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 

Abstract—A finite element model for the generation of single 

fiber action potentials in a muscle undergoing various degrees of 

fiber shortening is developed. The muscle is assumed fusiform 

with muscle fibers following a curvilinear path described by a 

Gaussian function Different degrees of fiber shortening are 

simulated by changing the parameters of the fiber path and 

maintaining the volume of the muscle constant. The conductivity 

tensor is adapted to the muscle fiber orientation. In each point of 

the volume conductor, the conductivity of the muscle tissue in the 

direction. of the fiber is larger than that in the transversal 

direction. Thus, the conductivity tensor changes point-by-point 

with fiber shortening, adapting to the fiber paths. An analytical 

derivation of the conductivity tensor is provided. The volume 

conductor is then studied with a finite element approach using the 

analytically derived conductivity tensor. Representative 

simulations of single fiber action potentials with the muscle at 

different degrees of shortening are presented. It is shown that the 

geometrical changes in the muscle, which imply changes in the 

conductivity tensor, determine important variations in action 

potential shape, thus affecting its amplitude and frequency 

content. The model provides a new tool for interpreting surface 

EMG signal features with changes in muscle geometry, as it 

happens during dynamic contractions. 

 
Index Terms—electromyography, modeling, finite elements 

 

I. INTRODUCTION 

URFACE EMG signal modeling has important 

applications in the interpretation of experimental EMG 

recordings [1][2][3]. Thus, in the last decades, many 

surface EMG models have been proposed [3], with increasing 
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complexity and accuracy. Both numerical and analytical 

approaches were used to describe the electrical properties of 

the tissues separating the muscle fibers and the detecting 

electrodes (the volume conductor). The volume conductor has 

been considered homogeneous in many past modeling 

approaches [1][4], and inhomogeneous in more recent 

developments [5][6][7]. In the latter case, layered descriptions 

of the tissues, either planar [6] or cylindrical [5][7], have 

usually been adopted. 

In most models, the volume conductor is homogeneous in the 

direction of propagation of the intracellular action potentials 

[4][5][6][7][8]. This assumption characterizes a system space-

invariant in the direction of source propagation (refer to [9] for 

a formal definition of space-invariance). The space-invariance 

property significantly simplifies the analytical derivation of the 

surface detected potential, which is generated through the 

application of linear, space- and time-invariant filters to the 

source [6]. However, non-space-invariant systems have 

important relevance for interpreting EMG signal features [10].  

Lack of invariance in the direction of source propagation can 

be due to changes in conductivity (e.g., due to localized 

inhomogeneities [11] or fiber pinnation [12]), or to the 

geometry of the volume conductor [9]. In these cases, the 

surface potential distributions generated by a source located at 

different places along the propagation path are different in 

shape and not simply translated versions of the same solution 

as it happens for space-invariant systems. Thus, analytical 

solutions of the problem are usually very complex. For this 

reason, only a few solutions for specific non-space-invariant 

systems have been analytically derived [11][12] while general 

non-space-invariant systems cannot be investigated with 

analytical approaches and require numerical techniques [9].  

Finite element techniques have been applied in surface EMG 

modeling for the investigation of layered volume conductors 

with conductivity tensor constant in each layer [13]. However, 

the muscle conductivity tensor depends point-by-point on the 

orientation of the muscle fibers [9][12], with the conductivity 

in the fiber direction (which may change point-by-point in the 

muscle) larger than the conductivity in the direction transversal 

to muscle fibers. Thus, curvilinear fibers imply a complex 

description of the corresponding conductivity tensor. Only one 

previous work addressed the problem of matching the 

conductivity tensor of the muscle tissue to the fiber orientation 

in a surface EMG model [9], providing a finite element 

solution to the problem. 

An important practical problem in the detection of surface 

EMG signals is the geometrical modification of the muscle due 

to fiber shortening, when the joint angle changes. With 
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decreasing muscle length, fiber diameter increases, thus the 

shape of the muscle and the direction of the fibers change. 

This determines variations both in the geometry and 

conductivity tensor of the volume conductor. 

In a previous study, we analyzed the effect of fiber 

shortening on estimated EMG variables [14]. However, we 

focused exclusively on the effect of end-of-fiber components 

on the EMG signals; these components increase as the tendon 

regions approach the EMG detection point, as it happens with 

shortening. No changes in the volume conductor geometry or 

conductivity tensor were included in the simulations and the 

conductivity tensor was constant for the entire muscle tissue. 

The volume conductor, described as in [6], was assumed as 

space-invariant in the direction of source propagation and 

identical in all the shortening conditions.  

In this study we propose a method for simulation of surface 

EMG at different degrees of muscle shortening, assuming a 

complex volume conductor, non-space-invariant in the 

direction of source propagation, which changes shape and 

conductivity properties with shortening. The path of the 

current source and the muscle conductivity tensor indeed 

depend on the fiber orientation, which changes point-by-point 

and with shortening. The conductivity tensor is analytically 

computed; however, the complexity of the system imposes a 

numerical solution of the volume conductor problem, given the 

analytically derived conductivity tensor. Due to the complexity 

of the simulated condition, some simplifications were 

assumed. Thus, although the conductivity tensor of the muscle 

tissue was described in a more accurate way with respect to 

previous studies, source description was simplified (tripole 

approximation) and no additional layers (subcutaneous and 

skin layer, for example) were included in the model. The aim 

was to focus on the effects produced by the change in muscle 

conductivity tensor with varying fiber direction. 
 

II. METHODS 

The bioelectrical problem of EMG simulation can be 

considered quasi-statical, thus the Poisson equation holds: 











0
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                             (1) 

where   is the conductivity tensor,   the electric potential, g 

the source term (which is a current density traveling along the 

fiber and inducing its contraction),   and   the volume 

conductor domain and its boundary, respectively. 

In this section we will consider the volume conductor as 

comprised of muscle and tendon only, thus neglecting the 

effect of subcutaneous layers. The muscle is assumed fusiform 

and changes shape with shortening of its fibers. 

 

2.1 Muscle geometry 

To represent a fusiform muscle, we consider fiber paths 

described by the following curves (Figure 1): 
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where   identifies the radial location of the muscle fiber, and 

)z(r  is the distance of the fiber from the z-axis (central axis 

of the muscle). The most external fibers are characterized by 

the radius r(z)  =  f(z), with: 

2
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where R is the maximum radius of the muscle tissue (for z = 0) 

(Figure 1). The function f(z) is limited to the interval 

],[ ddz  , such that the minimum muscle radius 

2

2

2
0

w

d

ReR


  corresponds to the tendon thickness. The 

parameters R and w determine the geometry of the muscle. For 

example, the increase in w increases muscle length. This 

description is relatively simple and allows the change in 

muscle geometry by varying two parameters. Moreover, it 

allows the definition of the fiber orientation in each point of 

the muscle [Eq. (2)] and, thus, the analytical calculation of the 

conductivity tensor in the volume conductor. 

 

Deep fiber

Superficial fibers

R, maximum

radius of volume

conductor

R0, tendon

radius

10 mm

Tendon
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z

r(z)

d d

z=0

Rf

z=-d z=d

 Figure 1 A two-dimensional view of the analyzed volume 

conductor for a muscle length of 110 mm. The muscle 

geometry has in this case a tendon radius of 10 mm and a 

maximum radius of 18.5 mm. Note the difference in curvature 

of superficial and deep fibers. Rf is the distance of the fiber 

from the z axis at the tendon level. 

 

The parameters R and w in Eq. (3) change with shortening. 

We will set two constraints to determine their values: 1) the 

total muscle volume, and 2) the minimum radius R0 

(corresponding to the radius of the tendon) are constant in 

each shortening condition. These two constraints are not 

necessary for the development of the finite element model but 

allow a simple calculation of R and w, given the volume of the 

muscle and its length (degree of shortening). 

The first constrain imposes: 
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 and d is half the length of 

the muscle.  

The second constraint imposes f(d)=R0, leading to the 

following relation: 
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Substituting Eq. (5) in Eq. (4), we obtain: 
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which provides the value of R (to be solved numerically), 

given the volume of the muscle, the length 2d of the muscle, 

and the radius R0 of the tendon. When R is determined, the 

parameters w is obtained by Eq. (5). The parameter w is the 

same for all fibers. The maximum distance Rd  R of each fiber 

from the z axis is computed by assuming the ratio Rd/R 

constant in each shortening condition. In this way, in each 

muscle section, the fiber density is the same for all muscle 

lengths. 

 

2.2 Conductivity tensor  

A general conductivity tensor for a muscle tissue can be 

expressed as [9]:  

tbtbttntntlll v̂v̂v̂v̂v̂v̂                  (7) 

where the subscript l  stands for longitudinal and t  for 

transversal coordinate with respect to the fiber direction, and 

tbtnl v,v,v


  are the longitudinal, normal, and binormal versors 

relative to the fiber orientation, respectively. Such versors are 

functions of the position in case of curvilinear fibers.  

Poisson’s equation in a Cartesian system can be obtained 

for a general conductivity tensor by introducing the Cartesian 

representation of the curvilinear differential operators 

(gradient and divergence), as follows: 
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For the fusiform muscle introduced, the longitudinal, 

normal, and binormal vectors become: 
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where the point over a symbol indicates the first derivative 

with respect to z. Using their normalized versions in the 

general expression (8), calculations (omitted) yield the 

following expression of the conductivity tensor in a Cartesian 

system for the fusiform muscle defined by the fiber orientation 

in Eq. (2): 

 

     
     
      

























tltltl

tltltl

tltltl

yxzwyzwxzw

yzwzxwzyxyz

xzwxyzzywzx

yxzw







222422

2224222

2222422

2224

1   

(10) 

This is the tensor to be used in a finite element model for 

describing the conductivity properties of the muscle tissue 

point-by-point under different degrees of shortening. 

 

2.3 Source description 

The modeling of the generation, propagation, and extinction 

of the intra-cellular action potential has been extensively 

addressed in past work [4][15][16][17]. The general 

assumption is that the integral of the current density over the 

muscle fiber length is zero in each instant of time. For volume 

conductors which are not space-invariant in the direction of 

propagation, as that studied in this work, the response of the 

system to an impulsive current depends on the position of the 

current (thus, it is not an impulse response in the sense of 

linear and space-invariant spatial filtering). The source 

function should be sampled and viewed as a multi-pole. The 

tripole approximation of the transmembrane current density 

[18] was used in this study. Generation and extinction of the 

intracellular action potentials at the end-plate and tendons 

were included as described by Merletti et al. [1]. The path of 

propagation of the transmembrane current was defined by the 

curve   in Eq. (2), which also determined the conductivity 

tensor. The arch length of   was used as the coordinate to 

locate the tripole source within the muscle and to describe its 

propagation [9]. 

 

2.4 Numerical implementation 

The numerical approach applied was based on finite 

elements and implemented by the software package FEMLAB 

(version 3.0a). The boundary conditions for the muscle were 

homogeneous Neumann conditions [19]. A Neumann 

boundary (also referred as natural boundary) condition 

specifies the value of the normal flux across the boundary. By 

the image theorem, Neumann boundary conditions lead to 

periodicity [19]. A sub-domain representing the tendon ending 

was added to the muscle geometry (Figure 1) in order to 

reduce aliasing.  

The periodicity given by the Neumann boundary conditions 

can be used to reduce computational time. From image theory, 

cutting the muscle geometry in two halves, it is possible to 

study two propagating tripoles by simulating only one (the 

second is an image of the first). Thus, in order to save 

computational time, only half of the original volume conductor 

can be described (Figure 2), imposing the Neumann boundary 

conditions at z = 0 which account for the second half of the 

volume conductor (image of the first half). This approach is 

valid only for symmetric muscle fibers, with the end-plate in 

the middle of the volume conductor. If the muscle fibers are 
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asymmetric, the entire volume conductor and the two tripoles 

should be studied. 

The tendon ending was considered isotropic (conductivity 

0.3 S/m), while the muscle tissue was electrically described by 

the conductivity tensor in Eq. (10) (in-homogeneous and 

anisotropic), with l and t 0.5 S/m and 0.1 S/m, respectively. 

To calculate the surface potential, the source was moved 

step-wise along the fiber path described by Eq. (2). Given the 

conduction velocity v of the intracellular action potential and 

the sampling rate fs in time domain, v/fs is the step by which 

the source is moved between two sampling instants. For each 

sampling instant, the potential distribution over the entire 

muscle surface was computed by meshing the volume 

conductor using tetrahedral elements (Figure 2). The elements 

surrounding the source were smaller than the others (maximum 

diameter of these elements 0.1 mm), to improve accuracy. The 

potential was calculated at the nodes located at the vertices of 

the tetrahedral elements [13]. Point electrodes were simulated. 

To obtain the potential at the muscle surface corresponding to 

the exact location of the electrode, the potential values at the 

four nodes nearest to the detection point were interpolated. 

This was done by calculating the distance of each node from 

the electrode, and summing the potentials at the nodes by a 

convex linear combination (i.e., with unitary sum of the 

weights) with weights proportional to the inverse of the 

distances (which is the rate of decrease of the free-space 

potential in the three-dimensional space, neglecting the effect 

of anisotropy within the specific element).  

 

 

10 mm

 
 Figure 2 A three-dimensional view of the volume conductor 

described by finite elements. Because of image theory, the 

muscle geometry has been halved (see text for details). The 

volume conductor (muscle and tendon) is meshed into 

approximately 100000 tetrahedral elements. 

III. RESULTS 

The model described was used to generate single fiber action 

potentials and interference surface EMG signals on the muscle 

surface at five stages of shortening (Figure 3). The muscle 

modeled was the biceps brachii. The parameters related to the 

five geometries are reported in Table 1 and correspond to 

anatomical data provided in the literature [20]. The specific 

shape of the volume conductor is not a constraint for the 

model. 

 

13.3 %
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L0 = 150 mm

L1 = 130 mm

L2 = 110 mm

L3 = 90 mm

L4 = 80 mm

40 %

shortening

46.6 %

shortening

Tendon Tendon

Muscle

Reference

condition

 
Figure 3 A two-dimensional view of the five volume 

conductor shapes investigated, which correspond to different 

degrees of shortening. Note that only the muscle geometry 

shortens while the tendon regions remain of the same length 

and diameter in all conditions. 

 

Table 1 Simulation parameters for the five stages of 

shortening. Stage 1 is considered as the reference condition. 

The percentage of shortening is computed for the other stages 

with respect to Stage 1. 

 

Model 

Parameter 

 

Stage 1 

 

Stage 2 Stage 3 Stage 4 Stage 5 

R0 10 mm 10 mm 10 mm 10 mm 10 mm 

R 15 mm 16.5 mm 18.5 mm 21 mm 23 mm 

L=2d 150 mm 130 mm 110 mm 90 mm 80 mm 

Shortening (%) 0 13.3 26.7 40 46.6 

w 83.29 64.95 49.58 36.94 30.99 

V 
83.2 

cm3 
83 cm3 83.4 cm3 83 cm3 85.1 cm3 

CV 4 m/s 4 m/s 4 m/s 4 m/s 4 m/s 

 

 The recording electrode system was placed over the surface at 

the medium point between the fiber end-plate and the tendon 

ending in all conditions. Relative shift of the muscle fibers 

with respect to the skin surface may occur when the joint angle 

changes [21]. This effect was, however, not considered in the 

representative simulations shown in the following, to focus 

only on the effects of muscle shortening. Monopolar, single 

differential, and double differential recording systems were 

simulated. For single and double differential detection, the 

interelectrode distance was 5 mm.  

Figure 4 shows examples of monopolar single fiber action 

potentials detected over the muscle surface with point 

electrodes at the five shortening stages. The action potentials 

simulated with the homogeneous conductivity tensor are 

compared with those obtained with the conductivity tensor 

described in Eq. (10). Action potential shape changes with 

shortening due to the modification in muscle geometry and in 

the orientation of the muscle fibers. The homogeneous and 

inhomogeneous descriptions of the conductivity tensors lead to 

a different effect on the generated action potentials.  
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Figures 5 and 6 show the average rectified value (ARV) and 

mean power spectral frequency (MNF) estimated from the 

simulated single fiber surface potentials at the five stages of 

shortening for fibers at different depths. ARV and MNF are 

influenced by muscle shortening, mainly due to the change in 

the distance between the sources and the detection electrodes 

with shortening. Figure 7 reports a simulation of the 

interference surface EMG signal at the different shortening 

conditions. In this case, all the physiological parameters are 

constant and only the geometry is changed. 

 

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Conductivity tensor 

with curvilinear 

fiber paths

Conductivity tensor

with rectilinear 

fiber paths

A.U.

10 ms 10 ms 10 ms 10 ms 10 ms

 
Figure 4 Examples of surface single fiber monopolar action 

potentials generated at five stages of shortening. The distance 

of the fiber from the z axis is Rf  = 6.25 mm at the tendon level. 

The five stages of shortening refer to the volume conductors 

described in Figure 3. The conductivity tensor is described as 

in Eq. (10) (solid lines) and as homogeneous (dashed lines). In 

both cases and for all shortening conditions, the end-plate is 

located in the middle of the fiber, the electrodes are placed in 

the middle between end-plate and tendon, and the fiber is 

directly under the electrodes [ = 0 in Eq. (2)]. A.U. stands for 

arbitrary units.  
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Figure 5 ARV computed from simulated muscle fiber action 

potentials for the five muscle lengths described in Figure 3. 

Monopolar, single differential, and double differential 

detection systems are compared. In all conditions, the 

detection electrodes are located at 10° from the simulated 

muscle fiber in the angular direction and in the middle between 

the end-plate and tendon in the longitudinal direction. The 

end-plate is in the middle of the fiber in all cases. 

Interelectrode distance for the bipolar and double differential 

recordings is 5 mm. ARV is normalized with respect to the 

values at the reference muscle condition (stage 1 in Figure 3). 

The simulated fiber is located within the muscle at seven 

depths, corresponding, at the tendon level, to a distance Rf 

from the z axis (see Figure 1) in the range 1.25-8.75 mm (1.25 

mm increments). The smaller the distance, the deeper the fiber. 
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Figure 6 MNF computed from simulated muscle fiber action 

potentials for the five muscle lengths defined in Figure 3. The 

simulations are in the same conditions as in Figure 5. MNF 

values are normalized with respect to the values in the 

reference condition. 
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Figure 7 Interference surface EMG signal generated by 

simulating the activity of 120 motor units, randomly located 

within the part of the muscle with distance smaller than 10 mm 

from the detection electrodes. The motor unit action potentials 

were generated from the five volume conductors depicted in 

Figure 3, which represent five degrees of muscle shortening. 

The same fibers were simulated in each shortening condition. 

The discharge rates of the active motor units were computed as 

suggested by Fuglevand et al. [28], with excitation level 

corresponding to 50% of the maximum. The number of fibers 
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in each motor unit varied randomly in the range 50-800. For 

each degree of shortening, the solution for the surface potential 

at each angular position was obtained from a set of 8 depths, to 

reduce computational time. The values of the potential 

distribution for the other depths were obtained by 

interpolation. Mean motor unit conduction velocity was 4 m/s 

and the standard deviation of conduction velocity distribution 

was 0.3 m/s. The motor unit discharge frequencies and 

conduction velocities were the same in the five conditions (no 

physiological changes in the five conditions). The detection 

system was bipolar with 5 mm interelectrode distance. A.U. 

stands for arbitrary units. 

 

IV. DISCUSSION AND CONCLUSIONS 

In this study we proposed the modeling of a fusiform muscle 

by a finite element approach. We applied a precise analytical 

calculation of the conductivity tensor in each point of the 

muscle tissue, considering that the conductivity of the muscle 

depends point-by-point on the direction of its fibers. Given the 

analytical expression of the curve defining the fiber orientation 

in the muscle tissue, the conductivity tensor can be analytically 

computed [Eq. (10)]. Modeling the conductivity tensor of the 

muscle tissue has been largely neglected in the literature on 

EMG simulation even in the case of sources traveling along a 

general curvilinear path [1][22][23]. Recently, we have 

addressed this issue for bi-pinnate muscles [9][12]. The non-

constant conductivity tensor introduces an inhomogeneity in 

the volume conductor in the direction of source propagation, in 

addition to the inhomogeneity due to geometry. 

With respect to isometric contractions, dynamic exercises are 

more common in daily-life activities and are of greater interest 

in fields such as sport, space, occupational medicine, and 

rehabilitation. Although in recent years there have been 

important efforts in the development of analysis tools for 

surface EMG signals recorded in dynamic tasks, there are still 

many open issues in the interpretation of surface EMG in these 

conditions. Due to the lack of surface EMG models which 

simulate changes in muscle geometry, indications on the 

limitations of the surface EMG technique when applied in 

dynamic contractions are missing. For this reason, constrained 

conditions, such as cycling exercises, were usually considered 

(e.g., [24]). 

When muscle fibers shorten, their diameters increase and, as 

a consequence, muscle geometry changes. A fiber at a specific 

depth within the muscle in resting conditions may be at a 

larger depth when the overlaying fibers increase their 

diameter, as has been simulated in this work. Thus, in addition 

to changes in the relative location of the tendons and end-

plates with respect to the recording electrodes [14], the surface 

detected potentials are affected by variations in 1) the 

conductivity properties of the muscle tissue and 2) the relative 

electrode-source distance. These changes are reflected in the 

amplitude and frequency variables extracted from surface 

EMG signals (Figures 5 and 6). The simulation of only a 

geometrical change in the volume conductor leads to a 

different effect with respect to the inclusion of variations in 

both geometry and conductivity tensor (Figure 4). 

The representative simulations shown provide an indication 

of the effect of changes in the conductivity tensor 

accompanying muscle shortening on the properties of the 

surface detected potentials. These effects are complex to 

predict without a numerical model since shortening implies a 

number of changes in the system. There are two main signal 

components which contribute to the surface EMG potentials, 

the propagating and the non-propagating ones. The 

propagating component is generated during the traveling of the 

intracellular action potential along the fiber, while the non-

propagating component originates when the intracellular action 

potential generates and extinguishes at the end-plate and 

tendons, respectively. Since the fiber changes position within 

the muscle and the end-plate and tendon endings get closer to 

each other and to the detection electrodes with fiber 

shortening, the sources of the two main signal components 

change their relative distance with respect to the detection 

electrodes with decreasing fiber length. Moreover, the 

electrical properties and geometry of the tissue separating 

sources and electrodes also change. This complex set of 

electrical and geometrical modifications affects the surface-

detected action potential in a way that is dependent on the 

specific detection system. 

As a consequence of muscle shortening, ARV of single fiber 

action potentials may be reduced up to approximately one 

third of its initial value when muscle length is reduced to 

approximately 50% and the signals are detected with a bipolar 

system (Figure 5). The effect is smaller for superficial than for 

deeper fibers since the distance of superficial fibers from the 

electrodes changes less with shortening than that of the deep 

fibers. Since most of the surface EMG signal power is due to 

the activity of superficial fibers, the changes in ARV of the 

interference EMG signal are more limited than those obtained 

for deep single fibers but still significant in practical 

applications. The effect on ARV depends on the detection 

system. While single and double differential systems lead to 

similar sensitivities to muscle shortening, monopolar 

recordings are much less sensitive to it. This is due to the 

relative weight of non-propagating potentials, which is larger 

for monopolar than for differential recordings. As the muscle 

shortens, the fibers increase their distance from the detection 

point but the end-plate and tendon endings approach the 

electrodes, thus the propagating component decreases and the 

non-propagating one increases in amplitude, counteracting 

each other. This effect is less evident for single and double 

differential systems since these systems largely reduce the non-

propagating components (DC in the spatial domain). 

As for ARV, the effect of shortening on MNF depends on the 

depth of the fiber and on the detection system (Figure 6). The 

action potentials generated by superficial fibers are less 

affected by shortening than those from deep fibers, as 

discussed for ARV. In general, MNF tends to increase with 

shortening for the monopolar recording while this is less 

evident for the other two detection systems. The increase in 

MNF reveals the well-known larger frequency bandwidth of 

the non-propagating signal components with respect to the 

propagating parts of the signal [25][26]. As muscle shortens, 

the relative weight of end-plate and end-of-fiber components 
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increases, especially for the monopolar recording, as discussed 

above. However, the effect on the spectral content of the 

surface signal is also significantly altered by the change in the 

geometry and conductivity tensor of the system, which may 

lead to an opposite trend of MNF with shortening, i.e., to a 

decrease, which is observed for superficial fibers. 

The comparison of these results with those obtained in 

experimental conditions in previous studies is difficult since in 

experimental studies the activation strategies of the motor units 

at different joint angles can not be controlled. Rainoldi et al. 

[21] reported significant changes in surface EMG amplitude 

with muscle shortening depending on the location of the 

recording electrodes. These changes were probably due to the 

concomitant effect of the relative shift of the skin with respect 

to the muscle (not simulated in the results shown in this study) 

and of muscle shortening. Similar considerations hold for 

frequency variables [27]. 

Although no movement was included in the model (i.e., the 

volume conductor geometry did not change during the 

propagation of each intra-cellular action potential), the model 

proposed can be used to simulate surface EMG signals 

detected during a dynamic task, assuming that the changes in 

muscle geometry occur in a time interval much longer than that 

needed for the propagation of the action potential along the 

muscle fiber. Since the interval of time between generation and 

extinction of an action potential is 20-30 ms, this constraint is 

not critical. To simulate signals during dynamic contractions, 

the muscle length (i.e., the shape of the volume conductor) can 

be specified for each activation of a specific muscle fiber. The 

length will be the same during the interval of time needed for 

the complete generation of the surface action potential but may 

change for each discharge of each muscle fiber. This provides 

the means for assessing the effect of geometrical factors on the 

features of surface EMG signals detected during movement, an 

issue on which many past works have focused with simpler 

models (e.g., [14][21][24][27]). The representative results on 

single fiber action potentials presented in this study (Figures 4, 

5, and 6) underline that amplitude and spectral content of the 

signal may significantly change due to changes in muscle 

length, independently on the intensity of muscle activation or 

on the population of active motor units. 

The specific muscle shape and the way to simulate 

shortening are not a constraint of the proposed model. By 

deriving the Cartesian representation of the conductivity tensor 

starting from the analytical description of the fiber orientation, 

the concepts proposed in this study can be applied to generic 

muscle shapes and fiber orientations. 

 

4.1 Limitations 

The proposed model provides a more accurate description of 

the volume conductor with respect to past approaches when 

the muscle shortens. In particular, the variation in conductivity 

tensor due to the variation in geometry is accounted in the 

present approach. Nevertheless, there are simplifications in 

other parts of the surface EMG generation which are more 

restrictive than in other models. For example, the source is 

described as a current tripole while previous non-space-

invariant models had no limitations in the shape of the 

intracellular action potential (e.g., [4][6]). The assumption that 

the tendon radius does not change with shortening also 

underlines that the fiber diameter should change in a different 

way along the fiber path, which should result in a non-constant 

conduction velocity during propagation. However, this effect 

was not simulated. Moreover, only the muscle tissue has been 

included in the results shown while previous models have 

indicated the importance of subcutaneous layers in the 

properties of the surface detected action potentials [16]. 

More complex descriptions of the sources and inclusion of 

additional layers are possible by increasing the complexity and 

computation time of the model. However, clearly any model 

constitutes a simplification of the real condition. Thus, the use 

of a specific model should be decided on the basis of the 

question to be addressed, maintaining the complexity at the 

minimum for the question at hand. The present model has been 

designed for investigating the influence of geometrical 

modifications in the muscle on the recorded surface EMG 

signal. To describe these effects, a finite element approach has 

been applied, which is computationally less efficient than 

analytical methods [4]. It has been shown that the accurate 

description of the conductivity tensor is relevant for the 

generation of the surface action potentials (Figure 4). While 

previous approaches considered only the relative shift of end-

plates and tendon endings with fiber shortening [14], this study 

indicates that there are additional factors that affect the signal 

properties when the muscle shortens. In particular, it is shown 

that not only the non-propagating components but also the 

propagating ones changes with shortening. 

4.2 Conclusion 

This study proposes an approach for precisely simulating 

surface EMG signals as generated by a muscle at different 

lengths. The model is innovative with respect to previous 

approaches since it provides, for the first time, the description 

of the muscle conductivity tensor according to the orientation 

of the muscle fibers during shortening. This model constitutes 

an important tool for interpreting surface EMG signal features 

in dynamic tasks. 
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