
gorithms highlight different levels of detail. Integrated Gradients,
Guided Backprop, and DeepLIFT show fine detail and resemble
edge detectors. Class activation mapping-based approaches are
coarse (we used the layers typically used in well-known efforts
for these visualizations). Class-level saliency maps are not very
informative for face images, each of which generally only contains
one object (face) instance. Algorithms that show mid-level detail,
like EBP and CSM, seem to be in the Goldilocks zone since the
features we are interested in (parts of the face) are of that size. So,
it is crucial to pay attention to the level of detail while designing
saliency algorithms for faces.

2.5 Evaluation of Saliency Maps

To measure the fidelity of a saliency map, we often assesses
the attribution of each input feature compared to a ‘baseline
input’, which is a neutral input that could also have zeros for
all features. The baseline input for an object recognition task may
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be a completely black image, whereas it may be a zero vector
for a word embedding task. Sundarajan et al. [26] provided three
axioms to evaluate the fidelity of an explanation: (i) Sensitivity: the
attribution of a feature should reflect a network’s change in output
on the inclusion or exclusion of the feature. (ii) Implementation
Invariance: the attribution of two functionally invariant models
should be the same for the same inputs. (iii) Completeness:
the sum of all attributions should be equal to the difference in
prediction between the input and baseline. Below, we present
some quantitative measures used to evaluate the fidelity and
trustworthiness of saliency algorithms.

Mask and evaluate: Chattopadhyay et al. [40] introduced a proto-
col in which unimportant areas of an input image, as identified by
a saliency map, are masked, and the resulting drop in prediction
confidence is measured. This method does not translate well to
faces as, unlike object recognition, face images have a single
object at the center of the image, and models trained on face
images focus on different parts of the faces. For face images,
John et al. [1] instead mask important image parts and observe
the confidence drop to address this issue in face images. They
also normalize the sum of heatmap pixels so saliency algorithms
cannot ’cheat’ by covering a large area.

Hiding game: This is a variation of ’Mask and evaluate’ where
the pixels are gradually flipped in order of their saliency [22]. This
game is also called ‘pixel flipping’ [44] or ‘insertion and deletion
metrics’ [27]. The insertion metric starts with a baseline image and
gradually adds the most salient pixels. The speed of increase in
confidence measures the quality of the saliency map. The deletion
metric starts with the input image and gradually replaces the most
salient pixels with baseline image pixels. We then measure how
quickly the confidence falls as compared to other saliency methods
or random flipping of pixels.

Pointing game: This is a supervised test that measures how well
a saliency method localizes relevant regions of an image. This
procedure extracts the maximum point of the saliency map and
checks whether it falls within the ground truth bounding box
of the object [30]. Wang et al. [27] extended this measure by
adding up all heatmap pixels that fall inside the object’s bounding
box. A major drawback of this method is that we cannot know
a priori if the model’s ground truth reasoning does not match
human expectations. Also, it works on simple tasks where we
expect salient points to fall inside the object strictly [45].

Inpainting game for faces [17]: Williford et al. constructed
a curated database by inpainting some predefined features (such
as nose, left eye, left eyebrow, etc.) with features from another
identity. They create a customized dataset for each network by
choosing images such that the network can distinguish the probe
image and inpainted image. The inpainting game is played as
follows: The saliency algorithm is presented with a triplet of the
probe, mate and inpainted non-mate, and is tasked with estimating
a discriminative saliency map that estimates the likelihood that
a pixel belongs to a region that is discriminative for the mate.
The pixels classified as being salient by sweeping the saliency
threshold are replaced with the pixels from the ”inpainted probe”.
These ”blended probes” can then be classified as original identity
or inpainted non-mate identity by the network being tested. This
measure is suitable for face models. High-performing deep learn-
ing models will correctly assign more saliency for the inpainted
regions that will change the identity of the blended probes without

Fig. 7. We visualize features at different granularities: neurons at an
individual position, an entire channel, linear combinations of channels,
or an entire layer. We can also visualize classes (inspired by [48]).

increasing the false alarm rate of the pixel salience classification.

Randomised sanity checks: This measure evaluates the trust-
worthiness of the saliency visualization. Adebayo et al. [46]
showed that many saliency maps resembled edge detector outputs.
They proposed two sanity checks to ensure the correctness of
the saliency algorithms: Model parameter randomization test and
Data randomization test. Model parameter randomization test
checks if the saliency map depends solely on the input image. To
this end, it calls for comparing the saliency map on a trained model
with a saliency map generated on a randomly initialized model. If
the algorithm depends on the learned parameters of the model,
there should be a substantial difference between the two maps. If
we randomize the weights from the top layer to the bottom layer,
we expect the saliency map to be progressively more random. Data
randomization test compares the saliency map applied to a model
trained on a labeled dataset with one trained on the same dataset
with the labels randomly assigned. If the saliency method depends
on the labeling of data, we should expect the saliency maps to be
drastically different.

We observe from the above discussion that just like we
need face-specific saliency visualization methods to capture the
subtleties of a face processing task, one needs to also carefully
choose evaluation metrics that are relevant to face images.

3 FEATURE VISUALIZATION IN FACE MODELS

Human vision is adept at breaking scenes into semantic compo-
nents like objects and object parts. Similarly, we may break down
faces as composed of facial features like eyes, nose and mouth.
A natural question when visualizing DNN-based face processing
models is whether the hierarchical patterns learned by filters of
convolutional layers match human intuition. What is the difference
between the patterns learned on natural images versus those
learned on faces? Do these visualizations differ between face tasks
like recognition and pose? Feature visualization methods attempt
to understand DNN model features by projecting them onto the
input domain. Apart from understanding the hierarchy of learned
filters, such methods also help us answer questions such as: Are
there redundant features or layers? Do the DNN learn biases or
incorrect associations from the dataset? It was shown in [47] how
visualizations of the ‘saxophone’ class also included the musician
holding the instrument. Feature visualization methods can also
help us detect such entanglement or correlations between context
and content. We begin our discussion with a detailed background
of face visualization methods, and subsequently show results with
well-known face models on face images.

3.1 Background: Feature Visualization Methods
Early efforts in this direction visualized higher-layer features as
linear combinations of lower-layer filters [52]. However, such an
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Fig. 8. Spectrum of regularizations for feature visualization. On the left are methods that perform visualizations without access to data. The methods
on the right take help from a dataset in some form. (Image sources: (a), (b), (c) and (g) are from [48]; (d) [49] (e) [50] (f) [51]).

approach does not consider the non-linearities in the network. A
more flexible formulation considered feature visualization as a
‘search’ for input images that cause a neural unit to give a high
response. Erhan et al. [53] introduced activation maximization,
which optimizes an input image using gradient ascent so that the
activation or response of a neural unit is maximized. This has
since been a popular method used for feature visualization. Newer
works study the effects of various regularization terms to mitigate
some shortcomings of the original formulation. Below is a general
expression for feature visualization:

x∗ = argmax
x∈X

ϕ(x)− λR (7)

where X is the search-space of the input, ϕ(x) is the activation
of the neural unit under study and R is a term that regularizes
for the quality or diversity of the visualization. In practice, the
search-space X is mostly RW×L×C or crops of dataset images T
[4].

As shown in Figure 7, the neural unit under study, ϕ, can
refer to a channel at a specific position on the input image or an
entire channel [37] . We can also search for inputs that maximally
activate any neuron in a layer as in Figure 7(c) [54], [55]. This
shows the patterns that each convolutional filter ’looks for’ in an
input image. The algorithm can pick any of the layers’ channels
to maximize its activation at every position in the image. This
procedure results in dream-like visualizations where features of
interest are enhanced. Channel visualizations are motivated by the
assumption that individual channels form a distinguished basis
which is particularly useful for extracting semantic information.
(See Section 5). Jointly optimizing multiple channels [48] gives
us information about how the neurons interact. Visualizing one
of the output neurons (before softmax) is often called ‘class
visualization’ (Figure 7(e)), which finds a representative image
for an entire class.

Unconstrained activation maximization can lead to adversarial
images [56] or visualizations with noise and unwanted high-
frequency signals [57]. Hence, recent feature visualization meth-
ods focus on regularizers that add a ‘natural image prior’ to the
objective function so that the visualization falls in the dataset
space D. As shown in Figure 8, regularization functions exist
on a spectrum from strong to weak. Dataset-free regularizations
attempt to mimic statistics of natural images by penalizing high
frequencies [37], [47], [48], [58], [59] or adding transformation
robustness [47], [48]. Dataset-based regularizations tend to have a
better quality of visualizations at the cost of missing the space of

Fig. 9. Visualizations of internal representations of the VGG-Face net-
work [24]. (a) Early conv layers (1 to 6) show simple patterns. (b) Pat-
terns in the middle layers (7 to 9) show more complex patterns. (c) Later
convolutional layers (10 to 13) show facial features and parts of the face.
(d) Class neurons capture facial identities. These visualizations were
created using activation maximization algorithm with L-2 regularization.

D − T . The easiest method picks image parts from the training
dataset with the highest filter response [4], [48], [50]. Nguyen et
al. [51] trained a Generative Adversarial Network (GAN) on the
input dataset and searched the GAN latent space for an appropriate
image. Other works seed the visualization with dataset images
[49] or patches of dataset images [50]. Special diversity terms
in the regularization ensure that activation maximization unearths
multiple facets of a filter [48], [49].

3.2 Features of Facial Models

Before we present our results on face images, we hypothesize three
desired properties of a good feature visualization, especially for a
domain like face images: The visualization should be interpretable
in-domain. It should not have undue influence from a limited
dataset and it should show all facets of the unit under study.
Let D be the domain of images ‘expected’ as input by a deep
network or parts of such images. For object detection, D may be
natural images; for face recognition, D may be images of faces
and parts of the face, and so on. Let T ⊆ D be the training set of
the network. RW×L − D contains out-of-domain and adversarial
images. Ideally, we prefer our visualization to be in D without
being restricted to T . We also want our visualization to capture
the diversity of patterns unit in the network ‘looks for’.

Figure 9 shows that deep face models learn hierarchical
features from face images. The initial layers learn simple patterns
similar to object classification networks, while higher layers learn
complex patterns composed of these simple patterns. The middle
levels learn facial features such as eyes and nose. Neurons in the
fully connected layers learn parts of the face, while the last level
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Fig. 10. Sample patterns that activate filters in the last convolution
layer of the VGG-Face recognition network [24] (top row) and a head
pose VGG-16 network (bottom row) . The recognition network’s filters
show different shapes of eyes and nose, each probably representing a
different identity. The pose network filters show variation in the pose of
the features instead of their shapes.

Fig. 11. Examples of deep network ‘mistakes’ that are explained using
feature inversion. Left: HOGgles [60] is used to explain a wrong ‘car’
detection by HOG features. Right: Perception Visualization (PV) [61] is
used to explain a wrong ‘boat’ classification using deep features.

neurons learn representations of the entire face. Mirroring this
observation, Zhong and Deng [18] created a dictionary of feature
visualizations using Deconvnet [4] showcasing the hierarchy in
facial features.

Figure 10, on the other hand, shows that various face networks
learn different features based on their tasks. Various filters in the
higher layers of a recognition network learn patterns correspond-
ing to different shapes of eyes and nose, as these features help to
tell identities apart. In the higher layers of a head pose network,
there is not much variation in the shapes of features. However,
they contain parts of the face in different poses. We observed
across our studies that part geometry and task objective are two
complementary elements that face model visualizations highlight
in general.

4 FEATURE INVERSION IN FACE MODELS

In the previous section, we observed how feature visualization
allows us to see the ’bases’ of a convolutional neural network
(CNN) typically used in deep face models. Feature inversion is
a closely related approach in which we project the deep features
corresponding to an input image back to the input domain. This
method allows us to look at the input image through the same
’lens’ as the deep network. As we feed an image through a
deep face network, each layer abstracts the output of the pre-
ceding layers until we reach the final classification layers by
retrieving features discriminative towards crucial characteristics
and invariant to undesirable factors like illumination and pose
in each layer. Feature visualization reveals which information
is kept or discarded by each layer, revealing the aspects of the

images that are discriminative for various tasks. On the other hand,
feature inversion helps us identify why a network misclassifies or
misinterprets a particular image (See Figure 11).

Another use case for feature inversion is to ensure the privacy
and security of users. Intelligent systems may store features or
descriptors extracted from user images instead of saving the entire
images to mitigate privacy concerns. Feature inversion helps detect
the information stored in these descriptors and whether we can use
them to reverse-engineer user-identifying systems such as faces
or locations [62]. Such visualizations can be different from the
algorithms used for feature visualization. Feature inversion has
also seen creative efforts such as Deep Dream [54], [63] and Style
Transfer [55], which have been proposed in the past to generate
digital art from images.

4.1 Background of Feature Inversion Methods
We may formulate feature inversion as follows: Let x0 be an
input image and ϕ(.) be a function that extracts features from
the desired layer of a deep network. Let ϕ0 = ϕ(x0) be the given
features to be inverted. We need to find the ’pre-image’ x∗ such
that its features ϕ(x∗) is close to the given features ϕ0. Similar to
Equation 7, we may formulate feature inversion as an optimization
function that finds an image that minimizes the distance between
its features and the given feature vector [64]:

x∗ = argmin
x∈RW×L×C

L(ϕ(x), ϕ0) + λR (8)

where L is a loss function that determines the distance between
features of the input image and the visualized image, usually∥∥ϕ(x)− ϕ0

∥∥
2
, R is a regularization function to ensure that the

visualization meets the preferred characteristics for explainability.
Before discussing the results of feature inversion methods on

deep face models, we discuss some desired characteristics of the
inverted image x∗:

1) The closeness of ϕ(x∗) to ϕ0: These features should be
very similar to each other (or equal, in a ideal case) by
definition of feature inversion.

2) The closeness of x∗ to x0: While this is not a required
criterion for explainability, and we do not include in the
objective function of Equation 8, we use feature inversion
as a means to discern if an inverted image is close to the
original input image. As the abstraction of features at each
layer causes the mapping between representations and input
images to be many-to-one, the x∗ may not be identical to x0

by default.
3) x∗ should be in the input image domain D: If we directly

optimize Equation 8, x∗ will be filled with high-frequency
noise, similar to activation maximization. Existing methods
hence use regularization functions that attempt to ensure that
the generated image is in the input image domain D.

4) Using dataset images as input domain prior: If the regu-
larization term R uses dataset images in some form, we must
ensure that the dataset used is identical to the training dataset
of the deep network.

Like feature visualization, we get noisy and adversarial images
if we directly optimize Equation 8. Previous research has proposed
several regularization functions to bring the visualizations into
the natural image domain. The regularizations are similar to
those used for activation maximization, and both dataset-free and
dataset-based approaches exist. Mahendran and Vedaldi [64] di-
rectly penalized high frequencies by using α-norm and TV norm.
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Fig. 12. A face image from the VGG-Face dataset [24] inverted using
three different methods from the features of the last 5 layers of a VGG-
Face network. Cx is the xth convolutional layer and Dx is the xth fully
connected layer. The methods used: (a) Frequency penalization [64]; (b)
Inversion using CNN [65]; (c) Deep image prior [66].

Fig. 13. Result of inverting features of an input image from the Vgg-
Face dataset [24] using face networks trained for three different tasks.
The models use VGG-16 architecture and are trained for recognition,
pose and emotion. Inversions from the last convolutional layer from
each network are shown here. We notice that the recognition network
emphasizes the shape of the eyes and nose; pose network emphasizes
the 3D shape; and the emotion network emphasizes the curves on the
eyebrows and mouth.

The top row of Figure 12 shows that these regularizations are weak
and cannot restore color information. Singh and Namboodiri [67]
introduced Laplacian pyramids for regularization, with the intu-
ition that a coarse-to-fine inversion scheme effectively recovers
recognizable inversions of features from the different layers of
a deep network. ‘Deep Image Prior’ [66] uses the structure of
a convolutional generator network as a natural image prior. The
bottom row of Figure 12 shows that deep image prior produces
high-quality reconstructions without using any information from
the input dataset. Deconvnet [4] and guided backpropagation [68]
exist at the intersection of feature visualization and inversion. They
invert a single activation map instead of the full feature map of
the layer. The simplest dataset-based method is to directly train a
CNN to invert the features of each layer by giving feature-image
example pairs from a dataset, as demonstrated by Dosovitskiy
and Brox [65]. As we see in Figure 12, the resulting pre-images
are blurry and heavily influenced by the dataset used to train the
inverting networks. Instead of direct training from a dataset, other
works [50], [60], [69] stitch together representative patches as a
natural image prior. Dosovitskiy and Brox [70] trained a GAN to
invert features.

4.2 Feature Inversion of Facial Models

The results in Figure 12 showed that irrespective of the feature
inversion method, the face gets highlighted with some variations
on the VGG-Face network. In Figure 13, we see the inversion of
the same starting image from the features of face models from
three different tasks. In each case, we observe that the network

Fig. 14. Interpolation in feature space between two face images. Fea-
tures are extracted from a VGG-Face model trained with the Deep Image
Prior [66] regularizer. Original images are from the VGG-Face dataset
[24].

focuses on the discriminative information in the last convolutional
layer. The recognition model focuses on the shape and proportions
of facial features like the eyes and the nose. The head pose network
does not faithfully reconstruct the shape of the features but retains
the 3D information of the face. The emotion network exaggerates
the curves in the face and eyebrows, as that information is crucial
for detecting facial expressions. Such an observation may be
useful when considering multi-task learning or meta-learning on
face image data.

It is also helpful to visualize pre-images of feature vectors
that do not correspond to a natural image. Figure 14 shows the
result of inverting features which are obtained by interpolation of
features of two different face images. We extracted these features
from various layers of the VGG-Face [24] network. We see that
interpolation in the convolutional layer features produces images
that look like the two images added on top of each other. The dense
layers create more semantic interpolation between the images.
Feature inversion can be used in parallel with feature visualization
to examine the hierarchy of deep features. Our experiments show
that while the initial and middle layers can recreate the input
image, the deeper layers focus on class-discriminative information
related to the task being studied.

5 FACIAL CONCEPTS AND DEEP FACE FEATURES

The previous sections showed how different elements of a deep
face model correspond to different facial features or parts of
the face. For example, a neuron may respond to image patches
that represent ‘nose’ or ‘left-facing’ or ‘rough skin’, but it is not
immediately apparent by looking at a visualization of the neuron.
This section investigates methods to align the meaning of these
units to human-understandable concepts, usually represented as a
textual description of the shared characteristics of a set of images.

Should a concept correspond to a single neuron, or are random
directions of neuron concepts equally meaningful? The answer
depends on how ‘concept’ is defined in a given setting. Szegedy
et al. [56] hypothesized that random directions have as much
semantic meaning as individual neurons. They collected images
that produced a high activation in individual units and compared
them to images whose activations correspond to random directions
of the units. Their experiments showed that both groups have
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semantic meaning. However, they used a loose definition of
‘concept’, which described the common properties of a set of
images. Whether such a concept would capture strong semantics
may be an issue of concern. Other efforts [71], [72] leaned
towards the view that neurons have special semantic meaning.
They used a curated set of concepts comprising the Broden Dataset
[71] as their definition. They discovered that the natural basis,
i.e. individual units, correspond to more unique concepts than
orthogonal rotations of the basis with the same discriminative
power as the natural basis. Again, this may be based on the limited
dictionary of concepts provided by the Broden dataset. Fong et al.
[73] contended that while random directions of neural units may
not be as interpretable as the units, special directions exist which
are more interpretable. They argued that the number of available
feature channels is usually far smaller than the number of different
concepts that a neural network may need to encode to interpret
a complex visual scene. This suggests that, at the very least,
the representation must use combinations of filter responses to
represent concepts or, in other words, be at least in part distributed.
They used the Broden dataset as their concept corpus, disregarding
the scene and texture labels. Thus it is critical to define concepts
correctly.

Can any shared property be a concept? Concepts are closely
related to the categorizations of objects. This definition still allows
room for arbitrary concepts, as we can find a categorization system
for any random set of images. According to Rosch [76], human
categorization should not be considered the arbitrary product of
historical accident or whim but rather the result of psychological
principles of categorization. Thus, some latent metric can make
some concepts better than others. Here are some desired properties
of concept definitions as described in [75]: Meaningfulness: A
concept is semantically meaningful on its own. Different individu-
als should associate similar meanings to the concept. Coherency:
Examples of a concept should be perceptually similar to each
other while being different from examples of other concepts.
Importance: A concept is “important” for predicting a class if its
presence is necessary to predict samples in that class accurately.

Figure 15 shows the spectrum of concept definitions from
weak to strong. We discuss two ways of defining concepts:
curating a list of concepts or mining concepts from collections
of images. Figs 15(a) and 15(c) represent concepts mined from
a dataset. In case of commonalities in a set of images [56] (Fig
15(a)), concepts may include some amorphous concepts like ”top
round stroke” or “lower left loop” in the case of MNIST digits and
“postures”, “spread shapes”, or “round green or yellow objects”
for ImageNet images. Ghorbani et al. [75] introduced a more
principled approach to automatically mining concepts from the
image dataset called ‘Automatic Concept-based Evaluation’(ACE)
(Fig 15(c)). ACE searches for salient groups of superpixels in
the dataset that satisfy some criteria for being a concept. They
defined some tests for assessing concept definitions, based on how
coherent humans find them. The first is the ‘Intruder Test’, which
asks humans to pick out one semantically different image from a
set of six images. The mined concepts are coherent if humans can
pick the intruder consistently. In another test, humans are shown
four concept segments and four random segments from images of
the same class. They are asked to choose the most ‘meaningful’
grouping of image segments and describe their preferred option
with one word. The number of individuals who use the same word
to describe a group (after controlling for synonyms) measures the
concept’s coherency. These metrics point to a ‘concept’ being a

categorization that multiple individuals agree to.
On the other hand, Figs 15(b) and 15(d) are concepts curated

by humans. In particular, Kim et al. [74] described a relaxed
definition of a concept in TCAV (Fig 15(b)), where each concept
is defined by two image sets: one in which all images contain
the concept and the other in which the concept is absent from all
images. The Broadly and Densely Labeled (Broden) dataset [71]
contains examples of a broad range of objects, scenes, object parts,
textures, colors and materials in different contexts. Every class in
Broden corresponds to an English word.

The above concept-mining approaches have not been applied
much to the face domain. Based on the above definitions and
discussions, possible concepts for face image data include identity,
pose, gender, race, facial hair and accessories. CelebA [80] is a
dataset that has labels for 40 facial attributes, which could be
considered concepts too. Facial parts, head pose, emotions and
facial action units also constitute relevant concepts. Face concepts
could also be defined based on the task of the pre-trained network,
as in what may be concepts useful for classification or the specific
task at hand. In Figure 16, we show possible definitions for facial
concepts. Facial concepts may correspond to facial features like
nose and eyebrows or be unique shapes or textures.

In the only work in the face domain to the best of our
knowledge, Yin et al. [20] follow a different approach towards
interpretability. Instead of ‘finding’ concepts corresponding to
each convolutional filter, their modified training procedure pushes
each filter to represent a concept. Their approach uses a Siamese
network with two branches sharing weights. The first branch gets
a face image as input, and the second gets the same image super-
imposed with a synthetic occlusion. Along with the recognition
loss, they introduce two new losses that encourage the filter repre-
sentation to have a more consistent semantic meaning and require
the filters to be insensitive to occlusions. The two losses ensure
filter response locations are distributed across the face, and each
filter concentrates on local face parts. Figure 16 (bottom) shows
some filter responses from a model trained with this technique.
We observe that each filter responds to a specific face feature
regardless of the identity or pose of the face. This makes each
filter’s representation more ’concrete’ and more straightforward to
describe in words, thus being easier for humans to conceptualize.

6 EVALUATION PROTOCOLS FOR FACE TASKS

Due to the fine-grained nature of the face domain, we need spe-
cialized evaluation protocols for face tasks. This section discusses
creative evaluation methods that have been explicitly developed
for faces. Instead of using aggregate statistics such as accuracy and
ROC, RichardWebster et al. [21] suggested visual psychophysics
as a viable methodology for making face recognition algorithms
more explainable by the controlled manipulation of stimuli and
careful study of the responses they invoke in a model system.
This procedure is based on M-alternative forced-choice match-to-
sample (M-AFC) psychophysics for general object classification
[81]. The first step is ’herding’ from an initial dataset, where we
remove identities that consistently cause false matches or false
non-matches, i.e. errors that are inherent within the matching
system. This step removes the ‘goats’, ‘lambs’, and ‘wolves’ from
the ‘sheep’, where the goats are challenging to match, lambs
are identities that are easy to impersonate, and wolves easily
impersonate other identities. Sheep are well-behaved identities that
match well to themselves but poorly to others. In the second
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Fig. 15. Different ways to define a ‘concept’: (a) [56], (b) TCAV [74], (c) ACE [75], (d) Broden [71].

Fig. 16. Listing of potential concepts for the face domain. Image sources:
Emotion: [77], Head pose: [78], Age: [79], Face attributes: [80], Filter
responses: [20].

step, we create item-response curves’ by gradually perturbing
the images and recording the match rate. Possible perturbations
include noise, contrast, blur, blink, and expression. Results from
psychophysics experiments using highly controlled procedurally
generated stimuli can then inform how we should use a face
recognition algorithm by explaining its failure modes.

7 USER SURVEY: UTILITY OF FACE EXPLAINABIL-
ITY

The previous sections discussed various explainability algorithms
developed over the years pursuing goals of correctness and clarity.
In practice, there may be a domain gap between practitioners and
consumers of explainable deep learning methods. Here, ‘practi-
tioners’ develop and improve explainability algorithms, whereas
‘consumers’ use algorithms to make decisions on the correctness,
viability, and trustworthiness of their models. The consumers may
not have in-depth knowledge on the working of these algorithms
and hence may not be equipped to make the same conclusions
about models as the practitioners. We conducted a user study
to determine how helpful popular explainability methods are in
answering questions about the decisions of deep learning-based
face models.

In particular, we chose three popular explainability strategies:
(a) saliency map, (b) feature inversion, and (c) feature visualiza-
tion. We computed saliency maps using occlusion [4], while we

Fig. 17. Demographic of participants who responded to the survey in our
user study.

Fig. 18. Results of our user study. Top row shows the overall aggregated
preference, while the bottom row shows preferences categorized by their
familiarity with deep learning. The results correspond to: (a) participants
who have never heard of explainability, (b) participants who understand
the need for explainability but have never used it, and (c) participants
who have used or implemented explainability algorithms.

used total variation regularization [64] for both feature inversion
and feature visualization. We studied VGG16 models trained for
gender, age and expression and generated explanations for eight
input images. We presented eight questions to each respondent and
asked each of them to pick the explanation(s) that best helped them
to understand a model prediction. Sample questions included:
”Which explanation best helps you respond to the question,
“Why is this person classified to be in his 40s?”, and “Which
of these explanations best helps you see why this person has an
angry expression?”. Of 101 participants in our study, 48.5% were
deep learning practitioners, and 35.6% had used or implemented
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explainability methods (Figure 17). As shown in Figure 18, most
respondents preferred saliency maps, except those who have used
or implemented explainability algorithms. In most cases, people
preferred feature inversion over feature visualization. The group
that consisted of people who had implemented both deep learning
and explainability algorithms preferred feature visualization over
saliency maps.

These results suggest a preference gap between practitioners
and consumers of explainability algorithms. This may be because
saliency maps are more useful for an overall view of the model,
whereas feature visualization gives an internal view useful to
developers of the model. Saliency maps may also be easier to
interpret than feature visualization and feature inversion. Our
study indicates the need to consider usability and include end
consumers in the development process of explainability methods
targeted for specific face processing tasks.

8 CONCLUSION

In this work, we study visual explanation/explainability methods
with a view of their application to facial image processing and
understanding. We present a summary of different categories
of explainability methods relevant to this objective, and also
discuss specialized face explanation algorithms and evaluation
protocols designed for face explainability algorithms. By applying
these methods to popular deep learning-based face models, we
compare these methods and identify subtle differences between
the methods that can be relevant and useful in face processing
tasks. We also presented effective design criteria for the adoption
of explainability algorithms, especially in face processing tasks.

A key takeaway from our study is that explainability methods
on the face domain may need to have their own considerations,
and not necessarily align with more general uses of explainability
algorithms. However, despite the extensive work on explainability
methods for deep learning, only a few are tailored toward faces.
We need more efforts in this direction, especially considering
face processing models are used in safety-critical applications
such as biometrics. Besides, our user study indicated that end
users need to be involved in the design and deployment of such
models. We hope that the detailed overview, experimental studies
and analyses presented in this work will lead to wider and well-
founded adoption of explainability methods in face processing
tasks.
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