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Model-Based Neural Decoding of Reaching
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Abstract—A new paradigm for decoding reaching movements
from the signals of an ensemble of individual neurons is presented.
This new method not only provides a novel theoretical basis for the
task, but also results in a significant decrease in the error of re-
constructed hand trajectories. By using a model of movement as a
foundation for the decoding system, we show that the number of
neurons required for reconstruction of the trajectories of point-to-
point reaching movements in two dimensions can be halved. Ad-
ditionally, using the presented framework, other forms of neural
information, specifically neural “plan” activity, can be integrated
into the trajectory decoding process. The decoding paradigm pre-
sented is tested in simulation using a database of experimentally
gathered center-out reaches and corresponding neural data gener-
ated from synthetic models.

I. INTRODUCTION

RECENTLY, there has been a surge of interest in assisting
individuals who are paralyzed or have other peripheral

nervous system ailments by tapping directly into the undamaged
motor centers to allow controlled prosthetic movements. Neural
signals in the motor (M1) and pre-motor areas of cortex are
known to generate voluntary movement. When recorded during
movements repeated to the same target or along the same path,
neurons produce a series of characteristic output pulses (action
potentials) at a similar rate. Furthermore, the pattern of neural
firing has been found to relate to aspects of the movement, speed
and direction [1], or target location [2]. More generally, it is
widely believed that M1 neurons act as control signals to drive
movements, a complex dynamical system [3].

Functional MRI studies of brain activity have shown that
neural activity in the relevant brain areas continues to be present
when the signals are blocked from reaching muscles (e.g., due
to spinal cord injury). Thus, the task of the neural prosthetic
decoder is to deduce the intended movement from these neural
signals. We will show that if we loosely restrict the prosthetic
user’s reaching movements, the performance of the system can
be enhanced dramatically.
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A. Previous Approaches

The first generation of interface systems has relied primarily
on a simple inversion of the mapping of neural signals to reach
target or trajectory, where the mapping is discovered explicitly
(i.e., as a separate step of the process) or implicitly from training
data. A simple representation of this mapping, , from target

or trajectory space , to neural signal space, at time
is

...

...

(1)

where the neural signal vector has been expanded to emphasize
the multiple neural channels it contains. The corresponding in-
verse is used to estimate or .

One benefit of assuming a simple linear mapping is that the
appropriate inverse is a linear filter, which may be implemented
with low latency as in the recent demonstrations of cortical con-
trol with visual feedback [4]–[8]. The performance of these in-
verse-mapping prosthetic interfaces is limited primarily by the
amount of neural information, specifically the number of neu-
rons, that can be interfaced through chronically-implanted elec-
trode arrays. Estimates of the number of neural channels re-
quired for “acceptable” performance have ranged from as high
as 500 to as low as 20.

Prosthetic interfaces may currently be divided into two cat-
egories by the object of their decoding process, in (1). The
first decode the target or goal of a movement, and the second
the time evolution of the arm’s trajectory.

1) Target Location Estimation: Target-decoding systems
commonly rely on “plan” activity—neural activity which
appears in the period between target onset and a movement
cue, and directly encode aspects of a movement such as target
direction or distance.

Recent decoding systems in this genre [8]–[10] have used
probabilistic approaches (maximum likelihood (ML) or more
general Bayesian methods) to generate estimates of the target
locations of center-out reaches from plan activity. These types
of decoders would be very useful in an environment in which the
user wishes to pick between a set of discrete reach endpoints.

2) Trajectory Reconstruction: Under the alternative de-
coding paradigm, the prosthetic interface seeks to generate
an estimate of the intended trajectory of a user’s arm. These
systems, have exclusively relied on “movement” activity which
occurs during an ongoing movement and typically displays a
time evolution which reflects aspects of the movement such
as speed, direction, and/or force. While some studies have
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Fig. 1. Top: repeated reaching movements to a given endpoint share many similarities, but also display variation. Shown are the trajectories of eight center-out
reaches to a point 10 cm above the origin, and the canonical trajectory formed by their average (thick line). To highlight the variation, the trajectories have been
scaled and rotated slightly so that they line up exactly at beginning and end. Bottom: 20 channels of synthetic neural signals (one channel per row) overlaid on a the
vertical component of the velocity of one of the reaches from above, both sampled at 10 ms. The width of the hash marks is proportional to the number of action
potentials observed. Neurons produce pulse-like signals—a prosthetic interface uses the time of these pulses from an ensemble of neurons to decode movement
intention. Here, the top ten neurons prefer downward movements while the bottom ten prefer upward ones.

examined continuous tracing movements [10], most focus on
the reconstruction of point-to-point reaches. An argument may
be made that these are the most commonly initiated behaviors,
and thus an appropriate concentration [11].

Significant effort has been invested in reconstructing arm tra-
jectories that most closely match the corresponding movements
actually executed by behaving monkeys. Initial systems typi-
cally relied on linear filters or a related method known as the
“population vector.” However, while a linear mapping between
movement activity and arm movements in some cases provides
an acceptable approximation [12], the relationship is inherently
nonlinear, and therefore nonlinear decoding methods often pro-
vide an increase in performance [4], [13], [14].

B. First and Second Generation

Unfortunately, the trajectories reconstructed using what we
term “first-generation” inverse mapping methods sometimes
only loosely resemble the time course expected for the corre-
sponding real reaching movements (as will be shown in Fig. 2).
Furthermore, the amount of history used by the decoder is often
large, on the order of 1 s or more, making the reconstruction
of more abrupt movements difficult. “Second-generation”
prosthetic decoding systems offer improved performance by
including some model of the reaching arm. For example, in
[15], a model of arm kinematics is used to enforce some aspects
of reaching movements, such as smoothness, on the decoder.
While this approach meets our second-generation criteria of
including a prior model of arm motion, the assumption that
the arm moves in a random walk—that the innovation in its
state from one time period to another is controlled by a random
process—is incomplete in the context of point-to-point reaches
or any movement which proceeds in a directed manner. If we
assume that the user wishes to make goal-directed movements,
then what is required is not only a prior model of arm kine-
matics, but also a complete model of the reach.

Finally, little attention has been paid to using the plan activity
to generate appropriate trajectories for reaches. In addition, the
combination of plan and movement neural activity, in the con-
text of reconstructing trajectories, is unexplored. In Section II,

with the assumption that the user wishes to make a goal-directed
reach, we present a simple conceptual framework for achieving
both of these goals while also delivering increased accuracy
with only movement activity.

II. MODEL-BASED REACH DECODING

The basic premise of our decoder is that reaching movements
are primarily goal directed. In other words, intended arm move-
ments can be represented by a transformation from a point in
goal space to a multidimensional trajectory in time. Fig. 1 de-
picts a set of hand trajectories recorded during repeated reaching
movements to the same target. They are quite similar in several
respects, ranging from a lack of loops or sudden stops and starts,
to the actual time of flight and sigmoidal shape. These aspects
prove to be quite general across different scales of movement
and between individuals. However, there is variation in the ob-
served trajectories. This variation is a combination of intentional
variation caused by the whim of the test subject and uninten-
tional variation caused by noise inherent in the neuro-muscular
system. Thus, a given observed trajectory can be repre-
sented as

(2)

where is the goal location in some representational space and
represents both intended and unintended variation. The

thick black line in Fig. 1 is the “canonical trajectory” , an av-
erage of many observed trajectories (the gray lines) to a partic-
ular endpoint, and variation in these trajectories is apparent. If
the mapping is well understood, and fully accounts for the sub-
ject’s goals, the variation term is small, and the canonical tra-
jectory is a good approximation of the specific trajectory. Thus,
we modify (1) to account for the goal-directed nature of the tra-
jectory and anticipate the model-based decoding approach

...

...

(3)
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Fig. 2. Trajectories reconstructed using the model based paradigm presented in this work more closely resemble real trajectories than those reconstructed using
simple inverse techniques (such as linear filters). Shown here is the reconstruction of an intended movement using the activity of 52 movement-tuned neurons.
Inset: trajectory reconstruction in two dimensions is even more revealing.

Here, the movement goal has been converted into a unique
trajectory which is encoded in peri-movement activity
through the transformation . Below, we show how ML can be
used to extract both goal and trajectory estimates.

If we observe many reaching movements, we find that trajec-
tory variation is primarily specified by the target location. This
suggests a parameterization for the model discussed above, and
thus that increased decoder accuracy may be obtained by using
the neural data to estimate this parameter. We can write the like-
lihood of the arm position at any time during a movement as

(4)

where contains the time of every action potential observed
from neuron from the beginning of the observation period up
to time .

Notice that this likelihood formulation enables the straight-
forward integration of plan activity into the estimation system.
As discussed above, plan activity is defined as containing infor-
mation about the goal or target of the reach. Thus, it introduces
a new term to the likelihood function, as follows:

(5)
Here, is the signal observed from movement neuron
and that from plan neuron .

Under many conditions, the optimal trajectory estimate will
correspond to the endpoint which maximizes the likelihood.
That is

(6)

(7)

Intuitively, the ML estimate of the current arm position is gen-
erated by evaluating which of a family of arm trajectories—in-
dexed by the movement endpoint—best matches the data, and
then choosing the current position along the best trajectory for
the instantaneous trajectory estimate. In cases with an abun-
dance of neural data and highly variable trajectories, a Bayesian
solution, which essentially averages between potential trajec-
tories in a probabilistically optimal manner, may be preferable
[16].

It is important to recognize that neither the trajectory model
, nor the probability distributions describing the mapping be-

tween neural signal and arm trajectory and/or goal location, are
fully known. There are several approaches for approximating

. One could refer to the literature and use models such as
minimum jerk [17]; one could generate a complex statistical
model from data [16]; or, one could generate a simple model
from available data. This last approach is used in the following
section. A statistical characterization of the neural signals could
also be found empirically or assumed. Further consideration of
these approximations can be found in Section V.

III. SIMULATION FRAMEWORK

To demonstrate the utility of our decoder paradigm, we sim-
ulated it using synthetic neural data. This is somewhat atyp-
ical, as the performance of neural prosthetic decoding algo-
rithms is usually demonstrated using experimentally gathered
neural data. However, in order to most clearly present the bene-
fits of model-based decoding over first generation inverse-map-
ping approaches, we chose to entirely avoid the problem of
estimating neural signal mappings. Rather, as will be shown,
we synthesized neural data using the simple models described
below. Using the following models for the relationship between
neural activity and movement, we generated neural signals to
correspond to movements in a database of 1369 two-dimen-
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sional point-to-point reaches obtained from a single human sub-
ject. The human subject performed center-out reaches to visual
point targets in a 20-cm square fronto-parallel workspace. The
trajectory of the hand was captured using an optical tracking
system and was considered acceptable if it satisfied very broad
conditions, the primary one being that the reaction time was less
than 0.5 s. In Section V, we address the impact of using synthetic
neural data on the simulation results.

A. Neural Signals

In the prosthetic application, the intended movement cannot
be directly observed. Rather, the decoder has signals from a
large number of individual neurons each of which encode some
aspect of the intended movement. Preprocessing of the signal
on each interfaced electrode yields the times that a given neuron
emits an action potential. Thus, the resulting data set constitutes
a vector of observations of point process time series, one dimen-
sion for each neuron. The bottom panel of Fig. 1 depicts data that
might be gathered from an ensemble of neurons during a reach
along one of the pictured trajectories.

It has been shown that modeling neurons as firing randomly in
time as an inhomogeneous Poisson point process captures much
of the statistical variation of neural firing [18]. Thus, at time ,
we model the distribution of the number of action potentials,

, observed within a window of duration as

(8)

where is the integral of , the instantaneous rate of the
process, over the time window.

1) Movement Activity: Motor cortical neurons have been
shown to fire proportionally to many variables, including hand
velocity, hand force, and muscle forces within the arm [3].
However, under many circumstances, observed firing rates
approximately vary with the cosine of the angle between hand
velocity and a preferred direction which differs from neuron to
neuron [1]. This model for movement neural activity is often
dubbed “cosine tuning.” As mentioned above, real neurons
have more complex behavior than this simple linear tuning.
However, since the purpose of this work is not to provide a
better first generation inverse model, but rather to examine a
new decoding paradigm, we choose the following simple tuning
function for our synthetic neurons. After digital sampling, the
mathematical representation of the sampled Poisson process
mean for neuron , , is

(9)

where is the time quantization, and are constants, and
is the average velocity of the trajectory over . The

term reflects the observed result that the neural signal precedes
the corresponding arm movement by some delay, typically on
the order of 100 to 200 ms. In our simulations, we fix this value
at 100 ms. Finally, is a unit vector in the preferred motion

direction of the neuron; this is the only parameter that is varied
on a per-neuron basis in our simulations.

2) Plan Activity: It has been reported that during a task in
which a plan period is enforced by inserting a random-length
period between target presentation and a go-cue, neural firing
rates in certain regions vary both as a function of the direction
and distance of the target from a central touch point [2]. There-
fore, for similar reasons as used in modeling movement activity,
we adopt a vector-cosine model for the tuning of plan activity.
Furthermore, in agreement with the typical understanding, in
our model, the firing rate of plan neurons remains constant
throughout the pre-movement period when their activity is
related to reaches. Thus, for neuron

(10)

where is the mean of the Poisson process over the duration
of the pre-movement interval , , and constants, and
is a unit vector in the direction of preferred targets. Most ex-
perimental studies of the tuning of plan activity enforce a delay
period. In natural reaching movements, the duration of plan ac-
tivity appears to be on the order of 200 ms. In our simulations,
we assume a constant plan period with a conservative duration
of 150 ms.

B. Decoding Algorithms

A major reason for the proliferation of first generation in-
verse-mapping decoding systems is the complexity of the map-
ping between arm movements and neural activity. In order to
avoid modeling and learning this mapping, as mentioned above,
we have chosen a simple linear tuning model for movement ac-
tivity. A further benefit of this design choice is the resulting
simple inverse-mapping decoder. For linear tuning, the min-
imum mean square error decoder is just a linear filter. If one
rewrites (9) for neuron as

(11)

then, given the observed firing of neurons concatenated into
a column vector , the standard linear unbiased estimator for

is given by

(12)

where is a matrix formed from the concatenation of the pre-
ferred directions of the neurons. The trajectory of the arm can be
reconstructed by summing the estimated velocities. This result
closely resembles that of [4] except that our added knowledge
of the neural tuning permits the direct formation of the matrix

rather than requiring its estimation.
We tested the model-based decoding paradigm by estimating

the ML trajectory as described above. Previously ([17]), we used
an analytic minimum-jerk model to represent canonical trajec-
tories to a particular endpoint. In this work, we make use of a
potentially more powerful approach—using the data set itself to
generate the movement model. Canonical trajectories are gen-
erated from our database by averaging the reaches, aligned by
movement onset, whose endpoints are close (within a certain



KEMERE et al.: MODEL-BASED NEURAL DECODING OF REACHING MOVEMENTS: A ML APPROACH 929

Fig. 3. Top: Average mean square error for a ML model-based decoder with 36 canonical trajectories as the number of movement-tuned neurons increases. The
shaded regions show the standard errors of the averages. Notice how the addition of plan activity has a significant impact on system performance when the number
of movement neurons is low to moderate. Bottom: In the regime of current neural interfaces (about 100 electrodes), the simple 36 canonical trajectory decoder on
average has half of the error of a linear filter. As the amount of neural data increases, the complexity of the ML decoder would have to be increased to maintain
this performance differential.

-norm distance). While this approach is attractive in its gen-
erality, for a fixed data set the spatial density and statistical accu-
racy of the canonical trajectories obtained clearly trade off; we
chose the actual number of canonical trajectories for this work
in an ad hoc manner.

Also previously, no provision was made for estimating the
start of the movement. In our data set, this task is made nontrivial
by variation in the duration of the interval between the time
the subject was cued to move and began moving (the “reaction
time”). While the formulation of [16] proves quite helpful for
this particular problem, for this work we simply expand the ML
calculation to include a variable initial delay. For each canonical
trajectory, the ML delay is calculated, and then the ML trajec-
tory is chosen from the optimally delayed canonical trajectories.

IV. SIMULATION RESULTS

We generated synthetic neural activity using the vector-co-
sine tuning models for plan and movement activity described
in Section III. Preferred directions are chosen at random, and
each neuron modulates its firing rate between 0 and 20 spikes/s,
with the maximum and minimum rates corresponding to a max-
imum velocity of 0.6 m/s (for movement neurons) or a max-
imum displacement of 50 cm (for plan neurons) in the preferred
and anti-preferred directions respectively. The canonical trajec-
tories are indexed by endpoint, with the endpoints evenly spaced
throughout the workspace. Each canonical trajectory is calcu-
lated by averaging those trajectories in the database whose end-
points lie within a set distance of the canonical endpoint, ex-
cluding the trajectory to be reconstructed. A spike train corre-
sponding to the test trajectory is generated for each neuron in

our ensemble using (8) with a sampling period of 50 ms. Then,
using (9), (10), and (5), for each canonical trajectory, the condi-
tional likelihood of the ensemble of neural signals is calculated.
Finally, the ML estimate is generated using (7). We repeated
this process about 200 times to generate the averaged results of
Figs. 3 and 4.

Fig. 2 compares a trajectory reconstructed using the inverse-
mapping approach with the ML estimate generated from the
model-based decoding paradigm using only movement-tuned
neural activity. In this particular example, the endpoint of the
linear filter reconstruction is somewhat close to that of the ac-
tual movement. However, as mentioned earlier, what is apparent
is the unrealistic nature of the trajectories that are typical of
first generation systems. The ML model-based algorithm, on
the other hand, with only 36 canonical trajectories, produces a
movement which is quite natural, as well as more closely fol-
lowing the actual trajectory.

Fig. 3 depicts the dependence of trajectory error on the
number of neurons available to the decoder. Because medical
and electrode technology limit the number of neurons to be
interfaced, an interesting comparison of decoding techniques
involves the number of neurons required to achieve acceptable
performance. If we arbitrarily select the maximum acceptable
mean square trajectory error to be 10 , then the ML
approach achieves this level of accuracy with less than half of
the neurons necessary for the standard linear filter approach
(26 versus 67). The dashed gray line in Fig. 3 shows how the
performance of a decoder based only on movement activity
is increased through the addition of the plan activity of ten
neurons. Because the plan activity maps directly to goal space,
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Fig. 4. Performance of a ML decoder is limited by the trajectory model underlying it. Depicted are the average mean square error for decoders of increasing
complexity as the number of movement-tuned neurons increases.

with limited overall neural information the addition of these
ten neurons decreases decoder error significantly. Specifically,
notice that with the ten additional plan neurons, the number of
movement neurons required for the 10 level of accuracy
drops to about 12.

The addition of plan activity, however, highlights the error
floor that becomes apparent with increasing amounts of neural
information. As the variation term, of (2), begins to over-
take neural Poisson noise as the main source of reconstruction
error, the ML framework of the model-based estimation begins
to degrade. Recall that the variation term ( in (2)) is inversely
related to the efficacy of the canonical trajectory mapping. Thus,
if the number of canonical trajectories is increased, the error
floor should be lowered. This is apparent in Fig. 4, where the
performance of ML decoders with 36, 100, and 256 canonical
trajectories are compared. However, in the limited neural infor-
mation case, fewer canonical trajectories provide less oppor-
tunity for reconstructing noise, hence we observe no increase
in performance. Importantly, the addition of even a few (e.g.,
10–20) plan neurons significantly improves performance in this
regime. An alternate approach which avoids these problems is to
form the problem in a Bayesian framework, allowing for the re-
constructed trajectory to deviate from an expected canonical one
[16]. In this work, however, as we were interested in the more
common case of somewhat limited neural information (typically
on the order of 100 neurons), further optimization was unnec-
essary.

V. DISCUSSION

While the results of the simulation appear promising, the
practical implementation of a model-based neural prosthetic
interface requires consideration of details that are partially
avoided in the simulation framework.

A. Estimating Neural Tuning and Canonical
Trajectory Models

As discussed above, the actual mapping between neural sig-
nals and movement is undoubtedly nonlinear. This clearly will
have a negative effect on any system that lacks a perfect model
for the mapping. In the model-based decoding paradigm, there

are three approaches to dealing with the problem of estimating
neural tuning from data. First, using traditional techniques, an
analytical linear or nonlinear mapping can be estimated, and
simply used instead of the simple linear model used in this work.
Second, the probability densities or
can be directly estimated from data for each neuron. The ensuing
result is an ensemble of neural firing templates corresponding to
each canonical trajectory or endpoint. The final approach is to
use an appropriate first generation inverse-mapping estimator to
generate an initial trajectory estimate, and then refine it using a
reach model in a mathematically similar procedure to that pre-
sented here.

A related problem is that the mapping may depend on the ini-
tial condition of the hand (i.e., initial posture). This is a more
troubling issue due to the exponential difficulty of evaluating
the neural-movement mapping for all possible postures, and re-
mains an open problem. However, as long as the movement
model is sufficiently accurate, a model-based system will al-
ways require fewer neurons than first generation inverse-map-
ping decoders to achieve an equivalent performance level.

One of the more interesting current problems in the field is
designing the decoding system to enhance the adaptation ability
of the neural circuits that interface it. In a situation in which two
systems are simultaneously adapting to each other, there is the
potential for either great gains in the rate of improvement or, al-
ternatively, significant delays. While both canonical trajectory
and neural tuning models could easily be made to adapt over
time, we are still considering optimal methods for approaching
the doubly adaptive system problem from the model-based de-
coding perspective.

In addition to neural signal mapping, the estimation of
canonical trajectories can be difficult, especially if one wishes
to expand the space of possible movements. Since a purely
data-driven approach requires larger and larger data sets to learn
more complex sets of movement, when a more general model
is sought the best solution may be a synthesis of analytical and
data-driven approaches. Perhaps the most rigorous approach
would be a Bayesian method similar to that found in [16]. These
types of modifications are especially necessary in situations in
which the basic restriction of the model-based decoding para-
digm—that movements are point-to-point reaches—is violated.
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If, for instance, there is the potential for nonreach-like move-
ments, or dramatically perturbed trajectories, a model-based
decoder must be able to interpolate novel unusual movements
from its basic family of canonical ones.

B. Computational Cost

The second aspect of the model-based decoding framework
that was not addressed in our simulation was that of computa-
tional efficiency. In fact, one aspect in which the ML model-
based approach is inferior to simple first-generation systems is
in the amount of computational resources required. Computa-
tional complexity translates into a limiting factor for an imple-
mentation through the time required to generate an estimated
trajectory. Ideally, a neural prosthetic interface should not intro-
duce a delay into the users movements. Thus, its latency should
be less than the approximate transit time of neural signals to
the arm (about 100 ms), and its throughput (i.e., the number
of neural channels that can be processed at a greater-than-real-
time rate) should be larger than the number of available neurons.
Using Matlab, we could decode a one second trajectory from
the signals of an ensemble of 100 neurons in approximately 1
s. Previous experience suggests that the computation time of
the ML algorithm can be reduced by a factor of ten using opti-
mized C-code on a commercial off-the-shelf desktop computer,
or a factor of 100 through the use of an ASIC, which would
have the further advantage of being portable. Thus, we expect
to use the system as described here for real-time prosthetic feed-
back in the same manner linear decoders are used. More funda-
mentally, however, in a prosthetic system, computational costs
for increased performance are currently, and will most likely
continue to be, much lower than costs involved with alterna-
tive methods for increasing performance, such as increasing the
number of chronically implanted electrodes or training the user
over a long period of time.

VI. CONCLUSION

We have shown that using a goal-directed model of reaching
movements as a basis for a prosthetic decoder can result in
significant performance increases over first generation in-
verse-mapping decoders. Additionally, this paradigm provides
for straightforward integration of movement activity with
target-tuned plan activity. Furthermore, the basic method
of model-based decoding could be used to integrate as yet
undiscovered types of neural activity, or even the local field
potentials into an estimate of the instantaneous hand trajectory
[19].

One of the main reasons for using the ML mechanism for
generating the optimal model-based trajectory estimate in this
work was its clarity and intuitive appeal. Its performance also
proves to be competitive with the current alternatives, more
than halving the number of neurons required for a given level
of reconstruction error. While more development of the actual
technique is necessary, we have demonstrated that decoding
of goal-directed movements can and should take their nature
into account. Therefore, we would suggest that this is the

appropriate paradigm for extracting maximum benefit for
patients with neural interfaces.

ACKNOWLEDGMENT

The authors would like to thank Dr. M. Churchland for pro-
viding the movement data we have used for this study. We would
also like to thank G. Santhanam and B. Yu for their advice and
assistance.

REFERENCES

[1] D. Moran and A. Schwartz, “Motor cortical representation of speed
and direction during reaching,” J. Neurophysiol., vol. 82, no. 5, pp.
2676–2692, Nov. 1999.

[2] J. Messier and J. Kalaska, “Covariation of primate dorsal premotor
cell activity with direction and amplitude during a memorized-delay
reaching task,” J. Neurophysiol., vol. 84, no. 1, pp. 152–165, July 2000.

[3] E. Todorov, “Direct cortical control of muscle activation in voluntary
arm movements: a model,” Nature Neurosci., vol. 3, no. 4, pp. 391–398,
Apr. 2000.

[4] J. Wessberg et al., “Real-time prediction of hand trajectory by ensembles
of cortical neurons in primates,” Nature, vol. 208, pp. 361–365, Nov.
2000.

[5] D. Taylor, S. I. Helms-Tillery, and A. Schwartz, “Direct cortical control
of 3D neuroprosthetic devices,” Science, vol. 296, no. 3, pp. 1829–1832,
June 2002.

[6] M. D. Serruya, N. G. Hatsopoulos, L. Paninski, M. R. Fellows, and J. P.
Donoghue, “Instant neural control of a movement signal,” Nature, vol.
416, no. 6877, pp. 141–142, Mar. 2002.

[7] J. Carmena et al., “Learning to control a brain-machine interface for
reaching and grasping by primates,” PLoS Biol., vol. 1, no. 2, pp.
193–208, Nov. 2003.

[8] K. V. Shenoy et al., “Neural prosthetic control signals from plan ac-
tivity,” Neuroreport, vol. 14, no. 4, pp. 591–596, Mar. 2003.

[9] D. Meeker, S. Cao, J. W. Burdick, and R. A. Andersen, “Rapid plasticity
in the parietal reach region demonstrated with a brain-computer inter-
face,” presented at the Soc. Neurosci. Conf. 357.7, 2002, Abstr. Viewer
and Itinerary Planner Program No. 357.7.

[10] M. Serruya, N. Hatsopoulos, M. Fellows, L. Paninski, and J. Donoghue,
“Robustness of neuroprosthetic decoding algorithms,” Biol. Cybern.,
vol. 88, no. 3, pp. 219–228, Mar. 2003.

[11] M. S. A. Graziano, D. F. Cooke, C. S. R. Taylor, and T. Moore, “Distri-
bution of hand location in monkeys during spontaneous behavior,” Exp.
Brain Res., vol. 155, pp. 30–36, Mar. 2004.

[12] B. Amirikian and A. Georgopoulos, “Directional tuning profiles of
motor cortical cells,” Neurosci. Res., vol. 36, no. 1, pp. 73–79, Jan.
2000.

[13] J. C. Sanchez et al., “Input-output mapping performance of linear
and nonlinear models for estimating hand trajectories from cortical
neuronal firing patterns,” in Int. Workshop Neural Networks for Signal
Processing, Martigny, Switzerland, Sept. 2002, pp. 139–142.

[14] J. Chapin, K. A. Moxon, R. S. Markowitz, and M. A. L. Nicolelis,
“Real-time control of a robot arm using simultaneously recorded
neurons in the motor cortex,” Nature Neurosci., vol. 2, no. 7, pp.
664–670, July 1999.

[15] W. Wu et al., “Neural decoding of cursor motion using a kalman filter,”
in Neural Inform. Processing Syst., 2003, vol. 15.

[16] C. T. Kemere, M. Sahani, and T. H. Meng, “Robust neural decoding of
reaching movements for prosthetic systems,” in Proc. IEEE Engineering
in Medicine and Biology Society 25th Ann. Conf.(EMBS ’03), Cancun,
Mexico, Nov. 2003, pp. 2079–2082.

[17] C. T. Kemere, G. Santhanam, B. M. Yu, K. V. Shenoy, and T. H. Meng,
“Decoding of plan and peri-movement neural signals in prosthetic sys-
tems,” in Proc. IEEE Workshop Signal Processing Systems (SIPS ’02),
San Diego, CA, Oct. 2002, pp. 276–283.

[18] C. Koch, Biophysics of Computation. New York: Oxford Univ. Press,
1999.

[19] G. Santhanam, M. M. Churchland, M. Sahani, and K. V. Shenoy, “Local
field potential activity varies with reach distance, direction, and speed in
monkey pre-motor cortex,” presented at the Soc. Neurosci. Conf., New
Orleans, LA, 2003.



932 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 51, NO. 6, JUNE 2004

Caleb Kemere (S’00) received the B.S. degree
in electrical engineering (Hons.) in 1998 from
the University of Maryland, College Park, and
the M.S. degree in electrical engineering in 2000
from Stanford University, Stanford, CA, where he
is currently working toward the Ph.D. degree in
electrical engineering.

After joining Stanford University, he worked in
the Space Systems Development Laboratory and the
Magnetic Resonance Systems Research Laboratory.
Following a brief stint with Datapath Systems

(now part of LSI Logic), San Jose, CA, he returned to Stanford University.
His research interests center on the development of novel signal-processing
algorithms and architectures for use in neural interfaces.

Krishna V. Shenoy (S’87–M’01) received the
B.S. degree in electrical engineering from the
University of California at Irvine in 1990, and the
M.S. and Ph.D. degrees in electrical engineering
and Computer Science from the Massachussetts
Institute of Technology, Cambridge, in 1992 and
1995, respectively.

He was a systems neuroscience postdoctoral
Fellow in the Division of Biology at Caltech,
Pasadena, CA, from 1995–2001. He joined the
faculty at Stanford University, Stanford, CA, in

2001, where he is an Assistant Professor in the Department of Electrical
Engineering and Neurosciences Program. His current research activities
include neurophysiological investigations of sensorimotor integration and
coordination, neural prosthetic system design, and neural signal processing
and electronics.

Dr. Shenoy received the 1996 Hertz Foundation Doctoral Thesis Prize, a
Burroughs Wellcome Fund Career Award in Biomedical Sciences, the William
George Hoover Faculty Scholar in Electrical Engineering from Stanford Univer-
sity, the Robert N. Noyce Family Scholar from the Stanford University School
of Engineering, an Alfred P. Sloan Research Fellow, and a Defense Science Re-
search Council Fellow.

Teresa H. Meng (S’82–M’83–SM’93–F’99) re-
ceived the Ph.D. degree in electrical engineering and
computer science from the University of California
at Berkeley in 1988.

She is currently the Reid Weaver Dennis Professor
of Electrical Engineering at Stanford University,
Stanford, CA. Her research activities during the first
ten years at Stanford University included low-power
circuit and system design, video signal processing,
and wireless communications. In 1999, founded
Atheros Communications, which delivers core tech-

nology for high-performance wireless communication systems. She returned to
Stanford University in 2000 to continue her research and teaching. Her current
research interests focus on circuit optimization, neural signal processing,
and computation architectures for future scaled CMOS technology. She has
given plenary talks at major conferences in the areas of signal processing and
wireless communications. She is the author of one book, several book chapters,
and over 200 technical articles in journals and conferences.

Dr. Meng has received numeerous awards and honors for her research work
at Stanford University, including a Presidential Young Investigator Award, an
ONR Young Investigator Award, an IBM Faculty Development Award, a Best
Paper Award from the IEEE Signal Processing Society, the Eli Jury Award from
the University of California at Berkeley, and awards from AT&T, Okawa Foun-
dation, and other industry and academic organizations. As a result of her work
as founder of Atheros Communications, she was named one of the Top 10 En-
trepreneurs in 2001 by Red Herring, Innovator of the Year in 2002 by MIT Sloan
School eBA, and received the CIO 20/20 Vision Award in 2002.


