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Numerical Simulations of Light Scattering by Red
Blood Cells

Anders Karlsson*, Jiangping He, Johannes Swartling, and Stefan Andersson-Engels

Abstract—Scattering of electromagnetic waves from a red blood
cell is simulated using the finite-difference time-domain method
(FDTD), the Rytov approximation and the discrete dipole approx-
imation (DDA). Both FDTD and DDA are full wave methods that
give accurate results in a wide range of wavelengths. The Rytov
approximation is a much simpler method that is limited to scat-
tering angles within 30 from the forward direction. The investiga-
tion comprehends different wavelengths and different orientations
of the cell. It shows that the shape, volume, and orientation of the
cell have a large influence on the forward scattering.

Index Terms—Biological tissues, blood, optical propagation in
nonhomogeneous media, optical scattering.

I. INTRODUCTION

L IGHT scattering properties of tissue are important
for many medical applications. It has an influence on

dosimetry of laser therapy [11], [13], [15], light scattering
spectroscopy [4], [5], [18], and optical analysis of blood for
blood related diseases. For all these applications the properties
of the blood play an important role. These important applica-
tions, thus, motivate efforts in improving experiments, theory,
and numerical simulations in blood optics. This paper focuses
on the numerical simulations. The size of a red blood cell
(RBC) is typically 5–10 wavelengths in the optical region and
at a vacuum wavelength of 630 nm, the values for the index
of refraction is 1.40 for a blood cell and 1.35 for the plasma.
From a computational point of view this is a very large, but
weakly scattering object. The weak scattering enables a modern
computer to make accurate simulations with execution times
less than an hour and with an allocation of less than 500-Mbyte
RAM. Three different methods for simulations of scattering
from a nonspherical RBC are used in the paper. The accurate
calculations by a finite-difference time-domain method (FDTD)
are compared with calculations from the Rytov approximation
and the discrete dipole approximation (DDA). The methods
agree surprisingly well for a realistic RBC model. In particular,
DDA is as accurate as FDTD, but turns out to be faster and less
memory requiring.
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Fig. 1. RBC cross section for simulations a = 2:55 �m and b = 7:76 �m.

It is well known that RBCs, in vivo or in vitro, display a
number of different shapes [3]. In general, the normal RBC
shape is a discocyte, i.e., an axially symmetric disc, slightly in-
dented on the axis. The information from simulations from such
realistic shapes are useful in the development of models of light
propagation in whole blood containing many RBCs. A number
of such simulations were performed for different shapes, wave-
lengths, and angles of incidence.

The basic definitions and physical parameters are given in
the next section. This is followed by a discussion of the three
methods in Section III. The numerical results are presented and
discussed in Section IV, and some concluding remarks are given
in the last section.

II. PRELIMINARIES

In the simulations, the refractive index of the RBC is set to
and the refractive index of the surrounding blood

plasma is set to . The relative index of refraction, de-
fined by , is then 1.045. All wavelengths refer to vacuum.
Absorption can be handled by the numerical methods employed
in the paper, but for the wavelengths used in the simulations it is
small and has been neglected. Graphs presented in cf. [9] show
that the absorption coefficient is less than 5 at 630
nm. The model of the disc-like RBC that is used in the simula-
tions is defined in [10], and Fig. 1 shows the corresponding cross
section. The explicit expression for the thickness reads

(1)
where , , , and

, which corresponds to a volume of 94 .
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Fig. 2. Three-dimensional RBC.

The three-dimensional (3-D) shape, depicted in Fig. 2, is ob-
tained by rotating the cross section around the -axis. The mem-
brane of an RBC has a negligible influence on the scattered field,
cf. [16] and [17] and hence the RBC models do not include the
membrane or any other internal structure. The incident wave is
a time-harmonic linearly polarized plane wave. It propagates in
the positive -direction with the electric field in the -direction.
With the time convention , the complex incident electric
field is given by

(2)

where is the wave number for the plasma and is
the velocity of light in vacuum. The angle of incidence is altered
by rotating the RBC around the -direction. The rotation angle
of the axis of symmetry relative the -direction is denoted .
Fig. 1 shows the case when . To interrelate the angular
distributions of the scattered light of different incident wave-
lengths and angles, the scattering probability is calculated as a
function of the zenith scattering angle (see Fig. 1) This scat-
tering probability, , is obtained by numerical integration
of the differential scattering cross section, , over all
azimuthal angles

(3)

Thus, is the probability that a scattered photon is
scattered in the theta interval . Due to the factor

the probability is zero in the forward direction. The dif-
ferential cross section is defined by

(4)

where

(5)

are the time averages of the Poynting vector of the scattered and
incident fields, respectively. Furthermore, is the radial unit
vector, is the scattered electric field, is

the complex conjugate of the corresponding magnetic field, and
is the wave impedance of vacuum. The far-field

amplitude, , of the scattered field is defined by

(6)

III. METHODS

Recently, a number of different numerical methods have been
applied to blood optics. A robust method is Mie scattering,
where a spherical model of the RBC is used. Comparisons with
Mie scattering are very useful tests for numerical methods. The
T-matrix method, cf. [19] and [24], is a generalization of Mie
scattering. In [19], it was indicated that the T-matrix method
is not a suitable method for RBC with realistic shapes. Today
FDTD is a very important method for all kinds of electromag-
netic wave propagation applications, cf. [20], and it has been
used for cell optics, cf. [1], [7], and [8]. The boundary element
method (BEM) is also a widely used numerical method in
electromagnetics. It is based on a surface integral equation for
the electromagnetic fields and was applied to scattering from
blood cells in [22], [23].

This section discusses FDTD, DDA, and the Rytov approxi-
mation. The first two methods solve the full Maxwell equations,
whereas the Rytov approximation is based on the approximation
that the RBC is a weakly scattering object. The Rytov approxi-
mation requires less than one hundred lines of code and is con-
siderably faster than the other two methods. The drawback is
that it is not accurate for large scattering angles.

A. FDTD

The finite difference time domain algorithm was originally
applied to the Maxwell equations by Yee in 1966 [25]. A re-
view of recent progresses of the method are given in the book
by Taflove [20]. In the 3-D case, the Maxwell curl equations
are discretized in time and space, resulting in six coupled scalar
finite-difference equations in cartesian coordinates. All three
electric field components and all three magnetic components are
spatially allocated as in Fig. 3. The electric and magnetic fields
are temporally offset and stepped in a leap frog scheme using the
finite-difference form of the curl operator. In order to calculate
the angular far-field distribution of the scattered light, several
techniques are required.

1) Absorbing boundary condition (ABC): The computa-
tional domain is finite. With no truncation conditions,
the waves are artificially reflected at the boundaries of
the domain, leading to inaccurate results. The reflections
are avoided by implementing ABC that does not reflect
waves. The perfectly matched layer (PML) ABC, sug-
gested by Berenger [2], has been implemented in the 3-D
FDTD program. In this paper, the split-type PML is used.
In this PML medium, each component of the electromag-
netic field is split into two parts. In cartesian coordinates,
the six components yield 12 subcomponents denoted as

, , , , , , , , , ,
, and . The Maxwell equations are replaced by
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Fig. 3. Unit cell in 3-D FDTD algorithm.

Fig. 4. Total field/scattered field regions.

12 equations. In our simulations, 8 PML layers with re-
flection coefficient are chosen. The [2], [20] contain
more detailed descriptions of PML.

2) Total field/scattered field: Since this work considers
the scattering patterns, the total field/scattered field for-
mulation is used. The computational grid is divided into
two regions. The total field region encloses the scatterers
whereas the scattered field region, where only the scat-
tered field components are stored, encloses the total field
region, as illustrated in Fig. 4. At the border between the
two regions, special connecting conditions are required,
where the incident field is either within, or subtracted
from, the total field. The conditions used for the simula-
tions in the paper are described in detail in [20].

3) Far-Field Transformation: FDTD is inherently a near-
field method. To determine the far-field scattering pattern,
the near-field data is transformed to the far-field by the
near-field to far-field (NFFF) transformation. The details
of the NFFF technique can be found in [20].

B. The Discrete Dipole Approximation (DDA)

The DDA is closely related to the method of moments, cf.
[12]. The principle of the method is as follows: The scattering
volume is divided into parts. Each part is small enough to be
represented by a dipole moment. Linearity of the medium im-
plies that the induced dipole moment of each volume element is
equal to the electric field in the volume multiplied by the polar-
izability of the volume. The electric field is a superposition of
the fields from the sources external to the object and the electric
fields from the sources inside the object, in this case the

Fig. 5. The scattering probability, cf. (3) for a disc-like RBC using FDTD and
DDA. (� = 0 , � = 632:8 nm).

dipoles. The field from the external sources is the incident plane
wave and hence the electric field in volume is given by

(7)

The term is the electric field at a position
from a dipole at position . The explicit expressions of the

quantities involved in (7) can be found in, e.g., [6]. Equation (7)
is usually solved by some iterative method, e.g., the conjugate
gradient method. For scattering objects with a relative index of
refraction close to one the iteration methods converge very fast.
In [6] it is indicated that the DDA method gives rise to erroneous
results if the contrast is large, i.e., if , otherwise the
method is stable and the error decreases when the size of the
numerical cells decreases. In Fig. 5, the scattering probabilities
for a disc-like RBC using FDTD and DDA are shown. Both
methods are very accurate, but DDA requires less memory and is
faster than FDTD. In all of the calculations done in this project,
the DDA and the FDTD have given results that agree to a very
high accuracy.

C. Superposition

Since the relative index of refraction of the RBC is close to
one it is anticipated that for a single RBC the multiple scattering
effects are almost negligible. When multiple scattering is ne-
glected, the scattered fields from different parts of the RBC can
be added to form the total field, i.e., the superposition principle
holds for the scattered field. In the example depicted in Fig. 6 a
blood cell was divided in two halves through the -plane. The
far-field pattern of the electric field was calculated for each half
by FDTD in the -plane. Then the two far-fields were added
and compared with the far-field from the whole blood cell. The
patterns agree, except in the directions where the scattered field
is very small, as seen from Fig. 6. This emphasizes that multiple
scattering effects are small. The superposition approximation
facilitates the calculation of far-fields from very large, weakly
scattering objects, where it reduces the CPU-time and the re-
quired RAM of the computer.
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Fig. 6. The normalized scattered electric far-field j ~Ej in the yz-plane from
an FDTD simulation. The solid line refers to the whole RBC. The dash line is
the superposition of the scattered far-field from the left and right halves of the
whole RBC. (� = 0 , � = 632:8 nm).

D. The Rytov Approximation

The Rytov approximation is a frequently used method in to-
mography, [12], [14], [21]. It is then utilized for the inverse scat-
tering problem of determining the permittivity or conductivity
of an object. In this paper, it is applied in its simplest form to the
scattering of a plane wave from an RBC. The method can be ex-
plained as follows: Consider an object that occupies the volume

. Let the index of refraction be for the object and for the
surrounding medium. The incident wave is given by (2). The
approximation assumes that when the wave passes the object,
the phase of the wave is shifted while its amplitude, polariza-
tion, and direction of propagation are unaltered. Let be
the total distance the ray travels inside the scattering object. If

is a plane behind the object, the total electric field in that
plane reads

(8)

Thus, the phase is shifted an angle , com-
pared to the incident wave. The far-field amplitude, cf. (6), is
given by the near-field to far-field transformation, cf. [20], i.e.,

(9)

where is the plane . Notice that the integrand is zero
outside the projection of the blood cell on the plane .
The Rytov approximation ignores multiple scattering as well
as backscattering. Consequently, it is an even more approxi-
mate method than the superposition method. Since the reflected
waves are neglected, the method is limited to scattering angles

. In practice this interval is smaller, the calculated
far-field pattern is quite accurate for scattering angles less than

, as can be seen in Fig. 7, but for larger angles the errors are

Fig. 7. The normalized scattered far-field j ~Ej in the xz-plane by a disc-like
RBC using the Rytov approximation and FDTD. (� = 0 , � = 632:8 nm).

not acceptable. The code for Rytov approximation and the trans-
formation to the far-field amplitude is very short and simple. The
calculation of the far-field pattern is done in a couple of seconds.

IV. RESULTS AND DISCUSSION

The simulations show that FDTD and DDA are both very ac-
curate for scattering from one RBC. The errors in the numerical
calculations can be estimated by comparing results using two
different grid sizes. Such error tests confirm that the graphs pre-
sented for FDTD and DDA are correct. Both methods have also
been compared with Mie scattering from a sphere with excellent
agreement.

The RBC has a relative refractive index close to one and its
surface is slowly varying compared to the wavelength. Both
FDTD and DDA benefit from these two properties. The smooth
surface ensures that the grid size is determined by the wave-
length and not by the geometry, and this keeps the allocated
RAM at a minimum. The low relative refractive index implies
that there are no pronounced resonances in the object and the
execution times are then proportionally short.

Today FDTD is one of the most powerful full wave methods
available. In a number of papers it has proven to be suitable for
blood optics. However, the results in this paper indicate that it is
not the most efficient method. The DDA is faster than FDTD, it
requires less RAM and gives results that are as accurate as FDTD.
The DDA is closely related to the method of moments. The dif-
ference is that the method of moments is derived from a volume
integralequation.Itisexpectedthatthemethodofmomentsshould
alsobeasuitablemethodforbloodanalysis.TheBEMissimilar to
themethodofmomentsbut isbasedonasurface integralequation.
The BEM has successfully been applied to blood optics, cf. [22]
and [23]. In [23] scattering from aggregated blood cells was an-
alyzed. The geometry was axially symmetric, and that symmetry
was utilized to reduce the execution time.

The Rytov approximation simplifies the problem since it only
considers the phase shift of the incident plane wave. Neverthe-
less, it gives remarkably accurate values for scattering angles up
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Fig. 8. The scattering probability, cf. (3) for an oblate spheroid with semi-axes
1.47 �m and 3.91 �m, and a disc-like RBC with the same volume. (� = 0 ,
� = 632:8 nm).

to roughly . The results indicate that it should be possible to
develop fast, but robust, approximate methods that can handle
scattering from a large number of RBC.

The comparison of different numerical methods was one of
the two objectives of the paper. The other was to investigate the
scattering properties of an RBC. The main purpose with most
of the graphs is to examine the influences the shape and orien-
tation of the RBC have on the scattered field. The simulation
program SEMCAD (see www.semcad.com), which is an FDTD
program, was used for the simulations of the far-field scattering
pattern. However, one could just as well have used DDA. In all
the FDTD simulation cases, the grid space was adaptively set
between and in order to yield accurate results.

A. Shape of the RBC

The influence the shape of the RBC has on the scattering pat-
tern was investigated by a comparison of the patterns for the
oblate spheroidal RBC and the disc-like RBC in Fig. 1. The two
RBC have equal volume and material parameters. The vacuum
wavelength is 632.8 nm and the incident angle is 0 . Fig. 8
shows that the shape of the RBC has a significant influence on
the scattering pattern for small scattering angles. The second
peak in the pattern for the disc-like shape is due to the interfer-
ence of the fields from the two thick parts of the cross section.
The position of the second peak appears approximately where
there is a phase difference between the far-fields from the
two parts. The angle for the peak is approximately given by

(10)

where is the distance between the thick parts. The estimated
value gives almost a correct angle for the second
peak.

B. Wavelength and Angle of Incidence

Accurate simulations of the scattering from the disc-like RBC
in Fig. 1 were conducted by FDTD for the three angles of inci-

Fig. 9. The scattering probability, cf. (3) for a disc-like RBC excited by an
incident plane wave, at five different wavelengths. The angle of incidence is
� = 0 .

Fig. 10. The same cases as in Figs. 9 and 11 and but for an incident angle of
� = 45 .

dence 0 , 45 , 90 . For each of the incident angles five wave-
lengths from 600 nm to 1000 nm are used.

Fig. 9 demonstrates that the incident wavelength has a strong
influence on the scattering pattern for . The forward scat-
tering is strong and, as in Fig. 8, the second peak is due to the
constructive interference between two fields where the angle for
the second peak is approximately given by (10).

The scattering pattern for the 45 case is depicted in Fig. 10.
The peaks in the forward direction are similar to the corre-
sponding peaks in the 0 case, for each wavelength. However,
the second peak is much less pronounced.

The scattering patterns for differ from the patterns
for the other two incident angles. This is due to the lack of in-
terference and to the averaging over the azimuthal angle.

V. CONCLUSION

In this paper, FDTD, DDA, and the Rytov approximation
were applied to scattering from a single RBC. Both FDTD and
DDA give accurate far-field patterns. Even though FDTD today
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Fig. 11. The same cases as in Figs. 9 and 10 but for an incident angle of � =

90 .

is a more frequently used method in blood optics the results in-
dicate that there are frequency domain methods, e.g., the DDA
method, that are more suitable. In order to develop a fast but
yet accurate method that can simulate the propagation of light
in samples with a large number of blood cells one has to utilize
the fact that the relative index of refraction for the RBC is close
to one. The simulations using the DDA method, the Rytov ap-
proximation, and superposition support that conjecture.
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