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An Adaptive Detector of Genioglossus EMG
Reflex Using Berkner Transform for Time Latency
Measurement in OSA Pathophysiological Studies
Pierre Yves Guméry*, Hervé Roux-Buisson, Sylvain Meignen, François Louis Comyn, Maurice Dematteis,
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Abstract—To investigate obstructive sleep apnea syndrome
mechanisms, we developed a device to measure the surface elec-
tromyogram (EMG) time latency reflex of the genioglossus muscle
stimulated by time and amplitude calibrated negative pharyngeal
pressure drops. The reflex signals were found to be disturbed by
transient signals that generate false alarms. Thus, to reduce false
alarm occurrences we designed an adaptive multiscale method.
Continuous wavelet transform (CWT) is widely used in biomedical
signal event detection processes. The Berkner transform is an
approximation of a CWT that is based on a hierarchical scheme
similar to discrete wavelet transform. We used the Berkner trans-
form to build a multiscale detector because it offers the possibility
of maxima coefficients linkage that leads to good accuracy in
reflex onset localization. As a contribution to this novel approach
we used a reconstruction formula to develop an adaptive method
for scale range determination in our surface EMG reflex detector.
Finally, we characterized our detector in terms of accuracy and
robustness, first on synthesized signals and second, on signals
acquired on apneic patients and healthy subjects. Preliminary
results showed a significant difference (p 0 01) between the
two populations regarding the genioglossus muscle mean latency
time. These physiological findings may partly explain why the
upper airway protective reflex occurring when a negative pressure
is applied to the upper airway is ineffective in OSA patients,
leading to pharyngeal collapse.

Index Terms—Continuous wavelet transform (CWT), sleep
apnea syndrome, surface electromyography.

I. INTRODUCTION

OBSTRUCTIVE sleep apnea-hypopnea syndrome (OSAS)
is a clinical syndrome characterized by recurring episodes

of upper airway narrowing and/or closure during sleep. OSAS
represents a serious public health problem, since two to four
percent of the adult population is affected. Collapse of the
upper airway is usually explained by the difference between
pharyngeal dilating muscle activity demonstrating inspiratory
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phasic activity, and the collapsing forces, i.e., intraluminal neg-
ative pressure, generated by thoracic muscle contraction. The
genioglossus is one of the most important pharyngeal dilating
muscles phasically active within the breathing cycle [1]. It is
well established that applying a negative pressure stimulus on
the pharynx both in animals and humans increases genioglossus
activity [2]. The short time latency reflex and the reduction
of this activity by topical upper airway anaesthesia suggest
that genioglossus activation is linked to a reflex mediated by
airway mucosal receptors located in the pharynx, namely at the
nasopharyngeal level. There is a possible relationship between
time latency reflex of the genioglossus muscle activation,
oxygen saturation, and apnea syndrome severity [3]. Thus,
the measurement of the genioglossus time latency reflex is
of interest for understanding OSA pathophysiology. Previous
studies have shown that respiratory-related cortical activity
may be evoked by airway occlusion [4]–[6] or in response to
small, brief negative pressure pulses [7]–[9]. Akay et al. [10]
have shown that the evoked response to pressure pulses applied
at onset of inspiration is reduced in OSAS subjects. This may
reflect reduced sensitivity of the pharyngeal mechanoreceptors
or reduced mechanoreceptor stimulation on a more compliant
upper airway.

Prior studies [11], [12] have shown that the surface tech-
nique may adequately reflect the bioelectric activity of the
genioglossus. Horner et al. [11] have measured the normal
subject time latency reflex on the rectified and integrated
poststimulus surface genioglossus electromyogram (SGEMG)
using a threshold of two background EMG activity standard
deviation. This approach, referring to “single-threshold tech-
niques,” is traditionally proposed for the estimation of on-off
timing of muscle activity. These methods are characterized by
a large sensitivity to noise. Considering surface EMG onset
activity detectors, Merlo et al. [13] underlined recently the
usefulness of local signal analysis where global properties are
replaced by local ones. They developed a detector based on
the continuous wavelet transform (CWT). This solution natu-
rally led to a more accurate estimation of the muscle’s on-off
timing, that is of interest for time reflex measurement. More
generally, multiresolution analysis has been largely applied to
other biomedical signals [14]–[17]. Considering the respiratory
related evoked responses to pressure pulses, Akay et al. [10]
applied wavelet decomposition to improve signal detection and
characterization in noisy background. One of the techniques
used was a denoising approach based on wavelet maxima.
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In this paper, we designed and evaluated a device aimed at
measuring the SEMG time latency reflex of the genioglossus
muscle. The genioglossus response was obtained in response to
time and amplitude calibrated negative pressure drops applied
to the upper airway at the onset of inspiration. We compared
the genioglossus time latency for both awake healthy subjects
and awake OSAS patients and hypothesized that a significant
delay may occur in OSAS patients. Such a delay in genioglossus
muscle activation would support the hypothesis that OSAS is
characterized by impaired upper airway mechanoreceptor sen-
sitivity or delayed efferent transmission to the upper airway di-
lating muscles.

We built an adaptive multiscale event detector in SGEMG
signal containing artifacts. The events consisted in abrupt
changes in signal energy that corresponded to the onset of the
genioglossus reflex. To ensure good accuracy in the time onset
estimation (localization on the finest considered scale), as well
as a robust detection (pertinent scale range choice for artifact
rejection), we chose to develop a detector based on the extrema
lines (associated to the SGEMG singularities) of the Berkner
Transformation (BT) [18] that approximated the CWT when
the wavelet kernel was chosen as a derivative of the Gaussian
function.

The present paper is organized as follows: in Section II, we
present the subjects and the experimental procedures; in Sec-
tion III, we give a signal description; in Section IV, we present
the adaptive detector; in Section V, we analyze the robustness
and precision on a phenomenological model of SGEMG reflex.
In Section VI, we present results of artifact rejection in exper-
imental signals and we show original preliminary results ob-
tained on healthy subjects and OSAS patients. Finally, in Sec-
tion VII, we discuss the results and perspectives.

II. SUBJECTS AND EXPERIMENTAL PROCEDURES

A. Subjects

We studied men only, to avoid the influence of the gender
factor. A first set of seven healthy men made up the control
group. They were free of symptoms and specifically exhibited
no excessive daytime sleepiness or snoring, e.g., mean value for
the Epworth sleepiness score being 6.7 ( 2.5). The controls had
overnight oximetry (Biox, Ohmeda). All subjects had a normal
oximetric tracing without any periodic desaturation that could
reflect the occurrence of apnea or hypopnea. On average con-
trol subjects were 47.4 ( 6.4) years old and their mean body
mass index (BMI) was 24.2 ( 2.5) . No subject exhib-
ited neurological, cardiovascular, or pulmonary symptoms. A
second set of seven subjects included OSAS patients who had
a complete diagnostic polysomnography at the Grenoble Uni-
versity Sleep Laboratory. No patient was under treatment. Their
mean Epworth score was 9 ( 2.8). On average, they were 53
( 13.4) years old and their mean BMI was 30 ( 5.3) .
Overall they had severe OSAS [mean AHI:53.7 ( 26.3)]. The
mean polysomnographic data of OSAS patients are provided in
Table I.

B. Experimental Setup

The experimental device allowed a calibrated negative pres-
sure pulse to be applied at the onset of inspiration, and to mea-
sure the SGEMG signal and the mask pressure simultaneously.

TABLE I
MEAN POLYSOMNOGRAPHIC DATA OF OSAS PATIENTS. AHI,

APNEA-HYPOPNEA INDEX; AI, APNEA INDEX; OAI, OBSTRUCTIVE APNEA

INDEX; MAI, MIXED APNEA INDEX; HI, HYPOPNEA INDEX; CAI,
CENTRAL APNEA INDEX

Fig. 1. The experimental device.

The SGEMG Sensor: The gathering of the SGEMG activity
was carried out with one pair of electrodes on each side of the
sagittal plane near the lingual frenulum. For each subject, these
electrodes were fixed on sheet of polymer, warm-pressed on a
plaster copy of the lower denture and the floor of the mouth.
Thus, the electrode supports were well adapted to the anatomical
characteristics of each subject. The positioning of electrodes on
the support was chosen to ensure the best contact. The SGEMG
was amplified 10 000 times using an INA 101 Burr-Brown in-
strumentation amplifier, filtered by an analogue second-order
bandpass filter (20–400 Hz). A 16-bit Biopac MP100 system
was used for signal acquisition. The sampling rate was fixed at
1000 Hz. The electronic noise level was estimated in three cases:
1) human saliva; 2) sodium chloride solutions of 50 meq/L; and
3) sodium chloride solutions of 250 meq/L [12]. For these three
cases the noise level was found, respectively, to be equal to 5

, 2 and 2 . For all subjects, the amplitude
of the SGEMG tonic background activity (i.e., the prestimulus
SGEMG part) was at least four times that of the electronic noise.

The Negative Pressure Pulse Generator and Mask Pressure
Measurement (Fig. 1): A compressed air bottle supplied a
Venturi device (Aeromech Devices, Almonte, ON, Canada)
via a pressure reducer followed by a coil valve driven by an
automaton (Direct Physiologic Recording System). Pressure
between 1 and 2 bars was applied to the Venturi which yielded
negative mask pressures between 6 and . This
mask pressure was measured with an EXAR SM56-52 sensor.
The coil valve was triggered at the onset of inspiration. The
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Fig. 2. Bichannel SGEMG record. (a)–(b) SGEMG reflex response. (c)
Pressure stimulus.

pressure signal was amplified 170 times and low-pass filtered
with a cutoff frequency of 340 Hz. Fig. 2 shows the pressure
stimulus and the SGEMG reflex. On this recording we used
a bichannel intraoral device. The signals were very similar on
the two channels as electrodes were placed very close to each
other. Fig. 2(a) shows that electrode instabilities could generate
transient artifacts (see ).

C. Stimuli Protocol

The stimulation set included 30 stimuli applied in the supine
position and 30 stimuli applied in the seated position. For each
position we applied 10 stimuli at three different negative pres-
sure levels: 6, 10, and 15 . The pressure pulse duration
was fixed at 500 ms.

D. Statistical Analysis

Considering the small number of subjects, the statistical anal-
ysis was completed using the nonparametric U test of Mann-
Whitney. Data were expressed as means SD. Statistical sig-
nificance was accepted when .

III. SIGNAL DESCRIPTION

Surface EMG is a summation of motor unit action potential
(MUAP) trains. Using a prototype function f(t) that describes
MUAP shape, a signal model can be described as follows:

(1)

where j indicates a specific motor unit, is an amplitude factor,
and is the occurrence times of MUAPs of the motor unit.
represents a scaling factor [13]. According to this, one can see

that different MUAP have the same shape but different widths
and amplitudes. The EMG signal can be expressed as

(2)

At rest in the prestimulus period, SGEMG signal picked up by
the electrodes was made up of the background EMG activity de-
scribed by (2) and called b(t); at the reflex occurrence the signal
became r(t) also described by (2) but with a greater amplitude.
The frequency band of b(t) and r(t) was found to be the same.
The SGEMG was affected by random transient artifacts which
occurred on average twice every second. Their duration was be-
tween 2 and 20 ms. Their occurrence probability was time in-
dependent, thus they conformed to Poisson’s process and the
overlapping probability was lower than . Their amplitude
might have been greater than that of the reflex signal. We sep-
arated these transients into two classes: the first with a
very similar frequency content to that of the SGEMG and the
second with a lower frequency content than that of the
SGEMG. Finally the whole signal can be written as

(3)

IV. DETECTION METHOD

In the SGEMG signal, singularities correspond to the gradient
change associated to the edges of the MUAP that make up the
signal. For singularity detection and localization, it is sufficient
to consider only the first derivative of the Gaussian Kernel. The
scale range choice is an important problem in multiscale anal-
ysis and it is currently performed on a priori assumptions or
empirical criteria. In this section we propose a numerical cri-
terion based on a reconstruction formula [19], [20] to elaborate
an adaptive scale range determination.

A. The Berkner Transform

The BT is an approximation of the Gaussian derivative
wavelet transform based on a hierarchical scheme similar to
the popular fast discrete wavelet transform [18]–[20]. It is easy
to compute and a simple relation [19] enabled us to follow the
extrema lines in the time scale plane. More precisely, BT was
achieved through the discrete convolution of a signal s with the
following approximation of the first derivative of a Gaussian
[18]

with

(4)

where is the sampled time and the scale of the wavelet.
From (4) it is easy to demonstrate that

(5)
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Owing to this, it is possible to follow an extremum from scale
N to scale . In [19] we proposed a modified Berkner ex-
pansion

with

(6)

so the recurrence relation (5) was also modified and led to

(7)

B. Reconstruction Process

From (4) and (6) one can show [19] that

(8)

which is the exact form of the reconstruction formula. An ap-
proximated value will be obtained by summing the first
values of (8) that is

(9)

Another approximation may be obtained using only the local
extrema coefficients. Let us define

(10)

for extremum and elsewhere.
So the approximate reconstructed signal is

(11)

We define the reconstruction error as

(12)

and

(13)

where the sums are extended to the definition domain of s(k).
One can see on Fig. 3 that vanished when N increased and

exhibited a minimum for and then remained con-
stant. This behavior can be explained by the small size of the
extrema coefficients when the values of N higher than . In

Fig. 3. (a) SGEMG background signal (a.u.: arbitrary unit). (b) Reconstruction
errors versus N.

the following, we describe the use of this property to build an
adaptive scale determination process.

C. Detection

The signal presented three possible states corresponding to
the following:

1) the background activity: hypothesis ;
2) the background disturbed by artifacts: hypothesis ;
3) the reflex activity: hypothesis .

We wanted to characterize these three states statistically in order
to distinguish between them. First we determined the value
associated with b(t). Consequently as shown in Section IV, this
method enabled us to eliminate transients. The b(t) signal
was considered as Gaussian and stationary during 500 ms before
the stimulus and during the latency time. The statistical char-
acteristics of the signal b(t) as well as the scale were deter-
mined over a 75-ms window extracted from the above 500 ms. In
the prestimulus period, only or were possible. The proba-
bility of was where was the evaluation
window and the mean artifact occurrence; with and

we found . Thus the prestimulus pe-
riod allowed us to characterize the background in most cases.
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However, in 14% of cases the presence of artifacts biased the
characterization. By applying Kolmogorov’s test, we were able
to detect this presence and through a simple threshold we elimi-
nated the artifact by truncation and consequently suppressed the
bias. In the former case, the probability of encountering only one
artifact was 0.13. Finally, in 99% of the cases, the background
was characterized without bias. In the remaining 1%, the signal
was not processed and another evaluation window was chosen.
Once the stimulus was applied we had to detect when we left
the hypothesis . We did that by using an energy threshold on
extrema lines. We used only the extrema coefficients because
they reflect the singularities generated by MUAP trains, and they
are thus relevant to the events to be detected. In fact we used
all the extrema lines which reflect the same event at different
scales. A simple energy criterion could not separate from

. Fortunately, transient artifacts i.e., generated lower den-
sity of maxima lines than reflexes, i.e., . Thus, we introduced
a threshold on the number of maxima lines in a given window

to separate from . We will now set out the principles
just stated.

Step 1) Rejection of hypothesis :
Let L be the set of the extrema lines in the pres-

timulus period and be one of these lines. The vari-
able

(14)

was distributed. Degrees of freedom and
variance were estimated by the method of mo-
ments

(15)

where denotes the nearest in-
teger of the term and the
mean value of . If was greater than a given
threshold this value did not follow the estimated
law with probability . We considered that a line

with length verified if verified the
chi-squared distribution for more than half the value
of p. This can be expressed

(16)

where means the cardinal of the set defined
in the parentheses. We detail now the decision be-
tween and .

Step 2) Rejection of hypothesis :
Experiments showed that artifacts, unlike re-

flexes, generated fewer than five extrema lines in
twenty milliseconds. Thus, when a line appeared
at the discrete time , which did not verify ,
we counted the number of lines that did not verify

in the detection window (i.e., 20
samples). If the number of such lines was greater

than 5, was rejected. This can be written as
follows:

(17)

where represents an extrema line that does not
verify whose lowest scale is located at time .
This time corresponded to the estimated reflex onset
time.

V. DETECTOR CHARACTERIZATION ON SYNTHESIZED SIGNALS

A. Signal Synthesis

We had two possible choices to simulate SGEMG. The first
one was a phenomenological model that led to a stochastic
signal. The second one was based on a physiological and
physical model taking into account the MUAP wave shape. The
latter method needed strong a priori assumptions on electrode
placement which were not verified by our customized probe.
Moreover, as we wanted to detect only singularities, a phe-
nomenological approach was appropriate. Synthesized signals
were made of autoregressive (AR) models from experimental
signals in the background state without transient artifacts.
These signals were gathered in the set of seven apneic patients
and in the set of seven healthy subjects. Finally, we built 20
different AR models in the whole set of background signals.
To evaluate the event localization capabilities of our detector,
we chose to model reflex onsets as instantaneous abrupt ampli-
tude changes. The SGEMG simulation due to the ith pressure
stimulus at time was carried out as follows: during a time

before the stimulus, up to a time after the stimulus, the
signal was considered as background activity; then the reflex
activity was simulated, multiplying the background activity by
an adjustable coefficient during a time . Hence, this
could be expressed in a discrete way as

(18)

(19)

(20)

During we estimated the background features. The
latency time was chosen equal to 75 ms, which was close to the
mean value of experimental latency time measured on control
set (see Section VI).

B. Detector Performance Analysis on Signals Without Artifacts

We tested the influence of the parameters and on
the following:

— the probability of non detection (PND);
— the probability of detection (PD);
— the probability of false alarm (PFA).

Let us define as the measured value of for the ith syn-
thesized reflex response. False alarm was defined by

, detection by and nondetec-
tion in the other cases or when the detection was not performed.
Within these conditions . Table II
shows the results obtained for 200 simulations (i.e., 10 per AR
model) on PND and PD versus and . We can infer from
these values that no false alarm appeared. This result can be ex-
plained by the use of window that ensured a low FA rate. We
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TABLE II
(a) PROBABILITY OF NON DETECTION VERSUS � AND P . (b)

PROBABILITY OF DETECTION VERSUS � AND P

chose a low FA rate because FA affected the latency time esti-
mation. The ND did not modify these estimations but required
an additional stimulation. Table II shows that from the value

, the detection was certain for the considered values
of . After the evaluation of the robustness, we characterized
the accuracy of the time latency measurement. For
and , Table III shows that the standard deviation
reached a few milliseconds and the gap between the expected
and the measured value was approximately 1 ms.

VI. RESULTS ON EXPERIMENTAL SIGNALS

A. Artifact Considerations

We show on signals strongly disturbed by artifacts (Fig. 4)
that step 1 of our detector allowed the rejection of transients.

On the other hand, the remaining artifacts could modify
the time latency measurements when they occurred 20 ms (
duration) or less before the SGEMG reflex response. In this
case, the latency time measured, decreased. The wider the
window was, the larger the error was. Taking into account
Poisson’s law, the occurrence probability of at least one artifact
in a 20-ms window was 0.04. The maximum of induced
error was 20 ms, which was quite large compared to the results
of Table III. In fact, as the error was uniformly distributed on

, its mean value was 10 ms. As the statistical weight of the
erroneous values was weak, i.e., 4%, the induced mean error

remained lower than 2 ms.

B. Preliminary Results for OSAS Patients and Healthy Subjects

Given that the negative pressure drop was triggered at the
onset of the inspiration, we had to eliminate records that exhib-
ited an important phasic inspiratory activity and that could not

TABLE III
(a) MEAN ERROR ON TIME LATENCY MEASUREMENTS VERSUS� AND P .

(b) STANDARD DEVIATION VERSUS � AND P

Fig. 4. (a) Original SGEMG signal containing artifacts with reflex event. (b)
Reconstructed signal calculated with BT maxima from scales up to N ; one
can see the � transient suppression. The arrows indicate onset of the reflex
response.

verify the detector hypotheses. We did not take into account la-
tency time measurements that were too close to the latency time
of voluntary contractions. This time was evaluated, for each sub-
ject, at the beginning of the experiment. Finally, in our results,
we only took into account subjects in whom at least 10 reflex
detections were obtained on the 60 stimulations. The results ob-
tained for are shown on Fig. 5. It can be seen that we
selected only five healthy subjects and five OSAS patients. The
measurements on healthy subjects H6, H7 and OSAS patients
P6, P7 were not available (NA). Subjects H6 and P6 exhibited
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Fig. 5. Mean reflex time latency and standard deviation for each healthy subject (H) and each apneic patient (P). n indicates the detection reflex number taken
into account.

a prohibitive phasic activity and subjects H7 and P7 did not ex-
hibit enough detectable reflex responses. On the detection set,
the mean time latency reflex for healthy subjects was found to
be equal to 77 18 ms. This was lower than the OSAS patient
value which was found to be 116 10 ms. The difference be-
tween the mean latency time of the two populations was found
to be significant with the U-test .

VII. DISCUSSION

In this paper, the singularity detection principle is close to
that used recently by Arikidis et al. [21]. They developed an
interscale wavelet maximum method to assist in the diagnosis
of neuromuscular disease. The intramuscular EMG signals were
decomposed using a redundant dyadic wavelet transform. The
wavelet chosen was the first derivative of the cubic B-spline
that was, like the first derivative of the Gaussian function, well
adapted to signal gradient change detection. The method was
based on the fact that each rising edge of MUAP is represented
on each decomposition scale by a wavelet coefficient maximum.

From a broader point of view, regarding the detection of EMG
activity in a noisy background, it is of interest to underline that
BT may be used as an EMG matched wavelet transform. Re-
cently, Merlo et al. [13] pointed out the advantages of detectors
based on the identification of the MUAP from surface EMG,
especially in bad signal-to-noise conditions. In fact, they used a
matched CWT, based on a mother wavelet chosen according to
the MUAP shape. The method used the fact that in the context of
single differential EMG recording, the first-order Hermite-Ro-
driguez function is well suited to describe the basic
MUAP shape [22] and thus to construct the mother wavelet.
The range of the scale parameter is chosen in order to obtain
wavelet support within the physiological MUAP durations. As

is proportional to the first derivative of the Gaussian
function, we can use the BT as an approximation of the EMG
matched CWT. The matched CWT technique is useful to detect
MUAP trains in additive noise, but is based on strong a priori
electrode placement assumptions and its performances decrease
when MUAP shape changes significantly (proximity to inner-
vation zone or tendon region). In the case of SGEMG, such as-
sumptions do not seem reasonable.

The study on synthesized signals has shown that our detector
exhibited high robustness and accuracy. However it can be seen
on Fig. 5 that the standard deviation of the latency estimated for
each subject was greater than that obtained in the simulations.

The major reason that can be suggested to explain this differ-
ence is the variability occurring in each subject. Wheatley et al.
[23], who used a rectified and electronically integrated (50 ms)
intra-muscalar genioglossus EMG, reported that in normal sub-
jects, reflex activation by inspiratory negative pressure pulses
was delayed from 53.8 11.5 [SEM] ms in wakefulness

to 132.7 24.5 ms during NREM sleep. The mean
and SEM wakefulness values are in accordance with the results
obtained in our control group.

The present preliminary results on healthy subjects and
OSAS patients demonstrate that the experimental protocol and
the signal processing method lead to an appropriate time res-
olution. This is accurate enough to evidence the genioglossus
muscle activation delay in OSAS patients. From a patho-
physiological point of view, our results support a relationship
between OSA syndrome and the reflex latency time of the
genioglossus. These results suggest an increase in latency time
in awake apneic patients. Further studies on larger populations
are required in order to confirm these results; however they
support the hypothesis that patients suffering from OSAS may
exhibit abnormal upper airway load-compensating reflexes
during wakefulness.

However, the large number of rejected stimulations due to a
high level of phasic activity is a serious limitation of the method.
Thus, other within-breath timing for stimulus application, as
well as the influence of body position and the range of applied
pressure have to be analyzed in further studies.
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