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A Floating Sleeve Antenna Yields Localized Hepatic
Microwave Ablation
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Abstract—We report a novel coaxial antenna for hepatic mi-
crowave ablation. This device uses a floating sleeve, that is, a
metal conductor electrically isolated from the outer connector of
the antenna coaxial body, to achieve a highly localized specific
absorption rate pattern that is independent of insertion depth.
This floating sleeve coaxial dipole antenna has low power reflec-
tion in the 2.4-GHz IMS band. Ex vivo experiments confirm our
numerical simulation results.

Index Terms—Ablation, coaxial aperture antennas, finite ele-
ment methods, floating sleeve, microwave heating.

1. INTRODUCTION

ICROWAVE ABLATION (MWA) is a promising tech-

nology for the treatment of hepatic tumors. The goal
of MWA is to destroy the tumor along with a 1 cm margin
of normal hepatic tissue. This technology has been used in
both intraoperative and percutaneous approaches for primary
hepatocellular carcinoma and hepatic metastasis of colorectal
carcinoma [1]-[3]. Hepatic tumors are commonly spherically
shaped and range in size from less than 1 cm to larger than 10
cm in diameter. However, current technology limits a single
ablated region to approximately 3 cm [4]—[8], not large enough
to treat large tumors in a single pass. When the input power
is increased to ablate larger regions, undesired heating occurs
along the coaxial feedline of the antenna. This detrimental
heating causes damage to the liver outside the desired treatment
region and can lead to burning of the skin during percutaneous
treatment.

There are three potential causes of detrimental heating along
the coaxial feedline. First, any impedance mismatch between
the antenna and the surrounding medium will create reflections
that set up standing waves within the coaxial feedline. Under
such conditions, the local currents on the inside of the outer
conductor can become large enough to cause local heating. If
the wall of the outer conductor is thin, the heat may transfer
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to the surrounding tissue. Second, an impedance mismatch
between the antenna and surrounding medium may also result
in unbalanced currents on the inner and outer conductors of the
coaxial feed. In this case, a remainder current flows along the
outside of the outer conductor of the coaxial feedline. The ‘tail’
seen in many of the specific absorption rate (SAR) patterns
computed from simulations of MWA antennas is attributed
to this current flow. Finally, most antenna designs are based
upon copper coaxial cables. Since copper is a good thermal
conductor, heat generated near the distal tip may be conducted
along the feedline.

Several types of coaxial-based antennas, including the
coaxial slot antenna [9], coaxial dipole antenna [10], coaxial
monopole antenna [11], coaxial cap-choke antennas [12],
[13], and others [14]-[17] have been designed for MWA or
microwave hyperthermia therapies in an attempt to prevent this
backward heating while creating as large an ablation radius
as possible. The cap-choke antenna seems to most efficiently
prevent backward heating [12], [18]. Cap-choke antennas
offer a localized SAR pattern and the smallest SAR tail. A
cap-choke antenna uses a metal sleeve, usually one-fourth of a
wavelength long, soldered to the outer connector as a choke,
and an extra metal ring at the distal tip of the antenna as a cap.
This antenna works well at lower power levels, but the residual
SAR tail of the antenna increases in size and causes backward
heating problems at higher power levels or during extended
ablations. At high microwave input power levels, even low-level
backward heating is detrimental enough to cause damage to
normal hepatic tissue, as well as serious skin burning during
percutaneous ablation.

This paper presents a novel coaxial antenna design, the
floating sleeve antenna, which addresses many of the critical
problems with current MWA antennas.

II. DESIGN OF THE FLOATING SLEEVE ANTENNA

Our goal was to design a coaxial antenna with a highly lo-
calized SAR pattern and low reflectivity for higher power trans-
mission. Fig. 1 shows the design of the floating sleeve antenna.
The antenna is based on a 50-2 UT-085 semirigid copper-Teflon
coaxial cable. A standard coaxial dipole antenna [10] is con-
structed from the coaxial cable and tightly wrapped with thin
layers of Teflon tape. The metal sleeve, which is comprised of
a section of copper tube (3.2-mm outer diameter, 2.5-mm inner
diameter), is slid onto the Teflon-coated coaxial dipole antenna
and positioned behind the antenna slot. The whole antenna as-
sembly is then tightly wrapped with Teflon tape. The Teflon tape
is heated during and after wrapping in order to prevent air from
being trapped in the tape layers. Fig. 1(a) shows the longitudinal

0018-9294/$20.00 © 2006 IEEE



534 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 53, NO.

Floating sleeve

JTeflon coating To the cable

connector

3.4

(a) *Dimensions are in mm

dielectric, 1.676 mm

inner conductor, 0.512 mm
outer conducter, 2.2 mm
Teflon isolation layer, 2.5 mm
Floating sleeve, 3.2 mm
Teflon coating, 3.5 mm

(b)

Fig. 1. (a) Schematic of the floating sleeve antenna and (b) cross section of the
antenna at the sleeve.

dimensions of each section of the antenna along with the overall
diameter, while Fig. 1(b) shows the interior diameters in the re-
gion of the sleeve.

The floating sleeve antenna differs from existing laboratory
and clinical devices (such as the cap-choke antenna) in that the
sleeve is electrically isolated from the outer conductor of the
coaxial feedline. This floating sleeve is similar to the open sleeve
antenna [17] which also uses a floating sleeve. However the
floating sleeve of the open sleeve antenna in [17] is quite long.

We designed the floating sleeve using computer simulations
once we gained a qualitative understanding of the importance
and effect of the following design parameters: length of the
sleeve, thickness of Teflon layer above the sleeve, thickness of
Teflon isolation layer, and width of antenna slot and length of
antenna tip.

We determined that the SAR pattern is affected by both the
length of the sleeve and the thickness of the Teflon layer. If the
sleeve is not covered by a Teflon layer, it needs to be approx-
imately half of the effective wavelength in liver tissue. If the
sleeve is covered by a Teflon layer, the sleeve needs to be longer,
with the length depending on the thickness of the Teflon layer.
This length is critical, and if significantly longer or shorter than
the ideal length, the sleeve can be less effective than other re-
ported antenna designs. As long as the sleeve is half a wave-
length (adjusted for the presence of Teflon) in length and is not
covering the antenna slot, it seems able to constrain the tail of
the SAR pattern. In fact the edge of the SAR pattern seems tied
to the termination of the sleeve, to the extent that by sliding
the floating sleeve, we can control and change the SAR pattern
from a spherical shape to an elliptical shape. This may make it
possible to control the shape of the lesion to fit different tumor
shapes. The thickness of the Teflon isolation layer (the Teflon
layer between the floating sleeve and the outer conductor of the
coaxial cable) does not seem to affect the SAR pattern as long
as it is at least 0.1 mm.

Our design uses a 2-mm-wide slot, which is easily fabricated,
and also gives minimal power reflection. The length of the
antenna tip also slightly affects the power reflection and shape
of the SAR pattern. The length was adjusted to give a good
trade off between the power reflection and a spherical SAR
pattern.

The antenna design reported here is based on commercially
available coaxial cable and utilizes readily available and inex-
pensive construction materials. This easily fabricated antenna
is suitable for open or laproscopic operative therapies. How-
ever, the diameter of 3.5 mm precludes its use in percutaneous
therapies.
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Fig. 2. Axi-symmetric CEM model in the vicinity of the tip of the floating
sleeve antenna. The vertical axis (r axis) corresponds to the radial direction
while the horizontal axis (z axis) corresponds to the longitudinal axis of the
antenna. The aspect ratio used in this diagram is nonphysical in order to show
the details in the radial direction.

III. COMPUTER SIMULATION AND EXPERIMENTAL RESULTS

We used computational electromagnetics simulations to com-
pute the SAR distribution and input reflection coefficient, or
S11, as a function of frequency for the proposed antenna de-
sign. We compared simulated S7; to experimentally measured
S11 to validate the model, and evaluated lesion size and shape
after ex vivo ablation.

A. The Computational Electromagnetics (CEM) Model

We performed simulations of the floating sleeve antenna
using the electromagnetic modeling capabilities of FEMLAB
version 2.3. We used an axially symmetric model [19], which
minimized the computation time while maintaining good
resolution and the full three-dimensional nature of the fields.
The two-dimensional axisymmetric model requires 180 MB
memory and 50 s of CPU time for each FEMLAB simulation
on an Intel P4 2.8-GHz desktop computer. Fig. 2 shows the
structure of the floating sleeve antenna near the tip in our CEM
model. The model assumes that the floating sleeve antenna is
immersed in homogeneous bovine liver tissue. The horizontal
z axis is oriented along the longitudinal axis of the antenna and
the vertical r axis is oriented along the radial direction. The
computational domain corresponds to a physical domain size
of 60 mm in radius and 110 mm (z = —30 mm to z = 80 mm)
in length, surrounded by air.

The dielectric insulator of the coaxial cable, the antenna slot
and the outer coating materials are all Teflon with relative per-
mittivity equal to 2.1. The relative permittivity and conductivity
of liver tissue at 37 °C are &, = 43.03 and 0 = 1.69 S/m,
respectively, at 2.45 GHz. These values were obtained using a
4-pole Cole-Cole equation (shown below) with coefficients for
liver from [20]

R B 4 Aé‘n gi
E(w) = €00 t+ Z 1+ (]wT )17an +
n=1 n

—. ey
JwWeo

Here, w is the angular frequency [rad], € is the effective com-
plex relative permittivity and ¢y is the permittivity of free space.
Table I gives all other parameters of (1). The effective wave-
length in liver tissue is approximately 18.5 mm.

The SAR [W/kg] in tissue is calculated as a function of posi-
tion as follows:

o|E|?
(2p)
where o is the tissue conductivity [S/m] at the excitation fre-

quency, p is the tissue density [kg/m®], and E is the spatially
dependent time-harmonic electric field vector [V/m].

SAR =

@
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TABLE 1
4 POLE COLE-COLE COEFFICIENTS FOR LIVER FROM [20]

Parameter Value Parameter Value
£, 4.0 o; 0.0200
Ag, 39.0 Ag, 6000
7, (ps) 8.84 7, (ns) 530.52
(o4 0.10 a, 0.20
Ag; 5.0x10* Ag, 3.0x107
75 (us) 22.74 74 (ms) 15915
o 0.20 a, 0.05

40 T T . . T . . . .

* Dimensionin mm
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Fig. 3. Plot of normalized SAR on a dB scale. The SAR values are normalized
to the maximum SAR value in the simulation region. For reference, the probe
tip is at z = 0 mm, the slot is centered at = = 12 mm, and the sleeve begins
at z = 22 mm and extends to z = 41 mm. The region of the simulated liver
tissue is from z = —23 to z = 83 mm horizontally and r = 0 to r = 60 mm
vertically. The boundary of the region of the liver tissue is not shown in the
figure so SAR pattern near the antenna slot can be shown in better details. The
antenna is inserted 70 mm deep into the liver, from the center of the antenna slot
at z = 23 mm to liver tissue right side boundary at z = 83 mm.
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Fig. 4. Plot of normalized SAR on linear scale as a function of z, at constant
values of r = 2.5, 5.0, 10.0, and 20.0 mm. The SAR values are normalized to
the maximum value in the plot.

Fig. 3 shows the SAR pattern, normalized to the maximum
value in the simulation region, in dB. Fig. 4 shows normalized
SAR values along the longitudinal direction at a number of dif-
ferent radial positions. Figs. 3 and 4 indicate that the antenna
SAR pattern is completely constrained by the sleeve and is local-
ized in the region from the antenna tip to the end of the floating
sleeve. To test the effect of the insertion depth on the SAR pat-
tern, Fig. 5 shows the SAR pattern when the active components
of the antenna are near the surface. It shows that the localiza-
tion of the SAR pattern is relatively independent of the insertion
depth as long as the sleeve is completely immersed in the liver.
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Fig.5. Plotofnormalized SAR on a dB scale. Comparing to Fig. 3, the antenna
is inserted 40 mm deep into the liver, from the center of the antenna slot at
z = 43 mm to liver tissue right side boundary at z = 83 mm. Boundaries of
simulated liver tissue region are marked in dashed lines.

B. Frequency Sweep for Antenna Power Reflection

To validate our model as well as examine the power reflec-
tion characteristics of this antenna design, we fabricated an an-
tenna and measured its reflection coefficient (.S11) spectrum, in
fresh bovine liver, from 0.5 to 10 GHz using a vector network
analyzer (Agilent E8364A). We revised the simulated antenna
dimensions to match the exact fabricated dimensions and com-
puted the S1; spectrum at discrete frequencies from 0.5 GHz to
10 GHz. At each discrete frequency, we adjusted the dielectric
properties of bovine liver tissue based on (1).

Fig. 6 shows that the measured and computed results agree
quite well. Fig. 6 shows that the antenna’s minimum reflection is
near 2 GHz, not the desired frequency of 2.45 GHz. The result is
not unexpected as the antenna was not designed to minimize the
reflected power, but to obtain a good SAR pattern while main-
taining a reasonably low reflection coefficient. The measured
S11 is —17.1 dB and the simulated S7; is —18 dB at 2.45 GHz
and we believe these are acceptably low for this initial design.
Further optimization of the antenna could reduce this reflection
further and permit tuning the null to 2.45 GHz. We note, how-
ever, that a small degree of detuning is expected in practice as
the dielectric properties change during ablation.

C. Ex Vivo Experiments and Results

Ultimately it is the coagulated region produced by an antenna
that determines its effectiveness so we performed ex vivo ab-
lations. We connected the floating sleeve coaxial antenna to a
CoberMuegge MG0300D 300 W, 2.45-GHz microwave gener-
ator through a 1 m long flexible coaxial cable. We then care-
fully inserted the antenna into peripheral regions of fresh bovine
liver to avoid heating near the largest blood vessels. We then
heated the liver using 120 W of power for 150 s monitoring
and recording input and reflected power. Initial liver tempera-
ture was 37 °C. We note that 120 W is within the power han-
dling capabilities of the UT-085 coaxial cable used.

After each experiment we sliced the liver tissues into either
longitudinal cross sections or transverse cross sections. For lon-
gitudinal slicing, we placed a probe into the track created by the
antenna and made a longitudinal transection of the lesion close
to the inserted probe. We photographed tissue slices using a ruler
for reference and scanned using an HP ScanJet 3970 scanner at
200 dpi or higher resolution. Fig. 7 shows one of the ex vivo ex-
periment results. Here, the lesion size is approximately 5.6 x
3.7 cm, when measured to the periphery of the “white zone.”
This is a slightly different shape than predicted by the SAR pat-
tern. The procedure of the thermal lesion formation is a complex
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Fig. 7. Photo of ablated bovine liver tissue. The lesion was created by
applying 120 W for 150 s. The initial temperature of liver tissue was about
37 °C. The spacing between the markers on the antenna body was 1 cm. The
lesion was about 5.6 X 3.7 cm and clearly localized to the active radiation
region of the antenna. The lesion size was comparable to large lesion size
reported by Strickland et al. [21].

combination of microwave energy absorption, heating conduc-
tion as well as possible tissue water evaporation, condensation
and movement during the ablation period. Therefore the SAR
pattern is only expected to be a guide to final lesion shape. The
lesion does show a very well constrained tail as predicted by the
SAR pattern. We created 16 lesions using 120 W of power for
150 s, to examine repeatability, mean and std deviation Size of
the lesions were 5.87 £+ 0.32 cm by 3.64 + 0.33 cm.

IV. Di1SCUSSION AND CONCLUSION

Currently, the major limitation of MWA in treating larger
liver tumors is the inability to deliver sufficient power to the
tumor while minimizing detrimental heating to normal liver
tissue outside the treatment region. We have developed a novel
floating sleeve coaxial antenna for microwave liver tumor ab-
lation, using both simulation and experimental measurements.
This antenna is capable of providing very localized power
deposition in hepatic tissue with minimal backward heating; as
well as low power reflection, and high power throughput. The
significant new feature of this antenna is the floating sleeve used
to prevent the flow of electromagnetic energy along the coaxial
applicator. The critical parameter seems to be the length of the
sleeve. One other feature of this sleeve is its apparent ability to

constrain the SAR pattern to the end of the sleeve allowing a
certain amount of control over the shape of the SAR pattern.

While this study has yielded a qualitative understanding of
the importance and effect of the parameters of the sleeve, more
studies are currently being performed to identify the reason for
the superior performance of the floating sleeve in constraining
the tail of the SAR pattern.
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