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Abstract—Two novel computational techniquesharmonic cut foundation can be developed to remove speckle noise and
and regularized centroid transformare developed for segmen- separate overlapping compartments. Although our results are
tation of cells and their corresponding substructures observed limited to 2D images, e.g., a fixed focal plane, these techniques

with an epi-fluorescence microscope. Harmonic cut detects small | licable t mentation of 3D dat t well
regions that correspond to small subcellular structures. These are also applicable to segmentation o ata sets as well.

regions also affect the accuracy of the overall segmentation. The proposed model-based approach is shown in Figure 2,
They are detected, removed, and interpolated to ensure continuity which aims to decouple a specific imaging artifacteaich
within each region. We show that interpolation within each region - computational step. This model assumes that (1) speckle noise
(subcellular compartment) is equivalent to solving the Laplace (,¢on corresponding to chromatin in nuclei or mitochandrial

equation on a multi-connected domain with irregular boundaries. . | b d widliotic f d (2
The second technique, referred to as the regularized centroid I" Cytoplasm) can be extracted witliptic features and (2)

transform, aims to separate touching compartments. This is the boundary of a nucleus is locally quadratic, which is true
achieved by adopting a quadratic model for the shape of the for almost all cells. Once speckle noise is detected, it is

object and relaxing it for final segmentation. interpolated usindiarmonic cutwithout introducing artifacts.
Index Terms—cell segmentation, regularization, interpolation, Next, touching nuclei are separated by collapsing each nucleus
harmonic function, speckle noise to its local centroid through a process callegjularized

centroid transform The net result is a vector field, which
can be easilypartitioned The layered protocol demonstrates

our approach for constructing an analytical model, based on

Automatic segmentation of cells and their compartments igaje and geometric constraints, for delineating subcellular
an important step for high-throughput quantitative biologkompartments. The approach is automated and is routinely
The biology of cellular responses, protein expression, aideq in our production environment [4].
morphological structure is inherently heterogeneous due tope organization of this paper is as follows. Section I

cell cycle and environmental factors. If segmentation can REmmarizes previous research. Section I1l outlines the details
automated, then it provides the foundation for quantitatiygy getecting elliptic features. Section IV outlines details of
population studies for protein expression and model constrytymonic cut and its solution with the Laplacian. Sections V-

tion at subcellular scale [1], [2]. Yet, reliable segmentatiofy| present the regularized centroid transform and its imple-
is difficult since images are noisy, cellular stain is hetergnentation. Section VIl concludes the paper.
geneous, and various compartments could overlap during the

imaging process. This paper focuses on defining analytical and
computational operators for segmenting cells and their com- Il. PREVIOUS RESEARCH

partments observed through an epi-fluorescence microscopgrevious research in cell segmentation has included both 2D
Proposed technique is model-based and constructs on kngysfy from wide field microscopy and 3D data from confocal
geometric shape properties to avoid ad-hoc protocols basedypRjeconvolution microscopy. These techniques include Hough
thresholding and morphological operators. Figure 1 shows tw@nsform [5], perceptual grouping of step and roof edges
examples where staining is non-uniform, images are corrup | level set approach [7], watershed-based techniques [8],
as a result of random (CCD noise) and speckle noise (interg@ly iterative thresholding [2]. There are also a number of
substructures), and neighboring compartments can potentig¥nniques that are based on minimizing a cost function using
overlap. These images are obtained through confocal and wjgg, geometrical features [9]-[11]. The Hough transform has
field microscopy respectively. Thresholding is often unreliabiie advantage of a parameterized model, but often generates
for images obtained through wide field microscopy sinGgany false primitives or multiple shape inferences (at the
the intensity distribution lacks uniformity. Figure 1 indicateggme location) due to variation in scale and edge intensity.
that direct thresholding (even manual) [3] and edge detecti@nhough perceptual organization of step and roof edges has
techniques are not sufficient for delineating these cells OVgfstrong foundation, it suffers from lack of reliability that is
hundreds of images. The central issue is whether an analytigakociated with limited geometric constraints. In this system,
Manuscript received 24 Apr. 2002; revised 27 Sep. 2002; accepted 29 NSEP €dges correspond to the boundaries between cells and
2002. background, while the roof edges correspond to boundaries

Recommended for acceptance by A. Campilho. between cells. The level set approach, as applied to the 3D
The authors are with the Imaging and Informatics Group of the Computg-

tional Science Division at Lawrence Berkeley National Laboratory, Berkele‘a,_ata stacks, is 'meraCt_lVe and has a |Imlteq appllca_ltlon f_or
CA 94720 high-throughput analysis. Furthermore, special consideration

I. INTRODUCTION
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sharply above or below their immediate background, which
can be detected, extracted, and interpolated. It then separates
touching compartments by assuming a quadratic model of
boundary. Our approach is automated to allow for high-
throughput analysis, and it has been tested over a large data
set.

The first step of the computational process is to detect
and remove noise. In this case, the main concern is the
speckle noise, which are small regions (in the order of several
pixels) that stand significantly above or below their immediate
background. These regions are detected with elliptic features,
and then interpolated in the subsequent step. Let the linear
scale-space representation of the original imdger, y) at
scales be given byl(z,y;0) = Iy(z,y) * G(z,y; o) where
G(z,y; o) is the Gaussian kernel. For simplicityz, y; o) is
also denoted ag(x, y) below. At each pointz,y), the iso-

intensity contour is defined by
Fig. 1. Direct thresholding or detection of zero-crossings are not adequate I(e + Az,y+ Ay) = I(z,y) 1)
for correct segmentation of a fixed tissue: (a) an original image observed with

a confocal microscope; (b) contours corresponding to thresholded resultsphere (Az, Ay) is the displacement vector. Expanding and

careful interactive selection of a threshold value of 90 between nuclei A al : : ; ) :
B; (c) zero crossing result with sigma of 1.5; (d) original image from awioIe[}’:hnC""tIng the above equation using Taylor's series, we have

field microscope of two touching nuclei of living cells where there is close t1€ following estimation:
50% variation in intensity between the edge of the cell and its centroid; (e

contours corresponding to thresholded results at 80; (f) zero crossing I’eSLﬁI Ax. ANH A ANT (L. IV Az. AT =0 (2
with sigma of 2.0. 2( z, Ay H (@, y)(Az, Ay)" + (L, ) (Az, Ay) )

ELLIPTIC REGIONS

(d)

®

where s s
Input H r,y) = ( g Ty )
l is the Hessian matrix of(z, y). The entire image domain is

| Extract ellipticfemur%i divided by Equation 1 into two parts:

Iz + Az, y+ Ay) > 1(z,y) ®
_ _ and
|Regu|ar|zed Centr0|dTransforrr1 I(x 4 Al‘,y—l— Ay) < I(l‘,y) (4)
i or locally
| Partition of vector fielc{ 1
¢ §(Al‘, Ay H(z, y)(Az, Ay)T +(I;, I,)(Az, Ay)" >0 (5)
Output and
Fig. 2. Computational steps in noise removal and delineation of touchin
sugbcompartmgnts. P %(Ar, Ay)H(z,y,z)(Axz, Ai‘/)T + (I, Iy)(Ax, Ai‘/)T <0

(6)

If H(x,y) is positive definite, then the region defined by
must be made to filter out internal substructures during tfgiuation 3 is locally convex. Similarly, iff (z, y) is negative
evolution process. Still, the end result is only a representatiggfinite, then the region defined by Equation 4 is locally
and not a description, and edges have to be inferred in @nvex. To determine whethéf (x,y) > 0 or H(z,y) < 0,
post-processing step. The watershed techniques constructvgnanalyze this feature in both cases:

energy map in the gradient direction based on the distancel)
transform. This approach often leads to over-segmentation,
which requires complex region merging protocol at a later
stage. The over-segmentation is due to noise in the distance
transform in the absence of regularization. 2)
Our approach is model-based and well constrained to detect
and localize subcellular compartments. The model character-
izes the speckle noise as aggregates of a few pixels standing

H(z,y) > 0. Then we havel,, > 0, I,, > 0, and
hencel,, + I, > 0, and positive Laplacian means that
(z,y) is a “dark point”, i.e., a point that is darker than
its neighbors.

H(z,y) < 0. Then we havel,, < 0, I,, < 0, and
hencel,. + I,, < 0, and negative Laplacian means that
(z,y) is a “bright point”, i.e., a point that is brighter
than its neighbors.
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Classifying elliptic points as bright or dark points is an (intensity)

important initial step of our computational process, since
it provides a natural way to reduce information content by
partitioning objects of interest. Furthermore, these regions
have direct biological interpretations. For example, tiny bright
regions (a few pixels across) within the nuclei often correspond
to chromatin (see Figure 1a), and similar dark regions within
the nuclei correspond to nucleoli (see Figure 1d). From a x(location)
computational perspective, we have the following definition.
Definition 1: A point is abright (dark) elliptic featureat Fig. 4. 1-dimensional harmonic cut

scales if the Hessian matrix of (z, y; o) is negative (positive)

definite at this point. 9 within the nuclei, and interpolate these regions. This step
In scale-space theory [12},.1,, — I, is referred to as the . . . )
. . Y : .cprresponds to removing noise, which may be either random
elliptic feature, which corresponds to the basic form of partial”.

. . . ) . . - D noi r more importantl kle noise (internal
differential equation. Figure 3 illustrates detection of elllptlgOlse (CCD noise) or more importantly speckle noise (interna

features under ideal conditions such as uniform intensity wi tructures within the cell). To motivate our solution, consider
: . y e one-dimensional interpolation problem of Figure 4 with
added white noise. Furthermore, we show that even in t

; S Unction I(z) in the interval of(a,b). The simplest method
presence of fragmentation, elllptlc features can be group%dto fill this interval with the average of the two endpoints
into convex sets to represent higher levels of representatig,)+ (s or with the value of the closest endpoint at every,/
The first row shows the raw data with and without randoré}l inzt on, (a,b), but these techniques break continuity or
gﬁﬁicg(br)eingcgef")e %k]);alsneecc:):é/ ?:Vslgﬁovv\\’g't;;o;zi E)ri(i% oothness of interpolation. A better approach is to weight

NN P y). : . q e interpolation, at each poimt as a function of its distance
elliptic features foreach of the images is incomplete at %0 the boundary condition, e.q., I8¢ (z) = [(b— )I(a) +
given scale and can be highly fragmented. A potential hig - — ) I(b)]/(b— a). This I,inéa.r, interpolation is as if we cut
level abstraction may include grouping of fragmented regiortghs '

. . . e function fromP to . The new function is continuous
for convexity and enclosure, as shown in the third row. This. C I :
: o . ._.._With vanishing second derivative di, b). It is easy to show
technique, however, fails in most 2D images due to variatio

S . . . . s . b

in cell sizes and staining, irregular shapes, and touching ceﬂ%‘f."t this representation is equalen}(tccl))mlmm}z%wg"a Idx
Iy = I

The 2D case is more complex because Hmndary of
the region to be removed is often noisy and irregular, and
it is not clear whether propagating intensity based on distance
transform will have desirable properties. One way to ensure
continuity is to regularize the solution by extending the 1D
solution to 2D or by minimizing the following functional:

1 2, g2
3 //D I + I;dzdy @)

where D is the region to be removed, that is to s, y) is
supposed to be unknown ift. The Euler-Lagrange solution
to this optimization problem is the Laplace equation:

VA = Iy + Iy =0 (8)

with the Dirichlet boundary conditiod| ;5 (x, ), the restric-
tion of the original image on the boundary bfs complement

D = Q— D whereQ is the domain of definition of the entire
image. Equation (8) defines a 2-dimensional harmonic function
on the region to be removed, and thus we call this method
“harmonic cut”.

' ) . - . ) The Lapl ion i ial f Poisson equa-
Fig. 3. Detection and grouping ofliptic features: (row 1) original synthetic . e Laplace equation Is a special case of Po q

images without (a and c) and with (b and d) added white noise; (row 8PN, Which has been studied extensively [13]. In the actual
detected bright elliptic features; and (row 3pgping based on convexity and implementation, a small scale is selected and elliptic features

enclosure. are detected. These features correspond to either noise or tiny
substructures (approximately 20 pixels) on the nuclei. The
corresponding regions are subsequently interpolated with a
IV. HARMONIC CUT harmonic function. Figure 5(b) shows detected elliptic features
The next step of the computational process is to remoag scalec = 2, where these bright dots, inside nuclei, are
small elliptic regions, corresponding to small substructurésown to be chromatin.

1)

subject to the boundary conditim{s

@ @ (k) V)



YANG AND PARVIN: HARMONIC CUT AND REGULARIZED CENTROID TRANSFORM FOR L OCALIZATION OF SUBCELLULAR STRUCTURE 4

B. Discussion and comparison

This section concludes with a few insights into harmonic

cut and comparison to previous research.

1) The algorithm can also be applied to the detection of
dark regions, inside of nuclei, defined by, + 1,, > 0
and I, I, — I7, > 0, but ambiguities due to back-
ground may arise. However, once large bright regions
are detected, they provide the context to detect small
dark sub-regions.

2) Harmonic cut is used to interpolate a region that has
been detected by elliptic features regardless of its inten-
sity against immediate background.

3) Harmonic is applied for several iterations since the scale
of elliptic feature detection is very conservative, and the
detected features are usually smaller than their actual
sizes. It can be shown that this process does converge
by observing that the energy ([ 12+ 17 dzdy is always
decreasing.

) @) ® 4) Other interpolation strategies, such as bilinear or nearest-
point interpolations, can be used to initialize the solution
Fig. 5. Detection of elliptic features and their interpolation with harmonic of the Laplace equation. However, smoothness in the

cuts: (a) original image (same as Figure 1(a); (b) edges of bright elliptic bounded region is not guaranteed.
features at scale = 2; (c) harmonic cut on features in (b); (d) zero-crossings . . . K
of (c): (e) removing small holes in (d): (f) displaying edge of (€) on the original AN alternative technique proposed by Yanowitz and Bruck-

image. stein [16] combines thresholding based on magnitude of the
gradient followed by interpolating these points with the Lapla-

cian equation. In contrast, our interpolation method applies to

Figure 5 shows the result of the harmonic cut. It is cIeaﬁJOSEd regions that are detected with elliptic features. Although

that the edge detection has been improved when comparea("i’gownz and Bruckstein’s method gives satisfactory results

Figure 1. The harmonic cut, shown in Fig.5(f), can deal witll many cases, their method fails in our data set due to the
the failed cases in Figure 1. multiscale nature of cellular compartments.

V. REGULARIZED CENTROID TRANSFORM
A. Properties of harmonic cut At this stage of the computational process, each cell is

Harmonic functions are those functions that satisfy tngresented with a smooth surface correspondingdoh

Laplace equation. The following propositions can be foun%f its subcompartments. The next step of the process is to

in any standard textbook [14] on complex/harmonic analysi§‘.apahr ate objects th;’:‘t af?r HCJ'TOL_Jped ;E:.)getZer m};o a i:lu.mpc,i eq.,
Proposition 1: For any harmonic function, its value at an ouching one another. This Is achieved usiRggularize

point is equal to the average of its values along any circ.%entrOId TransformRCT), as shown in Figure 6. The intent

centered at that point, provided the function is defined with[R t_o map vegtors originating from the boundary of an ellipse
the circle. to its centroid. If these vectors can be computed, then the

Proposition 2: Any non-constant harmonic function has n entire boundary can be grouped together. This is true for both

maximum or minimum value inside the region in which it ig)oundarles and theinterior pomts, ©.g., grouping ut|I|ze§ qot
defined. only the edges but also the region information. The main issue

g that the position of the critical centroid is unknowecause

Proposition 1 indicates that harmonic fun_ct|ons are SmOOtth‘e lines normal to the boundary of the ellipse do not intersect
In fact, Equation (7) shows that the maximum smoothne{s}@a focal point

has been reached by harmonic functions. According tp&r

sition 2, if we remove one region and replace it with th

harmonic function defined by its boundary, there is no loca o o )

minimum/maximum in the removed region. Henbeymonic L€t /(x, y) be the original intensity image. At each point

cut can remove all local singularities. (0, y0), its equal-height contour is defined bix,y) =
Koenderink introduced the concept cdusality[12], [15], /(%0 ¥0)- Expanding and truncating the above equation using

which means that new level surfaces must not be createdfvI0r'S series, we have the following estimation:

the scale-space representation when the scale parameter is 1 2 21 _

increased. This is one of the most important requirements for Lout Iyv + §[I”u + 2Uayuvt Ly =0 ©

any multiscale representation. The above analysis indicatésereu = z — zy andv = y — o, or in the standard form

that harmonic cut are even strongechuse of the inherent 1 5 ,

properties of harmonic functions. qw Hw+b w=0 (10)

. Local centroids
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from the normal vector. In the ideal case, shown by Figure
6, RCT of every pixel on the boundary points to the same
centroid, e.g., this vector field is well focused.
@ o The vector field is dense everywhere (even for binary
image, a dense vector field is computed at each point).
+ RCT isregularized under smoothness constraint. Smooth-
ing is required since random and speckle noise can alter
the position of the centroid.

Fig. 6. Even though normal lines to the boundary of thi@se do not « This is an intermediate step toward final segmentation.

intersect at a single point, RCT groups boundary points into a single focal
point.

@) (b)

C. Discrete solution of RCT

The Euler-Lagrange equations [18] of the variational prob-
Lz Iy lem Equation 14 are:

) is the Hessian matrix =
Loy Iy (@o.90)

( e is the gradient of intensityy = (u,v)? is the (g + uyy) =0

Iy
/ (20,50) ] ) Toy(Ippu 4 Ipgv + Ip) + Iy (Tpyu + Lyyv + Iy )—
centroid in the local coordinate system. Recall that the centroid a(yvm + vyy) Y 0 e v !

of a quadratic curve, defined by Equation (10), satisfies the (15)
following linear constraint: Substituting the finite difference approximations of the
Hw+b=0 (11) partial derivatives into the above partial differential equations,
we have
If H is non-singular, then the centroid can be determined Lo [Lovt(2,y) + Loy v(2, y) + L]+
directly, e.g.w = —H~'b. However, this is not always true. Loyl u(x’y) ) yv(x’y) +1,]-
If H is singular and # 0, there exists no solution. a[‘z(x‘:_ 1 ’y) i u(yj_ ! D+ Y
The zero set defined by ’ : _
wz,y+ 1) +u(z,y—1) —du(z,y)] =0 (16)
Loy Iy Ty T Iyy[leyu(w,y) + Iyyv(e, y) + Iy]—
is non-trivial, and can be further classified into two categories: ofv(x + i’ y) +v(e - i’ y)z 0
1) uniform regions that correspond to zeros of intensity v(@y+ 1)+ o(@y—1) — vz y)] =
gradient of the image with the result that there is n@hich can be rewritten as follows
information to estimate the centroid, and . a-u(z,y)+b-v(z,y) =e 17
2) elliptic features that occur in non-uniform regions. { ¢ ule,y)+d-o(w,y) = f (17)
B. Regularized representation where , ,
Computation of the local centroid is hindered due to the sin-¢ — Ly + Iy + 4o
gularities of the Hessian and noise. The problem is inherentl = lealoy + Laylyy
ill-posed and needs to be regularized [17]. Let the centroid at® ~— b2 5
(x,y) be denoted byu(x,y),v(x,y))", then the regularized = loy Iy +da
model can be expressed as: ¢ = —lle—Ijly +afu(c+1,y) +u(z -1 y)+
wz,y+ 1)+ u(z,y—1)]
min B(u,v) = g [[[[H - (u,0)" +b|*+ (13) f = —LLy—ILL,+afv(z+1,y)+v(z—1y)+
a([[Vul]* + [[Vo][*)dzdy v(e,y+ 1)+ v(x,y —1)]
min B(u,v) = L [[(Lwu+ Lyv+ L,)*+ These coefficients are the functions of partial derivatives in

(Lot + Lyyv + 1)+ (14) the ne|ghb9rhood ofu(z, y), v(x, y)z)'.lt is easy to s_how that
9 3 9 9 the determinani\ = ad — bc > 16« is always positive, and
a(uz +u; + vz + v )dedy . : :
v v the solution of Equation 17 is:

where the first and second terms are the error of estimation, dobs
the third term is the smoothness constraint, atid 0) is the u(z,y) = “x - (19)

. _ —cetaf
weight factor. v(z,y) = =3+

Definition 2: We refer to the solution of Equation (14),
two-component vector fielgu™, v*) := argming, ) £(u, v),
as theregularized centroid transforniRCT).
The main features of RCT are:

« RCT is a vector field that represents the displacement to ut(z,y) = %
the centroid at each point. This vector field is different vz, y) = %

%ence we can compute a new set of estimatest!, v"+1)
from the estimated partial derivatives and the previous esti-
mates(u”, v") by

(20)
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The initial solution(u®,+") can be set td). The boundary fA
condition for solution of the aehbove PDEs are based on Neu- N .
mann boundary conditions: 2 :8 wheren is the normal o \1 Jf
vector to the boundary. For t?lne Neumann boundary condition, ol fixed poini(rode)

it is assumed that the data outside the domain of definition are
a reflection of the data inside the domain.

Cc

D. Speed-up Ir:e%.iO?n. Partition of vector field: points A, B, C, and D aregped into one

The representation just described indicates that the compu-
tational complexity of RCT is very high. However, a number

of coefficients can be precomputed. Let's rewxitand f in According to this theorem, a partition RCT can be obtained

the following form: as follows. Every non-singular pixel can be repeatedly moved
e = eo+4dau to a new position by solving Equation (26), and every singular

f = fo+4av (21) point is in fact a fixed (possibly unstable) point. Those points
that move to the same singular point can be grouped together.

where This grouping technique is illustrated in Figure 7. There may
o = —loloa—Iylay be some exceptions in this strategy: (1) when a singular point
? = Z[I“(Ix + I’Iy)1+ u(z = 1y)+u(z,y + 1) +ule,y =1 may go out of the image domain, and (2) both eigenvalues of
0 = Tdalzy = Lylyy

5 Un(z+1,4) + v(z — 1,4) +v(z,y +1) +o(z,y z ] a singular point are purely imaginary; (3) there may be limit

22) cycles. In these cases, we simply discard these points. Since
Then Equation 20 can be rewritten as we have not found limit cycles in any of our experiments, the
conjecture is that there is no limit cycle in RCT.

u"“(d;,y) _ d(eot40u™)—b(fo+4ar™) (23)
vn-l—l(x y) _ —c(eu+4ozﬂ7%+a(fg+4oa7")
IS A
or VIl. EXPERIMENTAL RESULTS AND COMPARISON
Ut = ug 4 k110" + K120" 24
ntl _ n —n (24)
v = Vg + K21 U” + K220
where deabte
Up —a
vo — —ceDA-I—afD
K11 = dad
_ A40zb (25)
Ri2 = ——x
Ko = —22¢

are coefficients independent of the iteration time. They can
be precomputed and stored. As a result, each iteration needs @) (b) (©
computation of 4-point averages ofandv. It is easy to show

that its computational complexity is of the same order as tifg. 8. Comparison of RCT and distance transform: (a) Original binary
linear diffusion image; (b) RCT energy function shows a smooth surface and a fixed point
) for each region; (c) trational distance transform has many local maxima.

VI. PARTITIONING VECTOR FIELD

The final step of segmentation is to compute a partition for We have implemented Vincent and Soille’s watershed algo-
RCT. Consider an autonomous system of differential equatiorithm [19] for comparative analysis. Their method works well

oy, y) only when the boundaries are smooth. Yet, the boundary is
{ 5 Y (26) often noisy, which leads to oversegmentation. Figure 8(b)(c)
@ = vy compare the RCT energy function (the arclength of the tra-

Definition 3: An orbit or trajectory of the system (26) is a jectory) with the traditional distance transform. It is clear that
setw C Q of the form{(z(¢), y(t))|t € T'}, where(z(t), y(t)) RCT is smooth and each region has a cqoesling fixed
is a solution of (26) defined on time interval point. Figures 9 shows segmentation results for two fields of
Definition 4: An equilibrium point of the system (26) (alsocells. and the comparison to the watershed technique, which
called acritical or singularpoint) is a point(z°, y°) € Q@ such indicates significant oversegmentation. We have applied our
thatu(z®, y") = 0 andv(2°,y°) = 0. technique to 68 images with a total of 2417 cells, and 61 cells
Theorem 1:(a) Every point of2 belongs to precisely one were incorrectly segmented. Some of these images can be
orbit of the system (26). (b) Ifz°, y°) is an equilibrium point found in http://vision.Ibl.gov/Projects/BioSig in the “Image”
of the system thed(z°,y°)} is an orbit. category.
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[11]

(d)

Fig. 9. Segmentation of two fields of cells: (column 1) the original image§l2]
(column 2) results by our approach (harmonic cut + RCT); (column 3) over-
segmented results by the “distance transform + watershed” strategy. [13]

[14]
VIILL (o]
. . . . [16
This paper has outlined a layered computational technlqhe]
to delineate overlapping nuclei and to extract their interngl7]
substructures. Our approach is model-based and we h?Vj
developed computational operators to eliminate the need
ad-hoc techniques. The first step of the process is removal of
random and speckled (internal substructure) noise, which &
subsequently interpolated with harmonic cut. The next step
of the process delineates overlapping regions through a novel
process that we call regularized centroid transform (RCT).
In each step of the process, we have given examples and

C ONCLUSION

compared our results to previous research. Our approach has

been applied to high throughput analysis of images obtaineg
through a confocal microscope, and it is currently in produc
tion use. It is possible for the proposed method to produc
incorrect segmentation due to inherent ambiguities that a
present from a single focal plane, e.g., 2D analysis. A mor
robust approach will need 3D analysis. We suggest that RC
is a generic blob detection and separation technique that c§
be used as a generic tool for early vision problems.
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