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Wavelet-Based Cascaded Adaptive Filter for Removing
Baseline Drift in Pulse Waveforms

Lisheng Xu, David Zhang*, and Kuanquan Wang

Abstract—This paper presents an energy ratio-based method and a
wavelet-based cascaded adaptive filter (CAF) for detecting and removing
baseline drift from pulse waveforms. Experiments on 50 simulated and
five hundred real pulse signals demonstrate that this CAF outperforms
traditional filters both in removing baseline drift and in preserving the
diagnostic information of pulse waveforms.

Index Terms—Baseline drift, filter, pulse waveform.

I. INTRODUCTION
A. Pulse Waveform Analysis

Various civilizations have used arterial pulses as a guide to the diag-
nosis of diseases [1], [2]. Traditional chinese pulse diagnosis (TCPD) is
one of the more venerable of these methodologies, boasting more than
2000 years of validated practice. All pulse diagnosis methods require
that practitioners have considerable training and experience, yet even
the diagnoses of practitioners with considerable experience are not al-
ways accurate. The application of pulse waveform analysis, which uses
pulse sensors to quantify and analyze pulse waveforms, has the poten-
tial to be of value to all practitioners of these methods, as it has the
ability to render more accurate pulse diagnoses [3]. Pulse waveform
analysis is used for a variety of pathological, physiological purposes in
both TCPD and Western medicine [4], [5]. However, like other physio-
logical signals such as electrocardiograms and impedance cardiograms,
pulse waveforms suffer from the subject-derived distortion known as
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pulse baseline drift, which arises from a subject’s movement and res-
piration. The removal of pulse baseline drift is important to pulse wave-
form analyses whether they are based on Chinese or Western medical
theories.

B. Related Work on Baseline Drift Removal

A number of methods have been applied to the removal of baseline
drift from physiological signals, but to date all have been flawed. Poly-
nomial interpolation, for example, is dependent on the accuracy of the
detection of “knots” and may degrade as the “knots” separate. Mathe-
matical morphology filters have also been used to remove baseline drift,
but this approach requires choosing a structuring element sequence that
depends on the heart rate and the shape of the physiological signal [6].
Time invariant filters have also been used to reduce baseline drift but
they only attenuated baseline drift a little. S6rnmo ez al. [7] used a
time-varying filter but their approach was complex and depended on
the accurate calculation of the heart rate. Similarly, adaptive filters and
Wiener filters have been of limited value in the absence of prior knowl-
edge of the physiological signal and its baseline drift [8], [9]. Our pro-
posed wavelet-based cascaded adaptive filter (CAF) responds to all of
these issues because it does not require any reference input and because
the level of the baseline drift can be evaluated simply by referring the
energy ratio of the pulse to its baseline drift.

II. THE PROPOSED CASCADED ADAPTIVE FILTER

Fig. 1 depicts the proposed CAF filter. First, we decompose the pulse
signal and detect its baseline drift level by computing its energy ratio
(ER) [10]. If the ER is less than 50 dB, the pulse is filtered in two
stages, with a discrete Meyer wavelet filter followed by cubic spline
estimation. Otherwise, the pulse will be filtered using only cubic spline
estimation.

A. Baseline Drift Level Detection Using Energy Ratio

When the baseline drift level is low, the frequency of the wavelet
filter may be nonideal and this may introduce some distortion. To eval-
uate the distortion level, we propose the ER-based method. In wavelet
analysis, a signal is split into two parts: approximation and detailed
content. The approximation is then split into a second-level approxi-
mation and further details. This process can be repeated. In this paper,
we use the discrete Meyer wavelet to decompose the raw pulse signal
into six levels, and then compute the ER as

[|A1 — mean(A1)||
ER =20log :
810 [| A6 — mean(A6)||

ey

where A1 and A6 are the first and the sixth level approximations of
a corrupted pulse signal with A1 being the pulse signal and A6 being
its baseline drift; |||| means the 2-norm and mean( A1) stands for the
average of Al.

Experiments have shown that ER = 50 dB is the best criterion for
discerning whether to use the Meyer wavelet filter. Our pulse database
contains 5395 clinical pulse waveforms. These are oriented to quantify
TCPD. Having calculated the ERs of all the pulses in this database, we
find that the ERs of 8% of the real pulses are more than 50 dB and the
ERs of 1.5% of the real pulses are less than 10 dB.

B. The Discrete Meyer Wavelet Filter

When the ER of a pulse waveform is less than 50 dB, we apply
the joint time-frequency character of wavelets to remove the excessive
baseline drift. We chose the discrete Meyer wavelet for this purpose be-
cause it is infinitely differentiable and can decrease to zero faster than
any inverse polynomial. Moreover, it does not produce aliasing errors
or distortions.

0018-9294/$20.00 © 2005 IEEE
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Fig. 1. The cascaded adaptive filter, which is composed of three parts: baseline drift level detection, Stagl, and Stag2. Level detection of baseline drift includes

wavelet decomposition and ERcalculation. In Stagl, if the ER of a pulse waveform is less than 50 dB, the wavelet filter is used. Stag2 is composed of pulse onsets

detector and cubic spline estimation.
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Fig. 2. Performances of four filters in removing the baseline drift of pulse waveform. Fig. 2(b) is the local enlargement of Fig. 2(a). Sig2 is attained by adding
baseline drift to a clean pulse waveform Sig/; Sig3, Sig4, and Sig5 are the results of Sig2 filtered using morphological filter, FIRLS filter, and discrete Meyer

wavelet filter, respectively.

We now compare the performance of the discrete Meyer wavelet
filter with that of three typical filters: the morphology, finite-impulde
response(FIR), and Meyer wavelet filters, excluding four other filters
from the comparison. We exclude the adaptive least mean square filter
and the Wiener filter because they are not sufficiently effective in re-
moving the baseline drift from a pulse waveform when they lack a ref-
erence signal. We exclude the cubic spline method because it assumes
that the ER of a corrupted pulse waveform is high enough. Finally, we
exclude the time-varied filter proposed by S6rnmo er al. because it is
rhythm-dependent.

As shown in Fig. 2, Sig2 is obtained by adding baseline drift to
clean pulse Sigl. Sig3 is the result of Sig2 processed by the morpho-
logical filter. We choose a disk shaped sequence with a width of 50
sampling points as the optimal structuring element sequence of this
morphology filter. Sig4 shows the result of the traditional linear-phase,
least-squares-error FIR filter (FIRLS), which is a 600-order forward
and reverse filter with a cutoff frequency of 0.6 Hz. Sig5 shows the re-
sult of the discrete Meyer wavelet.

Fig. 2(b) is the local enlargement of Fig. 2(a). Compared with Sig/,
Sig3 is greatly distorted and Sig4 still contains a lot of baseline drift.
The Discrete Meyer wavelet filter is better than the morphological filter
and the FIRLS filter both in removing Sig2’s baseline drift and in pre-
serving Sigl’s complex. However, Sig5 still contains some baseline
drift. Note also that because the Meyer wavelet filter has enhanced the
pulse waveform, spline estimation can be effectively applied to further
correct the baseline drift.

C. Cubic Spline Estimation Filter

Cubic spline estimation has been chosen because when the ER of
the pulse waveform is high, cubic spline is most suitable for estimating

a baseline drift that is smooth, with at most one inflexion in every in-
terval between adjacent knots. We regard the onsets of pulse waveform
as the knots of spline estimation. An onset is defined as the starting
point of the ascending part in every period of a pulse waveform, as il-
lustrated in Fig. 3. When the ER and signal-to-noise ratio (SNR) of a
pulse waveform are high, it is easy to accurately locate the onsets of a
pulse waveform, as the onsets can be detected according to the wave-
form’s amplitude and derivatives. Tests on 2000 clinical data and 1000
simulated pulse waveforms have shown that when ER > 10 dB and
SNR > 15 dB, the onsets of pulse waveforms can be detected very
accurately. The accurate detection of pulse waveform’s onsets ensures
the accurate correction of pulse baseline drift.

III. EXPERIMENTAL RESULTS

In this section, we use the same four filters in Section II-B, CAF,
morphology, FIRLS filter, and spline estimation, to filter simulated sig-
nals. Baseline drift caused by respiration is simulated using a periodic
component. Baseline drift caused by motion artifact is simulated using
anonperiodic component. The contaminated signals can be modeled as

ep(n) = p(n) + bw(n), (2)

where cp(n) is the corrupted pulse signal; p(n) is a clean pulse selected
from our pulse database; and bw (n ) is an integration of the periodic and
nonperiodic parts of the baseline drift, as illustrated in (3)

bw(n) =a x [sin(27 x 0.1 X n) 4+ sin(27w x 0.2 x n)
+sin(27 x 0.4 x n) + sin(27 X 0.6 X n) + filteredRandom(n)]
3
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TABLE 1
REMOVAL OF BASELINE DRIFT INTEGRATED BY PERIODIC AND NON-PERIODIC CONTENTS AT DIFFERENT ERS USING THE CUBIC SPLINE,
FIRLS, MORPHOLOGY, AND CAF FILTERS

PDR BCR
ER

(dB) Spline  FIRLS Morph CAF Spline FIRLS  Morph CAF

40 0.002 0.002 0.015 0.001 0.04 0.05 112.78 0.011

30 0.004 0.006 0.019 0.001 0.05 0.04 10.95 0.005

20 0.011 0.015 0.021 0.001 0.06 0.04 1.25 0.003

10 0.032 0.019 0.052 0.001 0.21 0.05 0.39 0.002

5 0.117 0.051 0.073 0.001 0.22 0.05 0.23 0.002

0 0.284 0.159 0.127 0.001 0.23 0.05 0.15 0.002

-5 0.532 0.446 0.204 0.002 0.26 0.07 0.09 0.002

Amplitude )
1 b Percussion Wave when the ER is more than 20 dB, but reducing the ER quickly produces
y=Pm lower PDRs and BCRs. Cubic spline has lower PDRs and BCRs when
the ER increases.
=0.8'Pm Our CAF filter was also tested on actual records using visual obser-
vation of three experts in TCPD. In this test, 500 clinic pulse data were
randomly chosen from our pulse database and filtered using our CAF
Tidal Wave . filter. Three experts in TCPD were then asked first to diagnose through
Dicrotic Wave analyzing these 500 raw pulse waveforms, and then their 500 processed
h5 pulse waveforms. After CAF filtering, the accuracy of diagnosis rose
¥ from 67% to 83%, demonstrating the effectiveness of the CAF filter.
i—~ t3——» al i IV. CONCLUSION
a ; P E !
pY e — : fl' This CAF filter efficiently and robustly corrects baseline drift in
ime

Fig. 3. Pulse and its features. A pulse waveform is usually composed of a
percussion wave, tidal wave and dicrotic wave. From these waves, we extract
parameters for pulse pattern recognition, where k1, h2, h3, h4, h5, w, t1, t2,
t3 are the parameters, and a, b, c, d, e, f are the character points of pulse. Point
“a” is the pulse waveform onset. If baseline drift is present, these parameters
and feature points will be distorted.

where a is the amplitude coefficient of a simulated baseline. The peri-
odic component is modeled by a sine signal at the frequency of 0.1, 0.2,
0.4, and 0.6 Hz. The nonperiodic component, filtered Random(n ), is
modeled by the low pass filtered random noise at the cutoff frequency
of 0.68 Hz.

The four filters are evaluated according to two parameters: the base-
line correction ratio (BCR) and the pulse distortion ratio (PDR). These
are defined as

T
22 llbw(t) = bwo ()]

BCR = = )
> bwo ()l
t=1
.
> Ipo(t) = p(OI
PDR = = 5)
;1 [lpo (Bl

where [||| stands for 2-norm; ¢ € [1, T, T is the length of the discrete
signal; bwo (t) is the simulated baseline drift; bw(t) is the baseline drift
estimated by filters; po(t) is the simulated clean pulse; and p(t) is the
extracted pulse.

Table I shows how the filters perform when the baseline is simulated
as (2) and (3) at various ERs. The CAF filter has the lowest PDRs and
BCRs, demonstrating that our CAF filter provides a better tradeoff be-
tween the preservation of diagnostic information and the removal of
baseline drift. The morphology filter has much higher PDRs and BCRs

pulse waveforms, making it very useful in preprocessing pulse wave-
forms based on both TCPD and Western medicine. The results suggest
that this CAF filter could also be used to remove baseline drift from
other physiological signals.
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