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Abstract—Two novel computational techniques,harmonic cut
and regularized centroid transform, are developed for segmen-
tation of cells and their corresponding substructures observed
with an epi-fluorescence microscope. Harmonic cut detects small
regions that correspond to small subcellular structures. These
regions also affect the accuracy of the overall segmentation.
They are detected, removed, and interpolated to ensure continuity
within each region. We show that interpolation within each region
(subcellular compartment) is equivalent to solving the Laplace
equation on a multi-connected domain with irregular boundaries.
The second technique, referred to as the regularized centroid
transform, aims to separate touching compartments. This is
achieved by adopting a quadratic model for the shape of the
object and relaxing it for final segmentation.

Index Terms—cell segmentation, regularization, interpolation,
harmonic function, speckle noise

I. I NTRODUCTION

Automatic segmentation of cells and their compartments is
an important step for high-throughput quantitative biology.
The biology of cellular responses, protein expression, and
morphological structure is inherently heterogeneous due to
cell cycle and environmental factors. If segmentation can be
automated, then it provides the foundation for quantitative
population studies for protein expression and model construc-
tion at subcellular scale [1], [2]. Yet, reliable segmentation
is difficult since images are noisy, cellular stain is hetero-
geneous, and various compartments could overlap during the
imaging process. This paper focuses on defining analytical and
computational operators for segmenting cells and their com-
partments observed through an epi-fluorescence microscope.
Proposed technique is model-based and constructs on known
geometric shape properties to avoid ad-hoc protocols based on
thresholding and morphological operators. Figure 1 shows two
examples where staining is non-uniform, images are corrupted
as a result of random (CCD noise) and speckle noise (internal
substructures), and neighboring compartments can potentially
overlap. These images are obtained through confocal and wide
field microscopy respectively. Thresholding is often unreliable
for images obtained through wide field microscopy since
the intensity distribution lacks uniformity. Figure 1 indicates
that direct thresholding (even manual) [3] and edge detection
techniques are not sufficient for delineating these cells over
hundreds of images. The central issue is whether an analytical
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foundation can be developed to remove speckle noise and
separate overlapping compartments. Although our results are
limited to 2D images, e.g., a fixed focal plane, these techniques
are also applicable to segmentation of 3D data sets as well.

The proposed model-based approach is shown in Figure 2,
which aims to decouple a specific imaging artifact ateach
computational step. This model assumes that (1) speckle noise
(often corresponding to chromatin in nuclei or mitochandrial
in cytoplasm) can be extracted withelliptic features, and (2)
the boundary of a nucleus is locally quadratic, which is true
for almost all cells. Once speckle noise is detected, it is
interpolated usingharmonic cutwithout introducing artifacts.
Next, touching nuclei are separated by collapsing each nucleus
to its local centroid through a process calledregularized
centroid transform. The net result is a vector field, which
can be easilypartitioned. The layered protocol demonstrates
our approach for constructing an analytical model, based on
scale and geometric constraints, for delineating subcellular
compartments. The approach is automated and is routinely
used in our production environment [4].

The organization of this paper is as follows. Section II
summarizes previous research. Section III outlines the details
for detecting elliptic features. Section IV outlines details of
harmonic cut and its solution with the Laplacian. Sections V-
VII present the regularized centroid transform and its imple-
mentation. Section VIII concludes the paper.

II. PREVIOUS RESEARCH

Previous research in cell segmentation has included both 2D
data from wide field microscopy and 3D data from confocal
or deconvolution microscopy. These techniques include Hough
transform [5], perceptual grouping of step and roof edges
[6], level set approach [7], watershed-based techniques [8],
and iterative thresholding [2]. There are also a number of
techniques that are based on minimizing a cost function using
local geometrical features [9]–[11]. The Hough transform has
the advantage of a parameterized model, but often generates
many false primitives or multiple shape inferences (at the
same location) due to variation in scale and edge intensity.
Although perceptual organization of step and roof edges has
a strong foundation, it suffers from lack of reliability that is
associated with limited geometric constraints. In this system,
step edges correspond to the boundaries between cells and
background, while the roof edges correspond to boundaries
between cells. The level set approach, as applied to the 3D
data stacks, is interactive and has a limited application for
high-throughput analysis. Furthermore, special consideration
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(a) (b) (c)

(d) (e) (f)

Fig. 1. Direct thresholding or detection of zero-crossings are not adequate
for correct segmentation of a fixed tissue: (a) an original image observed with
a confocal microscope; (b) contours corresponding to thresholded results by
careful interactive selection of a threshold value of 90 between nuclei A and
B; (c) zero crossing result with sigma of 1.5; (d) original image from a wide-
field microscope of two touching nuclei of living cells where there is close to
50% variation in intensity between the edge of the cell and its centroid; (e)
contours corresponding to thresholded results at 80; (f) zero crossing result
with sigma of 2.0.

Harmonic Cut

Input

Output

Regularized Centroid Transform

Extract elliptic features

Partition of vector field

Fig. 2. Computational steps in noise removal and delineation of touching
subcompartments.

must be made to filter out internal substructures during the
evolution process. Still, the end result is only a representation
and not a description, and edges have to be inferred in the
post-processing step. The watershed techniques construct an
energy map in the gradient direction based on the distance
transform. This approach often leads to over-segmentation,
which requires complex region merging protocol at a later
stage. The over-segmentation is due to noise in the distance
transform in the absence of regularization.

Our approach is model-based and well constrained to detect
and localize subcellular compartments. The model character-
izes the speckle noise as aggregates of a few pixels standing

sharply above or below their immediate background, which
can be detected, extracted, and interpolated. It then separates
touching compartments by assuming a quadratic model of
boundary. Our approach is automated to allow for high-
throughput analysis, and it has been tested over a large data
set.

III. ELLIPTIC REGIONS

The first step of the computational process is to detect
and remove noise. In this case, the main concern is the
speckle noise, which are small regions (in the order of several
pixels) that stand significantly above or below their immediate
background. These regions are detected with elliptic features,
and then interpolated in the subsequent step. Let the linear
scale-space representation of the original imageI0(x; y) at
scale� be given byI(x; y;�) = I0(x; y) � G(x; y;�) where
G(x; y;�) is the Gaussian kernel. For simplicityI(x; y;�) is
also denoted asI(x; y) below. At each point(x; y), the iso-
intensity contour is defined by

I(x +�x; y +�y) = I(x; y) (1)

where (�x;�y) is the displacement vector. Expanding and
truncating the above equation using Taylor’s series, we have
the following estimation:

1

2
(�x;�y)H(x; y)(�x;�y)T+(Ix; Iy)(�x;�y)

T
= 0 (2)

where

H(x; y) =

�
Ixx Ixy
Ixy Iyy

�

is the Hessian matrix ofI(x; y). The entire image domain is
divided by Equation 1 into two parts:

I(x +�x; y +�y) > I(x; y) (3)

and
I(x +�x; y +�y) < I(x; y) (4)

or locally

1

2
(�x;�y)H(x; y)(�x;�y)T+(Ix; Iy)(�x;�y)

T > 0 (5)

and
1

2
(�x;�y)H(x; y; z)(�x;�y)T + (Ix; Iy)(�x;�y)

T < 0

(6)
If H(x; y) is positive definite, then the region defined by
Equation 3 is locally convex. Similarly, ifH(x; y) is negative
definite, then the region defined by Equation 4 is locally
convex. To determine whetherH(x; y) > 0 or H(x; y) < 0,
we analyze this feature in both cases:

1) H(x; y) > 0. Then we haveIxx > 0, Iyy > 0, and
henceIxx+ Iyy > 0, and positive Laplacian means that
(x; y) is a “dark point”, i.e., a point that is darker than
its neighbors.

2) H(x; y) < 0. Then we haveIxx < 0, Iyy < 0, and
henceIxx+Iyy < 0, and negative Laplacian means that
(x; y) is a “bright point”, i.e., a point that is brighter
than its neighbors.
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Classifying elliptic points as bright or dark points is an
important initial step of our computational process, since
it provides a natural way to reduce information content by
partitioning objects of interest. Furthermore, these regions
have direct biological interpretations. For example, tiny bright
regions (a few pixels across) within the nuclei often correspond
to chromatin (see Figure 1a), and similar dark regions within
the nuclei correspond to nucleoli (see Figure 1d). From a
computational perspective, we have the following definition.

Definition 1: A point is a bright (dark) elliptic featureat
scale� if the Hessian matrix ofI(x; y;�) is negative (positive)
definite at this point.

In scale-space theory [12],IxxIyy�I2xy is referred to as the
elliptic feature, which corresponds to the basic form of partial
differential equation. Figure 3 illustrates detection of elliptic
features under ideal conditions such as uniform intensity with
added white noise. Furthermore, we show that even in the
presence of fragmentation, elliptic features can be grouped
into convex sets to represent higher levels of representation.
The first row shows the raw data with and without random
noise ((b) and (d) are obtained by adding white noise to (a)
and (c), respectively). The second row shows that the bright
elliptic features foreach of the images is incomplete at a
given scale and can be highly fragmented. A potential high-
level abstraction may include grouping of fragmented regions
for convexity and enclosure, as shown in the third row. This
technique, however, fails in most 2D images due to variations
in cell sizes and staining, irregular shapes, and touching cells.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 3. Detection and grouping of elliptic features: (row 1) original synthetic
images without (a and c) and with (b and d) added white noise; (row 2)
detected bright elliptic features; and (row 3) grouping based on convexity and
enclosure.

IV. H ARMONIC CUT

The next step of the computational process is to remove
small elliptic regions, corresponding to small substructures

P

Q

I(x)

a b

I(intensity)

x(location)

Fig. 4. 1-dimensional harmonic cut

within the nuclei, and interpolate these regions. This step
corresponds to removing noise, which may be either random
noise (CCD noise) or more importantly speckle noise (internal
structures within the cell). To motivate our solution, consider
the one-dimensional interpolation problem of Figure 4 with
function I(x) in the interval of(a; b). The simplest method
is to fill this interval with the average of the two endpoints,
I(a)+I(b)

2
, or with the value of the closest endpoint at every

point on (a; b), but these techniques break continuity or
smoothness of interpolation. A better approach is to weight
the interpolation, at each pointx, as a function of its distance
to the boundary condition, e.g., letInew(x) = [(b� x)I(a) +

(x� a)I(b)]=(b� a). This linear interpolation is as if we cut
the function fromP to Q. The new function is continuous
with vanishing second derivative on(a; b). It is easy to show
that this representation is equivalent to minimizing1

2

R b
a
I2xdx

subject to the boundary conditions

�
I(a) = Ia
I(b) = Ib

The 2D case is more complex because theboundary of
the region to be removed is often noisy and irregular, and
it is not clear whether propagating intensity based on distance
transform will have desirable properties. One way to ensure
continuity is to regularize the solution by extending the 1D
solution to 2D or by minimizing the following functional:

1

2

ZZ
D

I2x + I2ydxdy (7)

whereD is the region to be removed, that is to say,I(x; y) is
supposed to be unknown inD. The Euler-Lagrange solution
to this optimization problem is the Laplace equation:

r2I = Ixx + Iyy = 0 (8)

with the Dirichlet boundary conditionIj@ �D(x; y), the restric-
tion of the original image on the boundary ofD’s complement
�D = 
�D where
 is the domain of definition of the entire
image. Equation (8) defines a 2-dimensional harmonic function
on the region to be removed, and thus we call this method
“harmonic cut”.

The Laplace equation is a special case of Poisson equa-
tion, which has been studied extensively [13]. In the actual
implementation, a small scale is selected and elliptic features
are detected. These features correspond to either noise or tiny
substructures (approximately 20 pixels) on the nuclei. The
corresponding regions are subsequently interpolated with a
harmonic function. Figure 5(b) shows detected elliptic features
at scale� = 2, where these bright dots, inside nuclei, are
known to be chromatin.
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(a) (b) (c)

(d) (e) (f)

Fig. 5. Detection of elliptic features and their interpolation with harmonic
cuts: (a) original image (same as Figure 1(a); (b) edges of bright elliptic
features at scale� = 2; (c) harmonic cut on features in (b); (d) zero-crossings
of (c); (e) removing small holes in (d); (f) displaying edge of (e) on the original
image.

Figure 5 shows the result of the harmonic cut. It is clear
that the edge detection has been improved when compared to
Figure 1. The harmonic cut, shown in Fig.5(f), can deal with
the failed cases in Figure 1.

A. Properties of harmonic cut

Harmonic functions are those functions that satisfy the
Laplace equation. The following propositions can be found
in any standard textbook [14] on complex/harmonic analysis.

Proposition 1: For any harmonic function, its value at any
point is equal to the average of its values along any circle
centered at that point, provided the function is defined within
the circle.

Proposition 2: Any non-constant harmonic function has no
maximum or minimum value inside the region in which it is
defined.

Proposition 1 indicates that harmonic functions are smooth.
In fact, Equation (7) shows that the maximum smoothness
has been reached by harmonic functions. According to Propo-
sition 2, if we remove one region and replace it with the
harmonic function defined by its boundary, there is no local
minimum/maximum in the removed region. Hence,harmonic
cut can remove all local singularities.

Koenderink introduced the concept ofcausality[12], [15],
which means that new level surfaces must not be created in
the scale-space representation when the scale parameter is
increased. This is one of the most important requirements for
any multiscale representation. The above analysis indicates
that harmonic cut are even stronger because of the inherent
properties of harmonic functions.

B. Discussion and comparison

This section concludes with a few insights into harmonic
cut and comparison to previous research.

1) The algorithm can also be applied to the detection of
dark regions, inside of nuclei, defined byIxx+ Iyy > 0

and IxxIyy � I2xy > 0, but ambiguities due to back-
ground may arise. However, once large bright regions
are detected, they provide the context to detect small
dark sub-regions.

2) Harmonic cut is used to interpolate a region that has
been detected by elliptic features regardless of its inten-
sity against immediate background.

3) Harmonic is applied for several iterations since the scale
of elliptic feature detection is very conservative, and the
detected features are usually smaller than their actual
sizes. It can be shown that this process does converge
by observing that the energy1

2

RR
I2x+I2ydxdy is always

decreasing.
4) Other interpolation strategies, such as bilinear or nearest-

point interpolations, can be used to initialize the solution
of the Laplace equation. However, smoothness in the
bounded region is not guaranteed.

An alternative technique proposed by Yanowitz and Bruck-
stein [16] combines thresholding based on magnitude of the
gradient followed by interpolating these points with the Lapla-
cian equation. In contrast, our interpolation method applies to
closed regions that are detected with elliptic features. Although
Yanowitz and Bruckstein’s method gives satisfactory results
in many cases, their method fails in our data set due to the
multiscale nature of cellular compartments.

V. REGULARIZED CENTROID TRANSFORM

At this stage of the computational process, each cell is
represented with a smooth surface corresponding toeach
of its subcompartments. The next step of the process is to
separate objects that are grouped together into a clump, e.g.,
touching one another. This is achieved usingRegularized
Centroid Transform(RCT), as shown in Figure 6. The intent
is to map vectors originating from the boundary of an ellipse
to its centroid. If these vectors can be computed, then the
entire boundary can be grouped together. This is true for both
boundaries and theirinterior points, e.g., grouping utilizes not
only the edges but also the region information. The main issue
is that the position of the critical centroid is unknown because
the lines normal to the boundary of the ellipse do not intersect
at a focal point.

A. Local centroids

Let I(x; y) be the original intensity image. At each point
(x0; y0), its equal-height contour is defined byI(x; y) =

I(x0; y0). Expanding and truncating the above equation using
Taylor’s series, we have the following estimation:

Ixu+ Iyv +
1

2
[Ixxu

2
+ 2Ixyuv + Iyyv

2
] = 0 (9)

whereu = x� x0 andv = y � y0, or in the standard form

1

2
wTHw + bTw = 0 (10)
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(a) (b)

Fig. 6. Even though normal lines to the boundary of the ellipse do not
intersect at a single point, RCT groups boundary points into a single focal
point.

whereH =

�
Ixx Ixy
Ixy Iyy

�
(x0;y0)

is the Hessian matrix,b =�
Ix
Iy

�
(x0;y0)

is the gradient of intensity,w = (u; v)T is the

centroid in the local coordinate system. Recall that the centroid
of a quadratic curve, defined by Equation (10), satisfies the
following linear constraint:

Hw + b = 0 (11)

If H is non-singular, then the centroid can be determined
directly, e.g.w = �H�1b. However, this is not always true.
If H is singular andb 6= 0, there exists no solution.

The zero set defined by���� Ixx Ixy
Ixy Iyy

���� = IxxIyy � I2xy = 0 (12)

is non-trivial, and can be further classified into two categories:
1) uniform regions that correspond to zeros of intensity

gradient of the image with the result that there is no
information to estimate the centroid, and

2) elliptic features that occur in non-uniform regions.

B. Regularized representation

Computation of the local centroid is hindered due to the sin-
gularities of the Hessian and noise. The problem is inherently
ill-posed and needs to be regularized [17]. Let the centroid at
(x; y) be denoted by(u(x; y); v(x; y))T , then the regularized
model can be expressed as:

minE(u; v) =
1
2

RR
jjH � (u; v)T + bjj2+

�(jjrujj2+ jjrvjj2)dxdy
(13)

or

minE(u; v) =
1
2

RR
(Ixxu+ Ixyv + Ix)

2+

(Ixyu+ Iyyv + Iy)
2+

�(u2x + u2y + v2x + v2y)dxdy

(14)

where the first and second terms are the error of estimation,
the third term is the smoothness constraint, and�(> 0) is the
weight factor.

Definition 2: We refer to the solution of Equation (14), a
two-component vector field(u�; v�) := argmin(u;v)E(u; v),
as theregularized centroid transform(RCT).
The main features of RCT are:

� RCT is a vector field that represents the displacement to
the centroid at each point. This vector field is different

from the normal vector. In the ideal case, shown by Figure
6, RCT of every pixel on the boundary points to the same
centroid, e.g., this vector field is well focused.

� The vector field is dense everywhere (even for binary
image, a dense vector field is computed at each point).

� RCT is regularized under smoothness constraint. Smooth-
ing is required since random and speckle noise can alter
the position of the centroid.

� This is an intermediate step toward final segmentation.

C. Discrete solution of RCT

The Euler-Lagrange equations [18] of the variational prob-
lem Equation 14 are:8>><
>>:

Ixx(Ixxu+ Ixyv + Ix) + Ixy(Ixyu+ Iyyv + Iy)�

�(uxx + uyy) = 0

Ixy(Ixxu+ Ixyv + Ix) + Iyy(Ixyu+ Iyyv + Iy)�

�(vxx + vyy) = 0

(15)
Substituting the finite difference approximations of the

partial derivatives into the above partial differential equations,
we have8>>>>>>>>>><

>>>>>>>>>>:

Ixx[Ixxu(x; y) + Ixyv(x; y) + Ix]+

Ixy[Ixyu(x; y) + Iyyv(x; y) + Iy]�

�[u(x+ 1; y) + u(x� 1; y)+

u(x; y + 1) + u(x; y � 1)� 4u(x; y)] = 0

Ixy[Ixxu(x; y) + Ixyv(x; y) + Ix]+

Iyy[Ixyu(x; y) + Iyyv(x; y) + Iy]�

�[v(x+ 1; y) + v(x � 1; y)+

v(x; y + 1) + v(x; y � 1) � 4v(x; y)] = 0

(16)

which can be rewritten as follows�
a � u(x; y) + b � v(x; y) = e

c � u(x; y) + d � v(x; y) = f
(17)

where

a = I2xx + I2xy + 4�

b = IxxIxy + IxyIyy
c = b

d = I2xy + I2yy + 4�

e = �IxIxx � IyIxy + �[u(x+ 1; y) + u(x� 1; y)+

u(x; y + 1) + u(x; y � 1)]

f = �IxIxy � IyIyy + �[v(x+ 1; y) + v(x � 1; y)+

v(x; y + 1) + v(x; y � 1)]

(18)
These coefficients are the functions of partial derivatives in
the neighborhood of(u(x; y); v(x; y)). It is easy to show that
the determinant� = ad� bc > 16�2 is always positive, and
the solution of Equation 17 is:�

u(x; y) = de�bf

�

v(x; y) = �ce+af
�

(19)

Hence we can compute a new set of estimates(un+1; vn+1)

from the estimated partial derivatives and the previous esti-
mates(un; vn) by�

un+1(x; y) = den�bfn

�

vn+1(x; y) = �cen+afn

�

(20)
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The initial solution(u0; v0) can be set to0. The boundary
condition for solution of the above PDEs are based on Neu-

mann boundary conditions:

�
@u
@n

= 0
@v
@n

= 0
wheren is the normal

vector to the boundary. For the Neumann boundary condition,
it is assumed that the data outside the domain of definition are
a reflection of the data inside the domain.

D. Speed-up

The representation just described indicates that the compu-
tational complexity of RCT is very high. However, a number
of coefficients can be precomputed. Let’s rewritee and f in
the following form:

e = e0 + 4��u

f = f0 + 4��v
(21)

where

e0 = �IxIxx � IyIxy
�u = 1

4
[u(x+ 1; y) + u(x� 1; y) + u(x;y + 1) + u(x; y� 1)]

f0 = �IxIxy � IyIyy
�v = 1

4
[v(x+ 1; y) + v(x� 1; y) + v(x; y + 1) + v(x; y � 1)]

(22)
Then Equation 20 can be rewritten as(

un+1(x; y) =
d(e0+4��u

n)�b(f0+4��v
n)

�

vn+1(x; y) =
�c(e0+4��u

n)+a(f0+4��v
n)

�

(23)

or �
un+1 = u0 + �11�u

n + �12�v
n

vn+1 = v0 + �21�u
n + �22�v

n (24)

where 8>>>>>><
>>>>>>:

u0 =
de0�bf0

�

v0 =
�ce0+af0

�

�11 =
4�d
�

�12 = �4�b
�

�21 = �4�c
�

�22 =
4�a
�

(25)

are coefficients independent of the iteration time. They can
be precomputed and stored. As a result, each iteration needs
computation of 4-point averages ofu andv. It is easy to show
that its computational complexity is of the same order as the
linear diffusion.

VI. PARTITIONING VECTOR FIELD

The final step of segmentation is to compute a partition for
RCT. Consider an autonomous system of differential equations�

dx
dt

= u(x; y)
dy

dt
= v(x; y)

(26)

Definition 3: An orbit or trajectoryof the system (26) is a
set! � 
 of the formf(x(t); y(t))jt 2 Tg, where(x(t); y(t))
is a solution of (26) defined on time intervalT .

Definition 4: An equilibrium point of the system (26) (also
called acritical or singularpoint) is a point(x0; y0) 2 
 such
that u(x0; y0) = 0 andv(x0; y0) = 0.

Theorem 1:(a) Every point of
 belongs to precisely one
orbit of the system (26). (b) If(x0; y0) is an equilibrium point
of the system thenf(x0; y0)g is an orbit.

A

B

C

D

O
fixed point(node)

Fig. 7. Partition of vector field: points A, B, C, and D are grouped into one
region.

According to this theorem, a partition RCT can be obtained
as follows. Every non-singular pixel can be repeatedly moved
to a new position by solving Equation (26), and every singular
point is in fact a fixed (possibly unstable) point. Those points
that move to the same singular point can be grouped together.
This grouping technique is illustrated in Figure 7. There may
be some exceptions in this strategy: (1) when a singular point
may go out of the image domain, and (2) both eigenvalues of
a singular point are purely imaginary; (3) there may be limit
cycles. In these cases, we simply discard these points. Since
we have not found limit cycles in any of our experiments, the
conjecture is that there is no limit cycle in RCT.

VII. EXPERIMENTAL RESULTS AND COMPARISON

(a) (b) (c)

Fig. 8. Comparison of RCT and distance transform: (a) Original binary
image; (b) RCT energy function shows a smooth surface and a fixed point
for each region; (c) traditional distance transform has many local maxima.

We have implemented Vincent and Soille’s watershed algo-
rithm [19] for comparative analysis. Their method works well
only when the boundaries are smooth. Yet, the boundary is
often noisy, which leads to oversegmentation. Figure 8(b)(c)
compare the RCT energy function (the arclength of the tra-
jectory) with the traditional distance transform. It is clear that
RCT is smooth and each region has a corresponding fixed
point. Figures 9 shows segmentation results for two fields of
cells. and the comparison to the watershed technique, which
indicates significant oversegmentation. We have applied our
technique to 68 images with a total of 2417 cells, and 61 cells
were incorrectly segmented. Some of these images can be
found in http://vision.lbl.gov/Projects/BioSig in the “Image”
category.
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(a) (b) (c)

(d) (e) (f)

Fig. 9. Segmentation of two fields of cells: (column 1) the original images;
(column 2) results by our approach (harmonic cut + RCT); (column 3) over-
segmented results by the “distance transform + watershed” strategy.

VIII. C ONCLUSION

This paper has outlined a layered computational technique
to delineate overlapping nuclei and to extract their internal
substructures. Our approach is model-based and we have
developed computational operators to eliminate the need for
ad-hoc techniques. The first step of the process is removal of
random and speckled (internal substructure) noise, which are
subsequently interpolated with harmonic cut. The next step
of the process delineates overlapping regions through a novel
process that we call regularized centroid transform (RCT).
In each step of the process, we have given examples and
compared our results to previous research. Our approach has
been applied to high throughput analysis of images obtained
through a confocal microscope, and it is currently in produc-
tion use. It is possible for the proposed method to produce
incorrect segmentation due to inherent ambiguities that are
present from a single focal plane, e.g., 2D analysis. A more
robust approach will need 3D analysis. We suggest that RCT
is a generic blob detection and separation technique that can
be used as a generic tool for early vision problems.
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