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CATFace: Cross-Attribute-Guided Transformer
with Self-Attention Distillation for Low-Quality

Face Recognition
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Abstract—Although face recognition (FR) has achieved great success in recent years, it is still challenging to accurately recognize
faces in low-quality images due to the obscured facial details. Nevertheless, it is often feasible to make predictions about specific soft
biometric (SB) attributes, such as gender, and baldness even in dealing with low-quality images. In this paper, we propose a novel
multi-branch neural network that leverages SB attribute information to boost the performance of FR. To this end, we propose a
cross-attribute-guided transformer fusion (CATF) module that effectively captures the long-range dependencies and relationships
between FR and SB feature representations. The synergy created by the reciprocal flow of information in the dual cross-attention
operations of the proposed CATF module enhances the performance of FR. Furthermore, we introduce a novel self-attention distillation
framework that effectively highlights crucial facial regions, such as landmarks by aligning low-quality images with those of their
high-quality counterparts in the feature space. The proposed self-attention distillation regularizes our network to learn a unified
quality-invariant feature representation in unconstrained environments. We conduct extensive experiments on various FR benchmarks
varying in quality. Experimental results demonstrate the superiority of our FR method compared to state-of-the-art FR studies.

Index Terms—Face recognition, soft biometric attributes, knowledge distillation, self-attention mechanism, feature fusion.

✦

1 INTRODUCTION

F ACE recognition (FR) has been one of the most popular fields
in computer vision due to its wide range of applications

in military, public security, and daily life [1]. In the realm of
FR, there has been notable progress in recent years with the
emergence of advanced network architectures [2], [3]. Alongside
these advancements, the field has witnessed the introduction of
various designs of loss functions [4], [5], [6], [7], [7], [8], [9]
which have played a significant role in enhancing FR performance.
Despite all these advancements, it has still been challenging to
preserve the high performance of FR methods in unconstrained
environments. The majority of FR training datasets [10], [11],
[12] consist of high-quality images that differ significantly from
real-world environments. This becomes evident when considering
images captured by surveillance cameras [13], which present
challenging attributes like sensor noise, low resolution, motion
blur, and turbulence effect, among others. As a result, when FR
models trained on constrained datasets are applied to real-world
scenarios, the models’ accuracy suffers a significant drop. On the
other hand, collecting a large-scale unconstrained face dataset with
large variations needs manual labeling, which is time-consuming
and costly to provide.

Recently, several alternative approaches have been proposed
to fill the gap between the semi-constrained training datasets and
unconstrained testing sets. Some of these studies involve super
resolution-based techniques [14], [15], [16], which aim to recon-
struct high-resolution images from low-resolution ones and then
feed them to a FR model. Moreover, with the advent of Generative
Adversarial Networks (GANs) [17], [18], [19] several GAN-
based frontalization approaches [20], [21] have been proposed
to handle faces with extreme poses. However, these approaches
primarily address specific image variations, resulting in limited
generalizability across diverse conditions. Another concern is that

Fig. 1: Examples of face images with different degrees of degra-
dation in various real-world FR benchmarks. In some images, the
identity of the person is not easily recognizable due to the lack
of some clues that are essential for FR. However, the gender of a
person can still be inferred from those images. Therefore, leverag-
ing some SB attributes like gender can enhance FR performance
in challenging conditions. Note that M and F stand for male and
female, respectively.

during the inference step, performing such preprocessing methods
may lead to significantly high computational cost compared to
the recognition network itself. Furthermore, despite the significant
advancements in GAN models, preserving identity in particular
for cases with extreme poses has been still a challenging problem
[22], [23].

Looking at the FR task from an alternative perspective, humans
inherently analyze facial attributes to discern the identity of a
person. This observation can bring up the hypothesis that utilizing
facial attributes can improve the performance of FR in challenging
cases. Fig. 1 shows that even in the case of low-quality images, it is
often feasible to predict certain soft biometric (SB) attributes like
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gender, while accurately identifying the exact identity proves to be
a challenging task. Therefore, the incorporation of SB information
into FR can help the network to recognize the identities more
accurately. Inspired by this observation, in this work, we employ
facial attributes including gender, and baldness, which remain
consistent across different scenarios such as varying illuminations
and poses to raise the performance of FR. To this end, we propose
a multi-head neural network that not only predicts SB attributes
and recognizes identities simultaneously but also employs a novel
cross-attribute-guided transformer fusion (CATF) module to effec-
tively integrate feature representation of the SB information into
FR features. This module initially enables the synergistic fusion of
the SB and FR feature representations using dual cross-attention
operations. Subsequently, it conducts feature fusion across global
spatial tokens, where each channel is treated as an independent to-
ken. By regarding each channel token as an abstract representation
of the entire image, the fusion process naturally captures global
interactions and representations. Therefore, our proposed fusion
module concentrates on the most pertinent areas within both the
SB and FR feature representations and enhances the integration of
distinctive facial details with SB cues.

To further leverage the advantages of using SB information as
an auxiliary modality, we train our proposed multi-branch network
using a novel knowledge distillation (KD) based approach. This
approach enables our SB prediction branch to exhibit robustness in
challenging cases, thereby improving the overall FR accuracy. The
idea of utilizing KD, which is a teacher-student-based framework,
originated from the observation that although crucial visual details
are missing in low-quality images, in many cases humans can still
roughly determine an object’s regions in such images based on
prior knowledge learned from previously viewed corresponding
high-quality images [24]. Thus, as in low-quality faces, features
from detailed parts of a face may not be captured, our KD
approach tries to transfer prior knowledge from the high-quality
images to the low-quality ones. Furthermore, to eliminate the
necessity of a pre-trained teacher network, we adopt a self-KD
method that involves training a single network in a progressive
manner to distill its own knowledge [25].

In most self-KD-based approaches, the primary focus lies in
minimizing the distance between the feature maps or soft targets
of the networks. However, in this work, we adopt a different per-
spective by leveraging attention values derived from the network’s
feature representation. When attention is applied to the feature
representations, the importance of essential regions, such as face
landmarks, is heightened. This leads to the distillation of more
significant information that effectively contributes to the FR task.
As self-attention modules are the fundamentally important parts of
our proposed CATF module which is based on transformers, we
emulate the self-attention mechanism in our KD approach. To be
more specific, we distill the knowledge from the high-quality self-
attention components to their corresponding low-quality counter-
parts. Furthermore, considering the positive correlation between
feature norm and image quality in recent studies [8], [9], our
approach centers on aligning only the directional component of
attention maps rather than their magnitude. Consequently, we for-
mulate our distillation loss using cosine similarity, which enables
us to capture the angular relationship between feature vectors and
enhances the discriminative power of the model.

Most previous KD-based FR studies [26], [27] manually create
low-resolution images to train the student network while low-
resolution is merely one probable characteristic that unconstrained

Fig. 2: Samples of augmented data. The first row shows original
images from the CelebA dataset. The second and the third rows de-
pict low-quality versions of the original data which are generated
by controllable face synthesis GAN and atmospheric turbulence
simulator, respectively.

images may have. Hence, in this work, to fully exploit the advan-
tage of self-KD, we augment the training dataset with diverse
properties encountered in real-world scenarios. These properties
include atmospheric turbulence, improper illuminations, motion
blur, and various styles. By incorporating such variations, we
aim to enhance the robustness and generalization ability of the
network, enabling it to effectively recognize faces under chal-
lenging conditions commonly encountered in everyday life. This
comprehensive augmentation approach moves beyond the limited
scope of low-resolution images and provides a more realistic and
representative training environment for KD-based FR systems.
Some examples of the augmented data that we utilize in our KD-
based approach are illustrated in Fig. 2.

In summary, the key contributions of this paper are summa-
rized as follows:

1) We propose a novel multi-branch neural network to tackle
the challenge of FR in low-quality images. By leveraging
certain facial attributes from the SB branch, we enhance the
performance of the dedicated FR branch.

2) We present a cross-attribute-guided transformer fusion
(CATF) module which effectively captures and incorporates
long-range dependencies, enabling a comprehensive under-
standing of the intricate relationships between FR and SB
feature representations.

3) To raise the robustness of our proposed network against
low-quality images, we propose a novel KD-based training
approach. We prioritize important areas like facial landmarks
by distilling self-attention values, outperforming other KD-
based methods.

4) Extensive experiments with diverse datasets, including man-
ual and real-world low-quality images, strongly support the
enhanced performance of FR through employing SB infor-
mation with the novel KD-based training approach and the
proposed CATF module.

2 RELATED WORKS

2.1 Data Augmentation
One of the most significant challenges of FR methods is low-
quality images. Low-quality images can result from several fac-
tors such as inherent camera noise, atmospheric turbulence, and
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improper illuminations which lead to significant performance
degradation. One promising approach to address this challenge
is data augmentation, which involves creating additional training
data by artificially modifying the existing dataset. By exposing
the network to a wide range of image variations during training,
it can learn to better cope with different types of distortions that
may be present in real-world scenarios. Therefore, in this work,
we augment our training data with different styles and attributes to
enhance the robustness and generalization ability of our proposed
model.

• Controllable Face Synthesis. In 2014, Goodfellow et al.
introduced GANs [17] to synthesize realistic data samples
based on a pair of neural networks, namely a generator
and a discriminator. The core concept of GANs involves
training the two networks in an adversarial manner, where
the generator learns to produce fake samples that are indistin-
guishable from real ones, while the discriminator is trained to
differentiate between real and fake samples. In recent years,
many GAN-based face image generation models have been
proposed to synthesize face images with desired properties
[28], [29]. However, many of these models primarily focus on
face editing tasks, such as face aging or transferring diverse
expressions and poses from a given face image to a target one.
While these approaches are valuable for such tasks, they are
not particularly beneficial for enhancing the performance of
FR in low-quality scenarios. In this regard, to create realistic
useful face images, we use the model proposed in [30]
which is a novel face synthesis model that can generate face
images similar to the distribution of a target dataset through
learning a linear subspace in the style latent space. Therefore,
with an unlabeled target dataset including our desired char-
acteristics such as motion blur, inherent sensor noise, and
low resolution, we can generate face images containing all
such attributes. Employing such realistic low-quality images
through our proposed KD approach makes our multi-branch
network robust against the different characteristics of the
unconstrained scenarios.

• Atmospheric Turbulence Simulation. The effects of at-
mospheric turbulence on long-distance imaging applications,
particularly in areas such as surveillance, are substantial.
The fluctuation in the refractive index of air caused by
atmospheric turbulence leads to variations in the path of
light through the atmosphere, resulting in distortions in
the captured images [31], [32]. These distortions signifi-
cantly degrade the image quality, thereby posing challenges
in extracting useful information from the affected images.
Therefore, we consider the atmospheric turbulence effect in
the training process. To generate atmospheric turbulence,
we use a Phase-to-Space simulator which is proposed in
[31]. This simulator is based on a novel concept called the
phase-to-space (P2S) transform, which converts the phase
representation of the turbulence to the spatial representation
of the image. The P2S transform is implemented by a light-
weight neural network that learns the basis functions for
the spatially varying convolution from the known turbulence
statistics models. By using the P2S transform, the simulation
can be significantly accelerated compared to the conventional
split-step method, while preserving the essential turbulence
statistics.

2.2 Multi-task Learning for Face Analysis
Multi-task learning (MTL) is a strategy that simultaneously opti-
mizes several relevant tasks to enhance the generalization perfor-
mance through an inductive transfer mechanism. The concept of
MTL can be traced back to the 1990s [33] which involves lever-
aging a single neural network to perform multiple related tasks.
Following the advent of deep neural networks [34], MTL has been
applied in many computer vision tasks such as medical image
analysis [35], [36], object detection [37], [38], and facial attribute
recognition [39], [40]. Here, we concentrate on MLT approaches
for face analysis. Recently, several methods have incorporated
the MTL framework for face-related tasks. Levi et al. [41] used
the MTL framework to simultaneously perform age and gender
prediction from face images. Also, HyperFace [39] is a multi-
task learning algorithm that operates on the fused intermediate
features to predict facial attributes and to do some other face-
related tasks. In All-In-One [40], authors took advantage of MTL
for FR in addition to facial attribute prediction which led to
considerable improvement in FR for challenging unconstrained
environments. However, existing MTL frameworks, do not directly
leverage attribute information to enhance the performance of a
FR task whereas intrinsically humans analyze facial attributes to
recognize identities. In this regard, we propose a new multi-branch
neural network that simultaneously performs SB prediction as an
auxiliary modality and FR as the main task. To boost the discrim-
inative ability of the FR branch, we integrate SB information with
FR feature representation through an attentional module that is
capable of learning complex relationships between input features.
Moreover, we rely on facial attributes that remain consistent across
different images of the same identity. For instance, attributes
such as gender and eye shape exhibit consistency across varying
illuminations or poses, while others like hair color may vary within
different images of the same individual.

2.3 Knowledge Distillation
The concept of KD was first introduced by Hinton et al. in
2015 [42]. The basic idea is transferring knowledge from a large
neural network (teacher) to a smaller neural network (student)
by minimizing the Kullback-Leibler (KL) divergence of soft
class probabilities between them. After that, several variants of
distillation methods have been suggested to leverage the insights
provided by the teacher network more effectively. For instance,
many feature-based KD methods have been proposed that focus
on distilling intermediate representations from the teacher model
into the student network [43], [44]. An alternative approach known
as self-distillation involves training a student network using its
own knowledge, without the need for a separate teacher network.
This approach aims to improve the efficiency, generality, and
transferability of the learned knowledge. For instance, Zhang et al.
in [45] proposed to first divide the network into several sections
and then squeeze the knowledge in the deeper portion of the
network into the shallow ones. There are also many augmentation-
based strategies for self-distillation approaches [46], [47]. In the
field of FR, researchers have also investigated the application of
KD methods to improve network performance through the use
of augmentation techniques, especially for challenging scenarios
[48]. Shin et al. [48] utilized manually created low-resolution
images to train the student network. However, our work takes a
different approach by utilizing various synthesis methods to gen-
erate realistic face images that exhibit the characteristic challenges
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observed in real-world scenarios, instead of relying on simple
down-sampling. Furthermore, we go beyond typical methods that
use network outputs or feature maps of different layers to transfer
knowledge from high-quality images to low-quality ones. Instead,
we leverage attention distillation to gain enhanced guidance from
the self-attention mechanism by effectively identifying the crucial
knowledge embedded within high-quality images. In addition to
what is distilled, the distance metric for measuring distillation
is also a critical factor influencing the model’s performance (see
Section 4.3.2). Therefore, in contrast to most KD-based methods
[47], [49] that employ general distance metrics like KL divergence
or L2-distance, we tailor our distillation loss to our specific
application which is FR.

2.4 Vision Transformer
Vision transformer (ViT) [50] is a novel neural network archi-
tecture that adapts the transformer model, originally developed
for natural language processing, to vision processing tasks such
as image recognition. ViT relies on the self-attention mechanism
as a key component. This enables ViT to effectively attend to
different parts of the input image and captures the interactions and
long-range dependencies among pixels or patches within visual
data. By leveraging self-attention, ViT can recognize complex
patterns and features in the input images, thereby achieving state-
of-the-art (SoTA) performance in large-scale image classification
tasks. Inspired by the success of the seminal ViT, researchers
have recognized the potential of the ViT architecture in various
computer vision tasks like FR [51], [52], [53]. The potential of the
vanilla ViT architecture for FR is explored in [52]. This study finds
that although the transformer network encounters challenges when
working with smaller databases, it exhibits promising performance
when trained on larger datasets. Su et al. [54] introduce the
atomic tokens and holistic tokens in the transformer encoder to
capture the attentive relationship between facial regions and learn
discriminative hybrid tokens to boost FR performance. Unlike the
studies in FR that rely on the vanilla transformer architecture as
a feature extractor, we exploit the advances in recent ViT studies
to tailor the CATF module that can capture both global and local
dependencies in face images between the FR and SB tasks. By
incorporating the CATF module into our model, we enable a
holistic understanding of the relationships between the FR and
SB tasks, facilitating effective feature fusion. This would make
our model achieve SoTA performance in the FR task which is our
main goal.

3 PROPOSED METHOD

The proposed architecture, illustrated in Fig. 3, comprises two
branches, namely the BrFR and BrSB , both sharing a ResNet-
based backbone and dedicated convolutional layers. The BrFR

is dedicated to FR, while the BrSB is intended for SB predic-
tion. To enhance the performance of the network against low-
quality images, we employ a self-distillation approach during
the simultaneous training of both branches. By leveraging this
approach, our network is capable of extracting and distilling valu-
able information from high-quality samples, thereby enhancing
its ability to handle low-quality input images. This methodology
showcases a promising direction for addressing the challenges
posed by low-quality image inputs in FR and SB prediction tasks.
Additionally, as shown in Fig. 4, upon training the multi-branch
network, we employ a novel attention mechanism to integrate the

SB information into the FR feature representation. This integration
effectively enriches the FR embedding, ultimately improving the
model’s ability to identify challenging face images.

3.1 Self-Distilled Multi-Branch Network
3.1.1 Multi-Branch Network
For FR, as it is shown in Fig. 3, there exist dedicated convolutional
layers in addition to the backbone. The FR branch concludes with
a softmax layer, the dimensions of which are determined by the
number of classes within the training dataset. Thus, this branch is
intrinsically considered for face identification which is basically a
classification task based on identities. Conventional softmax loss
of a sample xi can be expressed as:

L(xi) = − log
exp(Wyi .zi + byi)

ΣNc
j exp(Wj .zj + bj)

, (1)

where Wj represents the j-th column of the last fully connected
layer’s weight, W ∈ Rd×Nc . The face embedding of sample
xi and its ground truth identity are shown by zi ∈ Rd and
yi, respectively. Nc and bj indicate the number of classes and
the bias term for the j-th class, respectively. In the context of
training FR models, the features obtained from a simple softmax
loss often fail to exhibit sufficient discriminative power. To address
this limitation, the prevalent approach is to employ a margin-based
softmax loss function. This loss function leads to the minimization
of intra-class compactness, ensuring samples within the same
identity cluster closely together, while simultaneously maximizing
inter-class dispersion, enabling better separability between sam-
ples from different identity classes. In margin-based loss functions,
for simplicity, the bias term is fixed to 0, and also the inner product
of features and weights is considered as ∥Wj∥∥zi∥ cosθj [55]. θj
corresponds to the angle between zi and Wj . Assuming ||Wj || to
be equal to 1 and zi is rescaled with s during training, margin-
based loss functions can be expressed as follows:

LAdaFace(xi) = − log
exp(f(θyi ,m))

exp(f(θyi
,m)) + Σj ̸=yi

exp(scosθj)
,

(2)
where m is a scalar hyper-parameter referred to as the margin,
and f is a margin function. To achieve better convergence,
many margin-based loss functions have been introduced where
f(θyi ,m) is the only distinguishing factor among them. AdaFace
[9] is one of the recent SoTA margin-based loss functions that
emphasizes samples of different difficulties based on their image
quality. It approximates the image quality with feature norms. For
high norms, it emphasizes samples away from the boundary, and
for low norms, it emphasizes samples near the boundary. In this
work, to train the FR branch, we utilize AdaFace loss function in
which the margin function is defined as follows;

f(θyi ,m) =

{
s(cos(θj + gangle)− gadd) if j = yi
s cosθj if j ̸= yi

, (3)

gangle = −m · ∥̂zi∥, gadd = m · ∥̂zi∥+m, (4)

∥̂zi∥ =

⌊
(
∥zi∥ − µz

σz

h

)

⌉1

−1

, (5)
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Fig. 3: Multi-branch neural network with self-attention distillation for FR and SB attribute prediction. Note that MHSA stands for
multi-head self-attention module. This diagram shows the first step of our two-step training process. The BrFR and BrSB branches
are jointly trained in the first step of the training process. In the second step, to enrich the FR feature representations, the SB and FR
feature representations are fused together through the proposed CATF module (see Fig. 4). It should be noted that the global average
pooling (GAP) and the final fully connected (FC) layers are removed from each branch for the second step of the training process.

where ∥zi∥ measures the quality of a sample i, and ∥̂zi∥ is the
normalized quality using mean (µz) and standard deviation (σz)
of all zi within a batch. It should be noted that over the test
time when we are presented with arbitrary pairs of images for
comparison (e.g. I1 and I2), the cosine similarity metric between
them (

z1 · z2
∥z1∥∥z2∥

) determines whether they belong to the same

identity or not.
The architecture of the BrSB is similar to the BrFR. During

the training process, we employ binary classifiers dedicated to
predicting different facial attributes, with each classifier equipped
with its respective cross-entropy loss function. The total classifi-
cation loss for the BrSB is given by:

LSB =
n∑

i=1

λaiLai , (6)

where each Lai
represents a loss for each individual attribute and

λai
is the loss-weight corresponding to the attribute ai. Also, n

denotes the number of SB attributes in BrSB . For each attribute,
Lai

is computed as:

Lai
= − (ai log(pai

) + (1− ai) log (1− pai
)) , (7)

where pai
is the probability that the network computes for ai.

3.1.2 Self-Attention Distillation
To enable our proposed multi-branch network to have a robust per-
formance against low-quality images, we employ a self-distillation
mechanism to distill information from high-quality images to their
corresponding low-quality ones. In comparison with the most
conventional KD-based methods that directly make feature maps
close to each other, we focus on keeping the attention maps
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Fig. 4: Proposed cross-attribute-guided transformer fusion (CATF) module for FR. This diagram shows the second step of our two-step
training process.

consistent between high-quality and low-quality samples in both
the SB and FR branches. The inspiration behind our approach
lies in the attention mechanism, which guides feature maps to
focus on important regions. As key-points such as eyes and mouth
are crucial for both FR and SB prediction, employing attention-
based distillation can help the network to distill more informative
features.

To identify the most discriminative features, we apply self-
attention to the last convolutional layer of both the SB and FR
branches. Self-attention can capture global dependencies between
different regions of the face image such as face landmarks.
Furthermore, in our proposed method, SB and FR feature repre-
sentations are integrated using a cross-attribute-guided transformer
fusion (CATF) module in which self-attention is a principal block.
As a result, to provide the best input for the fusion module which
includes three key components (i.e., key, query, and value), we
leverage the self-attention mechanism to teach the network key
information from high-quality samples.

Let Fh
FR ∈ RH×W×C and F l

FR ∈ RH×W×C be the
feature maps of the last convolutional layer of the BRFR for
a high-quality sample and its corresponding low-quality one,
respectively, where H , W , and C denote the height, width, and
the channel number of each feature map. Similarly, we assume
Fh
SB ∈ RH×W×C , and F l

SB ∈ RH×W×C for BRSB . We
first flatten them to F l

FR, F
h
FR, F

l
SB , F

h
SB ∈ RN×C (N =

H × W ). Then, based on the self-attention mechanism, each
feature map will be linearly projected to three learnable ma-
trices: query matrices (Ql

FR,Q
h
FR,Q

l
SB ,Q

h
SB ∈ RN×C ), key

matrices (Kl
FR,K

h
FR,K

l
SB ,K

h
SB ∈ RN×C ), and value matrices

(Vl
FR,V

h
FR,V

l
SB ,V

h
SB ∈ RN×C ). Finally, the attention map

will be computed as the dot product of each Q and its correspond-
ing K, as follows:

Al
FR = Softmax

(Ql
FR(K

l
FR)

T

√
C

)
Vl

FR, (8)

Ah
FR = Softmax

(Qh
FR(K

h
FR)

T

√
C

)
Vh

FR, (9)

By following the same computational process, we can also
compute Al

SB and Ah
SB . We force the network to mimic not

only attention maps of high-quality samples but also their corre-
sponding value parameters. To minimize the differences between
attention maps and also value parameters of high-quality and

low-quality samples, we employ cosine similarity. Therefore, the
distillation loss is computed as:

Ldistill = Ldistill
FR + Ldistill

SB , (10)

Ldistill
FR = 2− ⟨Al

FR,A
h
FR⟩ − ⟨Vl

FR,V
h
FR⟩, (11)

Ldistill
SB = 2− ⟨Al

SB ,A
h
SB⟩ − ⟨Vl

SB ,V
h
SB⟩, (12)

where ⟨.⟩ denotes the cosine similarity metric. The total loss for
each branch is the weighted sum of the target task’s loss and the
distillation loss.

3.2 Cross-Attribute-Guided Transformer Fusion
(CATF).
To selectively focus on the most relevant regions in both the SB
and FR feature representations and facilitate the fusion of discrim-
inative facial information with SB cues, we employ a dual cross-
attention operations in the CATF module (see Fig. 4). The recipro-
cal flow of information in the dual cross-attention operations en-
ables a synergistic fusion of the SB and FR feature representations,
enhancing the overall performance of FR. The cross-attention
operations also effectively capture long-range dependencies, pro-
viding a holistic understanding of the relationships between the
FR and SB tasks for feature fusion. In addition, we propose a
multi-scale feed-forward network with locality (MFFNL), and the
channel-wise attentional fusion (CAF) block in the CATF module
to further improve the fusion of discriminative facial information
with SB cues. Given the feature representations of SB and FR
as FFR ∈ RH×W×C and FSB ∈ RH×W×C , we separately
map FFR, and FSB to three learnable matrices: query matrices
(QFR,QSB ∈ RN×C ), key matrices (KFR,KSB ∈ RN×C ),
and value matrices (VFR,VSB ∈ RN×C ). To promote effective
feature collaboration, we create a cross-attention fusion operation
by exchanging the query matrices QFR and QSB between the two
branches as follows:

CAFR = Softmax
(QFRK

T
SB√

C

)
VSB , (13)

CASB = Softmax
(QSBK

T
FR√

C

)
VFR, (14)

where CAFR and CASB denote the cross-attention operations
and C is the dimension of key matrices (KFR,KSB ∈ RN×C ).
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The single cross-attention operation is performed for each head
in parallel to compute the multi-head cross-attention mechanism,
denoted by MCAFR and MCASB . Following the concatenation
of all head unit outputs along the channel dimension, the resulting
tensor is reshaped to match the dimensions of each feature map
(FFR, FSB ∈ RH×W×C ).

3.2.1 Multi-scale Feed-Forward Network with Locality
(MFFNL)
The standard transformer encoder includes a feed-forward network
with two fully-connected layers for up- and down-projection oper-
ations, as well as GELU [56] activation. However, recent studies
[57], [58] have shown that the vanilla feed-forward network cannot
leverage local context in neighboring pixels, which is essential
for an effective FR. To address this shortcoming, we propose a
novel multi-scale feed-forward network named MFFNL which is
able to learn facial features at different scales. As illustrated in
Fig. 4, in our proposed MFFNL block, a multi-scale depth-wise
convolution (MDConv) layer is integrated into the vanilla feed-
forward network. The MFFNL block consists of two pointwise
convolutions for expansion and projection operations and the
proposed MDConv layer is positioned in between. The MDConv
layer is composed of three parallel streams, each utilizing a
distinct depth-wise convolution. The first stream utilizes a 3 × 3
depthwise convolution, while the other two streams employ 1× 7
and 7 × 1 depthwise convolutions, respectively. Motivated by
[59], decomposition is adopted to decompose a 7× 7 convolution
into two 1 × 7 and 7 × 1 convolutions to reduce computational
complexity while maintaining the effective receptive field size.
These streams are concatenated together to construct the fused
feature representation. In addition, a shortcut connection is utilized
after the MDConv layer to enhance the gradient propagation
capability in the MFFNL block. The computation of the MFFNL
block for input X is represented as:

MFFNL(Xin) = PConv
(
MDConv

(
PConv(Xin)

))
, (15)

MDConv(Xin) = Concat
(
DConv3×3(Xin),

DConv1×7(Xin),DConv7×1(Xin)
)
+Xin. (16)

where PConv and DConv denote the pointwise and depthwise
convolution layers. After each layer, we use the GELU activation
and batch normalization. To sum up, the MDConv layer facilitates
multi-scale feature extraction in the MFFNL block, making our
CATF module able to capture both short-term and long-term
dependencies in FR and SB tasks.

3.2.2 Channel-wise Attentional Fusion (CAF)
Once we encode the long- and short-range interactions of the
FR and SB features using our cross-attention operations and the
MFFNL block, we propose to conduct feature fusion across global
channel tokens (see Fig. 5). We first concatenate the outputs of
MFFNL blocks, denoted by Fcat = Concat(F̂FR, F̂SB), along
the channel dimension. Then, we construct channel-wise tokens
by transposing the input tokens where the channel dimension
determines the token scope and the spatial dimension determines
the token feature dimension. In this context, channel-wise tokens
can extract global interactions between both the FR and SB tasks.
To incorporate attention scores between the channels of these tasks

Fig. 5: Proposed channel-wise attentional fusion (CAF) block.

for feature fusion, we apply self-attention to the channel tokens.
To achieve this while maintaining computational efficiency, we
arrange the channel tokens into Gc groups with Cc channels each,
where the channel dimension of Fcat is 2C = Gc × Cc. The
formulation of channel-wise attention that interacts across a group
of channels is as follows:

CAF(Qc,Kc,Vc) = Softmax
(QT

c Kc√
Cc

)
VT

c , (17)

where Qc,Kc,Vc ∈ RNc×Cc are grouped channel-wise queries,
keys, and values, respectively. Note that Nc stands for the spatial
dimension of each channel group. Following the projections in
the DMCA module, three projection layers are employed to
compute the queries, keys, and values matrices along the channel
dimension. Ultimately, we calculate the CAF for all Gc channel
groups and concatenate all of them together to feed the classifier.

4 EXPERIMENTS

4.1 Implementation Details
4.1.1 Training Datasets
To conduct a fair comparison with other methods, we separately
train our model on two datasets: the CelebA [60] and MS1MV2
[61] datasets. CelebA is a large-scale face dataset containing
202,559 face images from more than 10k identities with different
poses, backgrounds, and lighting conditions. Each face image is
annotated with 40 facial attributes such as gender, the shape of
the nose, and the color of the hair. In this work, we rely on
identity facial attributes that stay the same in different images
of the same person. For instance, gender, the shape of eyes,
or being bald remain the same in different situations such as
various illuminations or poses while some attributes such as the
color of hair and wearing glasses may vary in different images
of the same person. In this regard, we utilize five SB attributes
which are gender, big nose, chubby, narrow eye, and Bald. In
line with SoTA studies, we adhere to the dataset’s protocol [60]
for both the training and testing sets. The second training set,
MS1MV2, is a large-scale dataset of more than 5M face images
that make it possible to compare our proposed method with the
SoTA methods on benchmark FR datasets. Gender information
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is the only attribute provided for this large-scale dataset [62].
Therefore, in this case, our auxiliary modality only includes the
information about one attribute.

4.1.2 Test Datasets
To evaluate our proposed model, we utilize the test set of the
CelebA dataset. Moreover, when employing the MS1MV2 dataset
as the training set, we utilize several widely-used FR bench-
marks with high-quality, mixed-quality, and low-quality settings.
In high-quality settings, the LFW [63], CFP-FP [64], CPLFW
[65], CALFW [66], and AgeDB [67] datasets are utilized. The
datasets in high-quality setting exhibit variations in lighting, pose,
and age. To investigate the performance of the proposed method
on more challenging images, we also test our model on mixed-
quality setting with the IJB-B [68], and IJB-C [13] datasets which
cover a wide range of face variations and challenges for FR
in unconstrained settings. The IJB-B and IJB-C datasets consist
of 21.8K and 31.3K images, respectively. The IJB-C dataset,
comprising 3,531 identities, is an extension of the IJB-B dataset,
covering 1,845 different identities. For both of these datasets, we
follow the standard 1:1 verification protocol which is a template-
based method. Considering that each template contains multiple
frames, we compute the average feature vector for each template.
Moreover, to gauge the efficacy of the proposed method in more
challenging scenarios, we evaluate our method on low-quality
realistic and synthetic FR test sets. For realistic tests, we employ
TinyFace [69], a low-resolution in-the-wild dataset, and SCFace
[70], a cross-resolution FR dataset captured in uncontrolled indoor
environments at three different distances. As for the synthetic
tests, we utilize the CelebA dataset to synthesize low-quality data
corrupted by the controllable face synthesis GAN and atmospheric
turbulence simulator.

4.1.3 Augmentations
As discussed in Section 3, in the training process, we utilize
a novel distillation approach to transfer the knowledge learned
from the high-quality images to the low-quality ones to boost the
model’s performance in challenging scenarios. To create realistic
low-quality versions of the training data, we adopt two approaches.
In our first approach, we employ a simulator proposed in [31]
to generate images corrupted with atmospheric turbulence effect.
In this simulator, we can control the strength of the atmospheric
turbulence by an aperture diameter, D, divided by the fried pa-
rameter, r0. We refer the readers to [31] for detailed information.
Fig. 6 shows sample images degraded by different strengths of
atmospheric turbulence. It is evident that when turbulence levels
are high, facial attributes and landmarks are impacted by consid-
erable deformation and blurring. During the training phase, we
randomly corrupt the training data with different ratios of D/r0
which determines the strength of the atmospheric turbulence effect
(between 0.25 to 2).

In addition to the atmospheric turbulence effect, we employ
the controllable face synthesis generator introduced in [30] to
create low-quality images with unconstrained imaging environ-
ment factors including noise, low resolution, and motion blur.
The generator is pre-trained on the WiderFace dataset [71], which
encompasses a wide array of unconstrained variations, as the target
data.

4.1.4 Training details
The scale of the training dataset plays a crucial role in the
performance of the FR, as a larger dataset can provide a wider

range of real-world characteristics, leading to better generalization
to unseen data. Hence, in the case of training on the CelebA
dataset, our backbone is weighted with a pre-trained ResNet-50
[3] on the VGGFace2 dataset [10] that contains more than 3.3M
images of about 9k identities. As mentioned before, to gain a
better insight into the advantage of utilizing attributes for FR, we
have also used MS1MV2 [61], which includes more than 5M face
images as a training set. In this case, we employ ResNet-101 as
the backbone of our proposed model.

The training process of the proposed method includes two
main steps. First, we jointly train our multi-branch network with
both classification and distillation losses for each branch. The
weight parameters of the total loss function are determined based
on the prioritization of FR as our primary objective. We set λFR =
3, λMale = λBald = 1, and all other weight parameters to 0.5. In
the second step of the training phase, to enrich the FR feature
representation, we fuse the FR and SB feature representations
together through our proposed CATF module. As such, we train
this fused branch for the goal of FR with the loss function given
in Equation 2.

The model undergoes training using stochastic gradient de-
scent with an initial learning rate of 0.1. In the case of training
on the CelebA dataset, the model is trained for 25 epochs, and
the scheduling step is set at 3, 7, and 15 epochs. For training on
the MS1MV2 dataset, the scheduling step is set at 7, 13, and 18
epochs for a total of 30 epochs.

4.2 Comparison with SoTA methods
4.2.1 Soft Biometric Prediction
Table 1, presents a comprehensive evaluation of the proposed
SB predictor on the two challenging annotated datasets, CelebA
[60] and LFWA [63] datasets. These datasets are widely used in
the field of facial attribute analysis and serve as benchmarks for
evaluating the performance of SB prediction methods. Similar to
the SoTA methods, we have followed the same protocol, and the
results of the other methods are directly reported from the original
papers. In the case of the CelebA dataset, our proposed approach
consistently outperformed the existing SB prediction methods,
achieving the highest accuracy across all attributes. For the LFW
dataset, our method surpassed all other methods for all those
attributes except for the narrow eye attribute, where it secured
the position of a runner-up among all other methods.

4.2.2 Face Recognition
In line with the established methodology of the SoTA FR studies
that train the model as a classifier and test it as a verifier [5],
[7], [9], we also evaluate our FR model as a verifier. To this
end, when employing the CelebA dataset as a training set, a
subset of 10, 000 pairs is randomly sampled from the CelebA
dataset, ensuring that the identities of these pairs are excluded
from the training set. Regarding Section 4.1.4, in the first step of
the training process, we train our multi-branch network without
employing any fusion modules. Thus, we can consider this branch
as a baseline to better clarify the effective role of integrating SB
into FR. The experimental findings presented in Table 2 provide
compelling evidence that our proposed model effectively enhances
FR performance through the utilization of SB attributes. We have
also performed a comprehensive set of experiments to evaluate
the effectiveness of our proposed CATF module and compare it
with alternative integration strategies. The experimental findings,
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Fig. 6: Images corrupted by simulated atmospheric turbulence with strengths ranging from 0.25 to 2 (the first image is the original one).

as presented in Table 2, demonstrate that substituting this module
with simple operations like addition or concatenation leads to
even inferior performance compared to the baseline approach,
particularly for specific false acceptance rates (FARs). Moreover,
results prove that among recent feature integration studies [72],
[73], [74], our proposed module establishes the most effective
integration approach for enhancing the performance of FR fea-
ture representation. Furthermore, we extend our explorations to
investigate the impact of the number of attributes utilized for FR,
and the last rows of Table 2 reveal that incorporating more identity
facial attributes contributes to improved accuracy.

To obtain a better understanding of the benefits associated with
employing SB attributes for FR and also have a fair comparison
with recent SoTA methods, we have additionally trained our model
on the MS1MV2 dataset [5]. In this case, we adopt ResNet-101 as
the backbone and conduct evaluations on nine widely recognized
FR benchmarks. As shown in Table 3, results demonstrate that
the observed enhancements for the mixed-quality and low-quality
datasets are more notable in comparison with the improvements
in the case of high-quality datasets. This can be attributed to
the accuracy saturation in high-quality datasets such as LFW
and CFP-FP benchmarks. As high-quality images inherently con-
tain a wealth of important facial information, the distillation of
knowledge from such images to their corresponding low-quality
counterparts becomes less noticeable. Similarly, the same scenario
holds true for the impact of utilizing SB attributes to help the FR
branch. As a result, the marginal gains achieved in the high-quality
scenario do not reflect the full potential of the proposed method.
Instead, the efficacy of the proposed method becomes particularly
evident when dealing with mixed-quality and low-quality images,
as these cases greatly benefit from the supplementary knowledge
transferred from the higher-quality images. It is worth noting that
due to the availability of only one attribute for this training set,
we focused on a single SB attribute (gender) to evaluate the
effectiveness of the proposed method while considering multiple
attributes could lead to even greater improvements in especially
low-quality cases.

To further demonstrate the effectiveness of our proposed ap-
proach, we expanded our experiments to include a realistic cross-
resolution dataset. Table 5 presents a comparison of our proposed
method with the recent SoTA methods on the SCFace dataset [70].
Some approaches, such as RPCL [75] and RI [76], optimized
their methods through fine-tuning on the SCFace training set.
For models such as FAN [77] and TRM [78], which reported
performance with and without fine-tuning on this dataset, it is
evident that fine-tuning significantly enhances the performance of
the FR model. As indicated in Table 5, our model surpasses all
non-fine-tuned methods and even rivals the performance of models
that are fine-tuned on the SCFace dataset. This result underscores

TABLE 1: Performance comparison in terms of accuracy (%)
between the proposed SB predictor and the SoTA methods.

Data Methods Bald Big Chubby Male Narrow
Nose Eye

C
el

eb
A

Z. Liu et al. [79] 98.00 78.00 91.00 98.00 81.00
Moon [80] 98.77 84.00 95.44 98.10 86.52

HyperFace [39] - - - 97.00 -
All-In-One [40] - - - 99.00 -

MCFA [81] 99.00 84.00 96.00 98.00 87.00
DMM [82] 99.03 84.78 95.86 98.29 87.73

Ours 99.11 85.41 96.13 99.19 87.69

L
FW

A

Z. Liu et al. [79] 88.00 81.00 73.00 94.00 81.00
HyperFace [39] - - - 94.00 -
All-In-One [40] - - - 93.12 -

MCFA [81] 91.00 81.00 74.00 93.00 78.00
DMM [82] 91.96 83.67 77.66 94.14 83.67

Ours 92.19 84.49 77.71 95.36 83.81

TABLE 2: Performance comparison between the proposed method
(CATFace), the baseline, and other SoTA feature integration
methods. Results are based on TAR@FAR, in which TAR and
FAR stand for True Acceptance Rate, and False Acceptance Rate,
respectively. Also, M, B, and NE stand for male, bald, and narrow
eyes, respectively.

Methods CelebA

10−5 10−4 10−3 10−2 10−1

Baseline (without SB) 89.23 90.51 92.08 93.26 94.48
Concatenation 88.95 90.06 92.06 93.31 94.50
Addition 88.83 89.96 91.74 93.29 94.39
SENET [72] 89.98 90.96 92.84 94.39 95.65
Cross-Attention [74] 90.68 92.12 93.30 94.50 95.68
FFM [73] 90.73 92.59 93.49 94.52 95.79
CATFace 91.10 92.91 93.78 94.83 96.18
CATFace (B) 89.54 90.89 92.67 93.90 94.81

CATFace (B & M) 89.97 91.03 92.83 94.13 94.97
CATFace (B & M & NE) 90.23 91.37 93.08 94.29 95.13

the generalization capability of our proposed model to handle
unseen cross-resolution face images.

4.3 Ablation and Analysis
4.3.1 Effect of Self-Attention Distillation
To better clarify the effect of self-attention distillation on our
proposed model, we investigate its impact on the FR and SB
branches separately. Table 4 and Table 6 demonstrate the effect
of self-attention distillation on SB prediction and FR, respectively.
In the training phase, to generate distorted versions of both CelebA
and LFWA datasets, within each batch, we randomly distort
50 percent of images by atmospheric turbulence [31] and the
rest are augmented by a GAN-based controllable face synthesis
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TABLE 3: Performance comparison of our proposed method (CATFace) with recent SoTA FR methods. TAR is reported at FAR =
0.01% (All these methods are trained on the MS1MV2 dataset).

Methods Venue
High Quality Mixed Quality Low Quality

(Verification Accuracy) (TAR) TinyFace
LFW CFP-FP CPLFW AgeDB CALFW IJB-B IJB-C Rank-1 Rank-5

CosFace [7] CVPR18 99.81 98.12 92.28 98.11 95.76 94.80 96.37 - -
ArcFace [5] CVPR19 99.83 98.27 92.08 98.28 95.45 94.25 96.03 - -
MV-Softmax [83] AAAI20 99.80 98.28 92.83 97.95 96.10 93.60 95.20 - -
URL [84] CVPR20 99.78 98.64 - - - - 96.60 63.89 68.67
SCF-ArcFace [85] CVPR21 99.82 98.40 93.16 98.30 96.12 94.74 96.09 - -
MagFace [8] CVPR21 99.83 98.46 92.87 98.17 96.15 94.51 95.97 - -
MIND [86] LSP21 - - - - - - - 66.82 -
ElasticFace [87] CVPRW22 99.80 98.73 93.23 98.28 96.18 95.43 96.65 - -
LS [88] FG23 99.50 - - - - - - 66.30 -
AdaFace [9] CVPR22 99.82 98.49 93.53 98.05 96.08 95.67 96.89 68.21 71.54

CATFace1 - 99.83 98.57 93.71 98.14 96.17 95.82 97.07 68.52 71.92
CATFace2 - 99.84 98.68 93.84 98.33 96.32 96.13 97.43 68.95 72.31

1This is our proposed FR method trained with the self-distillation approach without employing SB attributes.
2This is our proposed FR method trained with both the self-distillation approach and the proposed CATF module to employ SB attributes.

TABLE 4: Ablation of our self-attention distillation approach on the SB branch.

Test Data
Approach

Bald Big Nose Chubby Male Narrow EyeAug Distill
Feat CBAM SA

CelebA

99.10 84.84 96.09 99.16 87.56
✓ 99.10 84.95 96.00 99.10 87.30
✓ ✓ 99.11 84.91 96.05 99.14 87.57
✓ ✓ 99.12 85.16 96.10 99.16 87.63
✓ ✓ 99.11 85.41 96.13 99.19 87.69

Distorted CelebA

96.53 80.73 93.84 97.68 84.79
✓ 97.70 82.01 94.24 97.93 85.32
✓ ✓ 98.09 82.49 94.30 97.96 85.68
✓ ✓ 98.20 83.05 94.54 98.41 85.93
✓ ✓ 98.31 83.11 94.69 98.74 86.10

LFWA

90.83 82.73 76.67 93.10 82.96
✓ 90.96 82.97 76.83 93.13 82.95
✓ ✓ 91.23 82.98 76.91 93.45 83.02
✓ ✓ 91.87 83.07 77.39 94.09 83.85
✓ ✓ 92.19 84.49 77.71 95.36 83.81

Distorted LFWA

88.00 78.12 72.22 90.62 77.38
✓ 88.91 79.35 73.10 90.99 78.45
✓ ✓ 89.15 79.43 73.93 91.75 78.90
✓ ✓ 89.88 80.91 74.50 92.90 79.25
✓ ✓ 90.26 81.51 74.66 93.02 80.62

method [30]. For each set of test data, we have considered five
different models to predict SB attributes. The first model is the SB
branch of a simple multi-branch network trained without any data
augmentation and distillation approaches (the first row of Table 4).
The second model is trained with augmented data, in addition to
the original data without employing any distillation approach. The
third model utilizes a general feature-based distillation method
during the training phase. The fourth and last models use attention-
based self-distillation approaches which are based on CBAM [89]
and self-attention, respectively. The results in Table 4 indicate that
while data augmentation can improve the accuracy of predicting
certain SB attributes, the incorporation of KD proves to be more
effective in fully utilizing the potential of the synthesized low-
quality images. Furthermore, our experimental findings verify
the superiority of the self-attention mechanism in producing in-
formative feature maps in comparison with the CBAM method.
Similarly, for the FR task, we have considered five different
models (see Table 6). The first model corresponds to the FR
branch of a simple multi-branch network trained without data
augmentation or distillation approaches. The other four models

TABLE 5: Performance comparison of our proposed method
(CATFace) with recent SoTA FR methods on the SCFace dataset.

Methods Fine-Tuned Distance Avg.
4m 2.6m 1m

FAN [77] ✓ 77.50 95.00 98.30 90.30
ArcFace [5], [90] ✓ 80.50 98.00 99.50 92.70

RPCL [75] ✓ 90.40 98.00 98.00 95.47
TRM [78] ✓ 91.25 99.50 99.50 96.75
DDL [91] ✓ 93.20 99.20 98.50 97.00

RI [76] ✓ 97.07 99.23 99.80 98.70
FAN [77] 62.00 90.00 94.80 82.30

ArcFace [5], [90] 58.90 98.30 99.50 85.50
DCR [92] 73.30 93.50 98.00 88.27
TRM [78] 79.25 97.00 97.75 91.33
CATFace 90.64 98.85 99.61 96.37

are also similar to what was mentioned for the SB branch. Results
obtained from these experiments for the FR task further reinforce
the effectiveness of our proposed KD approach over alternative
methods in KD.
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Fig. 7: The visualization of the feature maps of the first and the last
block of the FR branch. The second and the third rows are related
to the original images. The fourth row shows the low-quality
versions of the original images generated by the GAN. The fifth
and the sixth rows are corresponding to the low-quality images
without using the KD approach while the last two rows depict
the feature maps of the low-quality images when the network is
utilizing the proposed KD approach.

TABLE 6: Ablation of our self-attention distillation approach on
the FR branch (TAR is reported at FAR = 0.01%).

Approach
CelebA Distorted CelebA

Aug Distill
Feat CBAM SA

92.64 89.16
✓ 92.83 90.36
✓ ✓ 93.05 90.73
✓ ✓ 93.18 91.27
✓ ✓ 93.26 91.43

4.3.2 Effect of Cosine Similarity metric on Distillation
Table 7 compares four different approaches, each varying in
attention map creation and distillation metrics. The first two rows
utilize the L2-distance metric to distill attention maps from high-
quality samples to their corresponding low-quality counterparts.
The subsequent rows adopt a similar approach but employ the
cosine similarity metric for attention distillation. Results con-
spicuously verify that utilizing cosine similarity, whether with
CBAM or self-attention methods, outperforms using L2-distance

Fig. 8: The visualization of the feature maps of the first and the
last block of the FR branch. The second and the third rows are
related to the original images. The fourth row shows the low-
quality versions of the original images which are disturbed by
atmospheric turbulence effects. The fifth and the sixth rows are
corresponding to the low-quality images without using the KD
approach while the last two rows depict the feature maps of the
low-quality images when the network is utilizing the proposed KD
approach.
⋆ATS stands for atmospheric turbulence simulator.

for distillation. It is demonstrated that feature norm is positively
correlated with image quality [8], [9]. Thus, to effectively utilize
the information extracted from the high-quality samples, we need
to distill only the directional component of the attention maps
while the L2-distance tries to align both the norm and angle
components of the attention maps. As shown in Equations 11 and
12, our distillation loss minimizes exclusively the angle between
the attention maps of the high-quality and low-quality samples
which enables the network to focus on richer information.

4.3.3 Effect of Soft Biometric Attributes
As explained in Section 4.2.2, to explore the contribution of SB
attributes to our proposed model, we conduct several experiments
such as exploring the impact of the number of attributes employed
for FR or clarifying the crucial role of the proposed CATF module
in the integration stage. All the experimental results verify the
benefits of serving SB information as auxiliary data in the FR task
(see Tabel 2). In this section, we perform further experiments to
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TABLE 7: Ablation of our distillation metric on the FR branch
(TAR is reported at FAR = 0.01%).

Approach
CelebA Distorted CelebADistance Metric Distill

L2-Distance Cosine Sim CBAM SA
✓ ✓ 93.07 90.77
✓ ✓ 93.10 90.89

✓ ✓ 93.18 91.27
✓ ✓ 93.26 91.43

Fig. 9: Comparison of cosine similarity distribution between the
baseline model without employing SB information and the pro-
posed model employing SB information. The positive and negative
pairs are sampled from the CelebA dataset.

assess the contribution of each component of our proposed CATF
module, namely MFFNL and CAF blocks, to the FR task. Table
8 demonstrates that optimal performance is attained when both
components are utilized in conjunction. Furthermore, the CAF
block appears to have a more significant impact on the overall
performance of the CATF module compared to the MFFNL block.

To gain deeper insights into the role of SB attributes, we
visualize the distributions of the similarity scores on 10,000 pairs
of the CelebA dataset both with and without the utilization of
SB attributes. As depicted in Fig. 9, the peak values of the cosine
similarity score distribution for both the positive and negative pairs
are shifted. To be more specific, the peak value of the cosine
similarity score distribution is shifted rightward for the positive
pairs and leftward for the negative pairs. These shifts indicate that
leveraging SB attributes leads to better separation between the
similarity scores of the positive and negative pairs which implies
a reduction in false positive and false negative errors.

4.3.4 Visualization
The features of the first and last convolutional block of the FR
branch are visualized in Fig. 7 and Fig. 8, through an attention map
introduced by [93]. We compare the output feature representations
between the original data and its low-quality version generated by
the controllable GAN and the atmospheric turbulence simulator.
To generate these maps, we normalize values within a range of
0 to 1, making them more visually interpretable. The attention
maps provide valuable insights into the network’s focus during FR
tasks. Regarding these attention maps, in the case of high-quality
images (the original data), the network focuses on critical facial
features such as the eyes, nose, and lips, which play a pivotal
role in ensuring accurate recognition (rows 2 and 3, Fig. 7 and
Fig. 8). However, when it comes to the low-quality images, the

TABLE 8: Ablation of our proposed CATF module on the MFFNL
and CAF blocks (results are based on TAR@FAR).

Approach CelebA
MFFNL CAF 10−5 10−4 10−3 10−2 10−1

90.68 92.12 93.30 94.50 95.68
✓ 90.81 92.76 93.55 94.73 95.90

✓ 90.97 92.83 93.72 94.78 96.04
✓ ✓ 91.10 92.91 93.78 94.83 96.18

network’s attention to intricate details such as facial landmarks
is compromised due to the absence of information (rows 5 and
6, Fig. 7 and Fig. 8). This is where our attention-based KD
approach comes into play and enhances the ability of the model
to concentrate on detailed facial features (the last two rows, Fig.
7 and Fig. 8). It achieves this by matching the attention maps
of the low-quality images to their corresponding high-quality
counterparts.

5 CONCLUSION

This paper addresses the poor performance of FR models with
regard to low-quality images. Inspired by the fact that humans
intrinsically analyze facial attributes to recognize identities, we
utilize SB attributes as auxiliary information to improve the per-
formance of FR. We propose a novel feature-level fusion module
to effectively integrate SB information into the FR feature repre-
sentations. We also incorporate a self-distillation technique during
the simultaneous training of both the SB and FR branches which
empowers our network to extract and distill effective information
from high-quality samples, thereby strengthening its capacity to
handle low-quality input images.
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