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A 2-D Motion Detection Model for Low-Cost
Embedded Reconfigurable I/0 Devices

Apostolos Dollas*, Senior Member, IEEE, Stamatios Sotiropoulos, and Kyprianos Papademetriou

Abstract—A low-cost reconfigurable embedded apparatus for
two-dimensional (2-D) motion detection has been developed. This
paper briefly outlines the embedded reconfigurable system archi-
tecture, and presents in-depth the 2-D motion detection model,
which is directly mapped to reconfigurable hardware. Emphasis
is placed on the hardware ability to adapt to individual needs of
kinetically challenged persons by altering detection thresholds
and delays, thus resulting into an efficient low-cost reconfigurable
hardware implementation of the model. This paper also presents
how the model detects complex motions through a vocabulary of
simple motions, and how the system is trained to individual users’
needs. Experimental results and integrated applications of the
model for text processing are also presented.

Index Terms—Input/output (I/0) device, kinetically challenged,
reconfigurable embedded system, 2-D motion detection.

1. INTRODUCTION

HE PROBLEM of motion detection and recognition has

been considered from a number of perspectives, ranging
from input/output (I/O) for virtual reality environments to ges-
ture recognition systems. Similarly, the problem of I/O devices
for kinetically challenged persons has been addressed from a
mechanical design perspective to a brain activity detection per-
spective. In this paper we present a low-cost, embedded I/0 de-
vice for kinetically challenged persons. The ultimate purpose
of this paper is to have shrink-wrapped hardware which can be
customized and retrained to individual user needs without a re-
compilation of the design.

Various assistive devices have been developed for persons
with motor disabilities [1], [2]. Devices related to the control of a
wheelchair [3], projects using virtual reality technology [4] and
camera-based systems [5], [6] have been implemented for re-
habilitation purposes. Several projects use reconfigurable logic
devices, such as field programmable gate arrays (FPGAs) [7],
which undertake the control of the system [8]-[10]. It should
be noted that essentially all of the above projects use at least
one of the following: 1) large or multiple FPGAs; 2) PC-class
fixed computer resources; or 3) expensive equipment to make all
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Fig. 1. Architecture of the embedded system. The system comprises of an

FPGA, a microcontroller and a digital two-axis accelerometer. The PC is used
for evaluation and training only.

necessary data acquisition and calculations. In our system, such
approaches would not meet cost, size, and power consumption
limits for an embedded device, i.e., a portable device that can
exist and operate in a standalone mode.

Section IT has an outline of the system architecture. Section I1I
presents the model for motion detection. Section IV introduces
the need of system adaptation to the user and Section V de-
scribes the unsupervised training method. Section VI presents
the experimental results. Finally, Section VII presents conclu-
sions from this work as well as its future directions.

II. SYSTEM ARCHITECTURE

Various alternatives (goniometric, optoelectric, and accelero-
metric) regarding hand motion measurement, have been pro-
posed [11]. Our system is based on accelerometers to sense hand
motion in 2-D space. The general characteristics of the system
are: 1) low-cost solid-state (nonmechanical) sensors which are
reliable and suitable for motion sensing; 2) real-time sampling
of the data; and 3) motion detection for a large number of mo-
tions (vocabulary), tunable to the needs of different persons.

Regarding the computational subsystem, we showed in a
previous publication [12] that a model of independently oper-
ating finite state machines (FSM) offers a good design tradeoff
versus the usage of microcontrollers alone for free space mo-
tion detection. Furthermore, we showed that the sampling of
real-time data is best performed by microcontrollers, leading to
a hardware organization with fixed, as well as reconfigurable
resources. Having the aforementioned observations in mind,
we concluded to the architecture shown in Fig. 1.

A digital two-axis accelerometer (Analog Devices
ADXL210) is attached to the user’s hand to acquire data
during hand motions. An 8-bit microcontroller (ATMEL AVR
90S8515) has been used for the sampling of sensor data in real
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time. Then, the data are sent to an FPGA (Xilinx SpartanIl
XC2S100) via an 8-bit bus and to a PC via the serial port.
The purpose of the embedded FPGA is to distinguish types
of motions from a programmable vocabulary. The ability to
connect with the PC was employed as a rapid prototyping tool
for algorithm evaluation, and as a user interface for system
training (to adapt to individual needs), but not as a necessary
component during field deployment. The total system cost is
less than $70, an arbitrary limit, which nonetheless precluded
certain types of solutions to the motion detection problem.

The accelerometer is calibrated when it is powered up. This
way, the system can be adjusted to different orientations and also
to different accelerometers (there are minor differences due to
manufacturing variations), when the original sensor has to be
replaced. Moreover, the system can operate in different temper-
ature conditions.

III. MOTION DETECTION MODEL

The computational model of the system is that of parallel
FSM, each of which comprises of stages for detection of
values/ranges of X-Y data, followed by stages to wait for a
predefined period of time (including zero time). This way each
motion is represented in terms of thresholds, which needs to be
exceeded for the state to be active, followed by periods of “not
examining the input,” which are useful to avoid local minima
(from irregular motion or noise).

During preliminary clinical evaluation of the system, many
experiments have been performed, and thirteen motions have
been successfully sampled and processed [12]. However, it
turned out that a large number of complex motions was unde-
sirable to the user, regardless of system capability. For example,
circular motions are more complicated than basic motions (such
as “left,” or “forward”) and they require more effort in order to
be performed. A simple vocabulary of motions that can be used
in succession can lead into more options for the user. Therefore,
the model to which we concluded, is based on the concept
that sequences of the four simple motions (forward, back, left,
right) are used in order to produce a complex ‘“vocabulary”
[13]. This approach allows for a succession of two motions with
n possibilities each, to produce n? distinct complex motions (n
is the number of the FSMs). The FSMs that are integrated in
the design are only those that led to the detection of the four
simple motions. The complex motions are segmented to two
simpler motions and the four FSMs (of the simple motions) are
reused for each segment, as shown in Fig. 2.

In order to avoid false positives by successions of the same
motion (e.g., “forward-forward”), these cases are not consid-
ered as complex motions, leading to n? — n well-defined com-
plex motions. The maximum number of complex motions that
the system can detect is 42 — 4 = 12. In addition, it recog-
nizes the simple motions as such (e.g., we detect “forward” but
do not look for “forward-forward”), leading to 16 well-defined
motions. The vocabulary of motions that the system can detect
is shown in Fig. 3.

In terms of hardware complexity, the FSMs are the subsys-
tems that have the greatest requirements in resources. Conse-
quently, the implementation of just four (n = 4) FSMs keeps
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Fig. 2. Complex motion segmentation. A succession of simple motions
(“forward” and “left”) produces a complex one, whose recognition comprises
of substeps. A simple motion is recognized during each step by the respective
FSM.
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Fig. 3. Complex motion vocabulary. It comprises of four simple motions
(forward, back, left, right) and twelve complex ones.

the hardware cost to O(n), even if the system is able to recog-
nize O(n?) motions. Although there is an overhead on the con-
trol unit complexity, the latter is not of great importance and
does not influence the overall system’s hardware complexity.
This approach is much more efficient compared to the idea of
implementing one FSM per motion (complexity O(n?)).

IV. SYSTEM ADAPTATION TO INDIVIDUAL NEEDS

It can be said that the general form of each simple motion is
the same, regardless of the specific user. For example, a forward
movement comprises of a set of accelerations, followed by sam-
ples of stable velocity, which are then followed by a set of decel-
erations (hand starts moving, then moves without accelerating
and then stops). However, even if this procedure is similar for all
users, it is not exactly the same. Clinical tests (of limited scope)
have shown that the motions of an impaired person are not as
even as the respective motions of an unimpaired one. Moreover,
the speed of execution may vary even during the same motion.
Thus, the system must have the capability to adapt to the dif-
ferent executions of the same motion by different users.
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Fig. 4. Local extrema of a motion. Several factors (tremor, wrong movement,
deviation from the calibration norm) may influence the smooth execution of a
motion. Therefore, undesirable ripples usually appear on the acceleration data.

The idea of adaptation primarily affects the FSMs that are re-
sponsible for motion recognition and is based on the determina-
tion of the thresholds that must change according to each user.

The procedure that has been implemented for the calculation
of the thresholds is an unsupervised learning method. It com-
prises of two subprocesses: digital representation of the mo-
tion’s acceleration sequence and calculation of the appropriate
thresholds, based on the previous approximation.

A. Digital Representation of a Motion

The basic problem that we had to overcome was the local
extrema that may appear during the execution of a motion, as
it is shown in Fig. 4. The best way to address this problem is
to ignore the sample sets that have such a behavior. In order to
find them, we check whether the difference between the value
of each sample and the value of the four previous ones is greater
than a predefined acceleration value, which is considered as the
physiological difference between adjacent samples.

The next step is the approximation of the accelerations in the
graph. As the acceleration samples regard two axes (X,Y) the
procedure could be repeated twice. However, experimental re-
sults showed that we need thresholds only for the primary axis
of the motion (i.e. the axis in which the greatest mobility is ob-
served). The other axis (called secondary) is characterized by
less mobility than the primary one and we only need to designate
upper and lower bounds for the acceleration, instead of thresh-
olds. These bounds are set to —0.3 and +0.3 g. The reason for
such a choice is presented in Fig. 5. A rigorous restriction on the
secondary axis of a motion [Fig. 5(a)], leads to inability to cope
with errors during the execution of a motion. On the contrary, a
very loose restriction on the secondary axis [Fig. 5(c)] results in
too many errors (false positives) during the execution of the mo-
tion. In this case, overlapping of the motions may take place. In
order to avoid both these cases, we determined “middle-of-the-
road” bounds for the secondary axis, that is, the case in which
small motion sequence deviations are acceptable [Fig. 5(b)].

We find the primary axis of the motion, by checking the
peak-to-peak distance of the two axes. Then, we approximate
the acceleration graph of the primary axis. The basic concept
is to divide the graph in windows of constant size and transfer
the problem to the approximation of these windows. Each of
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Fig. 5. Examples of a motion with various restrictions to its secondary axis.
The more rigorous the restriction is, the less flexible in coping with errors during
motion execution, the recognition system is. On the other hand, the more flexible
the system is, the less effective in recognition is. (a) Left motion recognized
with hard restriction to the secondary axis. (b) Left motion recognized with
less restriction to the secondary axis. (c) Left motion recognized with bouncy
restriction to the secondary axis.
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Fig. 6. Example of motion approximation. The motion sequence is divided in
windows of a constant size equal to 40 samples The behavior of the acceleration
data in each window determines the window type (whether it is incremental,
decremental or constant). This information is stored in a vector (one per axis),
using a simple coding (1 for incremental, — 1 for decremental, and O for constant
window).

the windows can be (in terms of acceleration) incremental,
decremental, or constant.

The result of the approximation process is a vector, named
st(), whose positions correspond to the respective windows, as
shown in Fig. 6. The value of each position determines the re-
spective window type (1 for incremental, —1 for decremental, O
for constant).

B. Calculation of a Motion’s Characteristic Thresholds

Threshold calculation comprises of two substeps. First,
threshold positions are determined (i.e., we determine where
in the sequence of acceleration data, thresholds are needed
for this sequence to be described). Second, the values of
these thresholds are calculated. We should point out that the
current implementation uses a constant number of thresholds
per motion (four thresholds). Minor changes can lead to an
implementation with a variable threshold number. However,
such an approach requires additional hardware resources which
is not in agreement with our low-cost specifications.

In terms of threshold positions, thresholds are assigned to se-
quences that correspond to a set of accelerations followed by a
set of decelerations. Such sequences occur during a hand move-
ment. The algorithm that finds threshold positions is described
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TABLE 1
SEQUENCES OF WINDOWS THAT LEAD TO THRESHOLD POSITION DETECTION

Windows
State | st(A) st(B)  st(C) st(D) Action
0 1-1)  -1(1) Remove A (if inserted). State=3
0 1(-1)  1(-1) Remove A (if inserted), Insert B.
State=0
0 1(-1) 0 State=1

1 1(-1) 0 -1(1) Insert A, Insert C (if not inserted).
Insert Intermediate Threshold. State=0

1 1(-1) 0 1(-1) Remove A (if inserted), Insert C.
State=0

1 1(-1) 0 0 State=2

2 1(-1) 0 0 -1 Insert A, Insert D (if not inserted).
Insert Intermediate Threshold. State=0

3 1¢-1)  -1(1)  -1(D) Insert A, Insert C (if not inserted).
Insert Intermediate Threshold. State=0

3 I-1) -I(1) 0 Insert A, Insert B (if not inserted).
Insert Intermediate Threshold. State=1

3 I-1)  -1(1) 1(-1) State=4

4 1-1)  -1(1) 1(-1) 0 Insert C (if not inserted). State=0

4 1(-1)  -1(1) 1(-1) 1(-1) Insert D (if not inserted). State=0

in Table I. It is actually an FSM that tracks the sequences of
the windows (as they were previously determined) and assigns
thresholds according to predefined templates.

The column “Windows” of Table I refers to the type of the
windows that are currently checked [described by the vector
st()]. Window A is always the last in a sequence (e.g., in a se-
quence of three windows C is the current window, B is the pre-
vious of C, and A is the previous of B). Predefined sequences
and their corresponding actions are included in the table, e.g., a
sequence of st(A) = 1,st(B) = 0 and st(C) = —1 leads to the
“action” described in the fourth row of the table, etc. Values in-
cluded in parentheses of the column “Windows” describe com-
plementary cases. The actions influence the contents of a vector
named “threshpos.”

Sometimes an action includes the insertion of an extra
threshold, called “intermediate.” This action is performed in
special cases, when the duration of a movement is too small and
less than four thresholds may be detected. When the scanning
of all the sequences is completed, we calculate the thresholds’
values, based on the vector “threshpos” and on the minimum
and maximum values of each window.

V. UNSUPERVISED TRAINING

By using the PC as the user interface, we collect data for each
simple motion from individuals. These data are the patterns,
on which the adaptation procedure is based. After calculating
the appropriate thresholds for each simple motion following the
procedure that was previously described, we download them to
a nonvolatile memory, in order to be available for further use.
The AVR microcontroller offers an on-chip nonvolatile memory.
The microcontroller loads the thresholds from this memory on
power-up and sends them to the FPGA, where they are stored in
registers. The FSMs have access to these registers and can read
the respective thresholds. This way, they recognize the motions
that are similar to the patterns that were provided by the user.
Such an approach leads to a reconfigurable system with capa-
bility to adapt to individual needs but without recompilation of
the design. The FPGA is initialized with a fixed design and with
changeable threshold and delay data after it is configured.
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Fig. 7. The overall procedure the system follows until its normal operation.
Sensor calibration follows the FPGA configuration. The user has then two
choices: to train the system or to bypass this procedure and proceed to the
normal operation. In the first case, the system enters the training mode and tells
the user what to do.

It must be noted that the efficiency of the algorithm is in-
creased when the training procedure is repeated more than once
for each motion. The final thresholds result by averaging the re-
spective thresholds of the repetitions. This way, potential varia-
tions during the execution of a motion are compensated.

The entire process, starting from power-up of the system, is
shown in Fig. 7. If no training has taken place, the operation
is based on default thresholds. The calculation of these fixed
thresholds was based on experimental results.

VI. EXPERIMENTAL RESULTS AND MODEL VALIDATION

Many experiments have been performed in order to evaluate
the behavior and performance of the system. The implementa-
tion of the FSMs in software allowed for substantial experimen-
tation with computational models, thresholds, and delays. Over
150 experiments have been done with an unimpaired person
(who will be called reference person), and over 100 experiments
have been done with a kinetically challenged person. All experi-
ments were recorded in a benchmark, which can be reused every
time a design change is made in the system.

Fig. 8 presents examples of motion approximation and
threshold calculation for motions executed by a reference and
a kinetically challenged person. The horizontal axis represents
the number of samples whereas the vertical axis represents
acceleration, expressed in g (gravity’s metric). As it is shown,
the acceleration data time series for the same motion are similar
for both persons, but the delays and thresholds are substantially
different for different persons. The acceleration data series are
of different lengths. This implies that speed of execution is
different and, therefore, accelerations are different (e.g., when
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Examples of motion approximation and threshold computation. Only the thresholds for the primary axis of each motion are presented here. The thresholds

(computed by the approximation vectors of the motion) adapt to the different acceleration data of different persons. The efficiency of the training procedure is

increased when it is repeated more than once for each motion.

TABLE 1II
RECOGNITION EFFECTIVENESS (PERCENTAGE OF CORRECTLY
IDENTIFIED MOTIONS)

Simple motions >95%
Forward + Back/Right/Left 95%
Back + Forward 95%
Right + Left 95%
Left + Right 95%
Back + Right/Left 90%
Right + Forward/Back 80%
Left + Forward/Back 80%

a motion is executed fast, the hand accelerates very rapidly).
These differences impose the need for threshold adaptation to
individual needs. The motion detection results were satisfactory
in both cases. Especially, the efficiency of the algorithm was
increased when the training procedure was repeated more than
once for each motion.

One of the significant results of the experiments was that the
preferred motions for the person with kinetic challenges are for-
ward, back, left, right, something that led to the motion detec-
tion model. The motion detection model works very well for the
(generally irregular) motions that a person with kinetic disorders
can perform.

In Table II, the experimental results are presented. It con-
cerns experiments with the reference person. It represents the

recognition effectiveness of the scheme for the simple and com-
plex motions. The model can recognize simple motions with
better than 95% success. Regarding complex motions whose
effectiveness is lower (80%), the change of the grade of cali-
bration after the execution of the first segment of the motion
contributes to this low percentage. Obviously, the model needs
to be improved.

Something that needs to be clarified is that the training al-
gorithm we implemented does not produce exactly the same
thresholds even for similar motions. This is reasonable if we
think that precisely replicated motions (in terms of the acceler-
ation data) cannot be produced even from the same person. The
maximum and minimum values will always be close, but never
the same. Therefore, we are primarily concerned with acceler-
ation ranges and not with absolute values (e.g. a threshold of
0.4 g will hardly make any difference as compared to a threshold
of 0.45 g, but will be very different from a threshold of 0.6 g).
This is illustrated in Fig. 8, where we can observe that the first
threshold for the first three motions is quite the same (around
0.5 g), since the maximum acceleration value of all these mo-
tions is quite similar (around 1 g).

An unexpected result from this work was that the connection
of our device to a PC as a mouse, offered to a kinetically chal-
lenged user a more convenient way of communicating with the
PC versus the traditional mouse. An application that exploits the
above observation and the ability of the accelerometer to mea-
sure tilt of the hand has been implemented. The user is able to
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Fig.9. Real time application for text input. Boxes of the big square on the right
correspond to a different character. The mapping between characters and boxes
is shown in the small square on the left, e.g., if the “cursor” is placed above the
fifth box of the first row for a predefined time, then ‘A’ will be recognized.

input text to a PC by giving the appropriate tilt to his or her
hand, on which the accelerometer is mounted. The underlying
principle is that for each tilt of the hand (which subsequently re-
mains firm), the acceleration of gravity has a unique and easily
determined (X, Y") vector. This vector can be directly mapped
on a grid.

The screen of the PC is segmented to several boxes, each of
which corresponds to a character. The navigation in this envi-
ronment is done through a “cursor,” whose movement is con-
trolled by the tilt of the user’s hand. This tilt is measured by
the accelerometer that sends the data to the software applica-
tion, which directs the cursor to the appropriate area of the
screen. The interface of this real-time application is shown in
Fig. 9 and has been designed having in mind several ergonomic
limitations.

VII. CONCLUSION AND FUTURE WORK

We have presented a 2-D motion detection model, which has
been implemented in reconfigurable hardware for a low-cost
solution. A simple vocabulary of motions can be used to form
more complex motions. The model is a good compromise
cost/performance-wise. The system can be trained to individual
users’ needs and it can be extended to more motions, or more
complex ones. The next step for the development of the system
is extensive clinical testing, and deployment, whereas in the
lab we need to work on improvement of the motion recognition
accuracy.
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