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 

Abstract— A non-space invariant model of volume conductor 

for surface EMG signal generation is analytically investigated. 

The volume conductor comprises planar layers representing the 

muscle and subcutaneous tissues. The muscle tissue is 

homogeneous and anisotropic while the subcutaneous layer is 

inhomogeneous and isotropic. The inhomogeneity is modeled as a 

smooth variation in conductivity along the muscle fiber direction. 

This may reflect a practical situation of tissues with different 

conductivity properties in different locations or of transitions 

between tissues with different properties. The problem is studied 

with the regular perturbation theory, through a series expansion 

of the electric potential. This leads to a set of Poisson’s problems, 

for which the source term in an equation and the boundary 

conditions are determined by the solution of the previous 

equations. This set of problems can be solved iteratively. The 

solution is obtained in the two-dimensional Fourier domain, with 

spatial angular frequencies corresponding to the longitudinal and 

perpendicular direction with respect to the muscle fibers, in 

planes parallel to the detection surface. The series expansion is 

truncated for the practical implementation. Representative 

simulations are presented. The proposed model constitutes a new 

approach for surface EMG signal simulation with applications 

related to the validation of methods for information extraction 

from this signal. 
 

 
Index Terms— EMG modeling, volume conductor, space-

invariance 
 

I. INTRODUCTION 

ANY models of volume conductors for the simulation 

of surface EMG signals have been proposed in the 
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literature [11][20]. These models considered a number of 

geometries and conductivity tensors. To obtain an analytical 

solution, the volume conductor should be relatively simple 

with respect to the actual anatomy. Thus, description of the 

volume conductor with homogeneous layers have been 

proposed [1][3][4]. A few attempts to analytically describe 

tissue inhomogeneities have also been described [14][15][19]. 

In a recent work [15], we focused on the perturbation effect of 

small spherical inhomogeneities in the volume conductor on 

the simulated surface EMG signal. An approximate technique 

was used to account for the inhomogeneities, which had 

spherical shape. The approximations introduced imposed 

limitations on the application of the model, requiring a certain 

distance between inhomogeneities, which thus can not simulate 

a distributed change in conductivity. This model was used to 

evaluate the effect of local inhomogeneities on estimates of 

conduction velocity from surface EMG [8] and allowed the 

interpretation of the relatively large variability in conduction 

velocity estimates when surface EMG signals are detected in 

different locations over the muscle in experimental tests [7]. 

The effect of small inhomogeneities on conduction velocity 

estimates was substantial and dependent on the spatial filter 

used and inter-channel distance. In another study, we analyzed 

a model of muscle with two main pinnation angles [14]. In this 

case, the inhomogeneity is due to the different conductivity 

tensor in the muscle tissue associated to the two main 

pinnation directions. Inhomogeneous volume conductors can 

also result from different fiber curvatures depending on fiber 

position and fiber shortening [16]. 

The presence of inhomogeneities along the propagation 

direction of the intracellular action potential determines 

changes in the shape of the recorded surface EMG potentials 

[5]. Thus, surface EMG signals recorded along the fiber 

direction are not delayed versions of the same prototype shape. 

The volume conductor is non-space-invariant and the forward 

problem should be solved for each position of the source. Non-

space-invariant volume conductors allow the simulation of 

important features of surface EMG signals recorded in 

practice. Thus, they can be used for the validation of methods 

for information extraction from the surface EMG [5]. 

Although numerical solutions [5][10][16] may have the 

advantage of imposing less constraints to the shape of the 

volume conductor, analytical methods are still desirable for 

limiting the computational time and providing direct relations 

between the model parameters and the features of the 

simulated signals. 
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In this study we approached the problem of analytically 

determining the surface potential distribution in a layered 

volume conductor in which one layer has conductivity slowly 

variable along fiber direction. This study and the model of 

volume conductor with local inhomogeneities previously 

described [15] provide the means for investigating the effect of 

both local and distributed tissue inhomogeneities on the 

surface EMG. The applications of the two models are 

complementary (sharp vs. slow variations in conductivity). 

II. METHODS 

2.1 Mathematical problem 

The electrical field problems in physiology can be studied, 

within good approximation, as quasi-static [9]. Thus, from the 

bio-electrical point of view, the tissues can be described as a 

volume conductor. In these conditions, the electrical potential 

solves the Poisson equation:  

I )(                                  (1) 

where   is the potential (V), I  the current density source 

(A/m
3
), and   the conductivity tensor (S/m).  

The ideal model considered in this study consists of two planar 

layers [3] (Figure 1). The muscle is homogeneous and 

anisotropic, infinite in the x and z directions, semi-infinite 

(infinite in the negative direction) in the y direction. The fat 

layer is bounded in the y direction, infinite in the x and z 

directions. In [3] the fat layer tissue was assumed 

homogeneous and isotropic. In this study the fat layer is 

inhomogeneous in the direction of propagation of the 

intracellular action potentials (z direction). The inhomogeneity 

is introduced by a smooth variation of the conductivity along z. 

Although it will not be treated in this study, the generalization 

of the problem to the case of a smooth perturbation of 

conductivity in both spatial directions is straightforward.  

The conductivity of the fat layer has the form 

 )(1 zF   , where   (with 1 ) is the 

amplitude of the perturbation term )(z , which is a function 

of the direction of propagation z, with .,1)( zz   

The Poisson equation in the fat layer is written as:   

  0)('))(1())(1(
2

2

2

2

2

2






























z
z

zyx
zz







                 (2) 

In the muscle layer, the following equation holds: 
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where l , t  are the longitudinal and transversal 

conductivity of the muscle tissue, and the source is an 

impulsive current. The conditions at the interface between fat 

and muscle layer are the continuity of the potential and of the 

current density. To solve the problem, two further conditions 

are considered, i.e., the Neumann’s condition at the surface 

(air is considered an insulator) and the vanishing of the 

potential at infinity. 

 

 
Fig. 1 Planar layered volume conductor model with the 

notations used in the text. The fat layer has variable 

conductivity in the direction z of action potential propagation. 

The source is modeled as a current tripole (impulse 

amplitudes: I1 = 24.6 A/m2, I2 = -35.4 A/m2, I3 = 10.8 A/m2; 

distances between poles: a = 2.1 mm, b = 6.9 mm). 

 

2.2 Solution by regular perturbation 

The mathematical problem presented above can be solved by 

the regular perturbation theory [2][21]. The potential is 

expanded as a power series in the parameter , introducing the 

unknown functions n : 


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n                                                       (4) 

Since Eq. (2) contains both )(z  and its derivative )(' z , 

convergence can be achieved only for sufficiently smooth 

functions )(z  (the issue of convergence will be discussed 

below). For this reason, local inhomogeneities, as studied in 

[15], cannot be investigated with the perturbation approach 

here proposed. Substituting the expression (4) in Eq. (2), the 

following iterative system of equations is obtained: 
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Assuming the solution for the muscle tissue in the same form 

as in Eq. (4) [2]  
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yields to the following system of equations: 
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Imposing the continuity of the potential and of the current 

density at the muscle-fat interface, for each power of   [2], 

we obtain 
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The two boundary conditions, the Neumann’s condition at the 

surface, and the vanishing of the potential at infinity, are 

expressed as: 
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where h is the fat layer thickness, being y = 0 the fat-muscle 

interface; from Eqs. (9), we observe that the conditions on the 

successive functions i  do not depend iteratively on the 

previous ones [contrary to what happens for the interface 

conditions in Eqs. (8)]. 

The error in truncating the series expansions in Eqs. (4) and 

(6) can be expressed in terms of  . A sufficient condition to 

achieve convergence is that the norm of the functions n  does 

not increase with the order n.  

Except for the first, Eqs. (5) are Poisson’s equations with the 

source term which depends on the approximating functions 

determined by the previous equations. The first equation is a 

Laplace equation which can be solved analytically. The entire 

system is then solved iteratively [2][21]. As only a few 

equations can be solved in practice [which corresponds to a 

truncation of the series expansion in Eq. (4)], the method 

yields an approximate solution [2][21]. The solution in the fat 

layer for the term 0  is provided in [15]. The other problems 

associated to Eqs. (5) and (7), with conditions (8) and (9), can 

be studied in the Fourier domain. By two-dimensional Fourier 

transformation of the potential in the x and z coordinates, we 

obtain a system of second order ordinary differential equations 

in y with parameters kx and kz (the spatial angular frequencies) 

in the fat and muscle domains: 
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where * indicates the convolution with respect to kz, k
2
 = kx

2
 + 

kz
2
, and ky

2
 = kx

2
 + ra kz

2
, with ra the ratio between the 

longitudinal and transversal conductivity of the muscle tissue. 

The solution of the equation for the muscle tissue is an 

exponential function which decreases for negative values of y, 

multiplied by an arbitrary function of kx and kz. The solution of 

the equation in the fat layer is obtained (by linearity) by the 

summation of the solution of the homogeneous equation with 

inhomogeneous interface condition (due to the term containing 

1i ) and the particular solution of the complete equation, 

satisfying homogeneous conditions.  

The homogeneous solution can be written as: 
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where 
omˆ h

i  and  
omˆ hM

i

  are the Fourier transforms of the 

solutions of the homogeneous problem satisfying the in-

homogeneous interface condition (due to the term containing 

1i )  in the fat and muscle layers, respectively. 

Imposing the boundary conditions, we obtain:  
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Solving the linear system in Eq. (12), we obtain: 
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The particular solution can be expressed as the convolution of 

the right hand side of Eq. (10) and the Green function Gi, 

which is solution of the equation: 
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where 0 < y0 < h. The solution can be obtained writing the 

general solutions in three regions as follows: 
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where iG  is the Green function satisfying Eq. (14) and 
M

n̂  is 

the solution of the Laplace equation in the muscle layer. 

The conditions are:  
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Solving the linear system of Eqs. (16), the following solution 

is obtained: 
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When 
omˆ h

i  and G(y,y0) are computed, the surface potential 

can be obtained from Eq.(4) as a series of the following terms: 
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where F[u] indicates the functional on the right hand side of 

Eq.(9), which is a function of all the determined perturbation 

functions )(ˆ
0yj , j=0,1,…,i-1. 

 

2.3 Numerical implementation 

The current density source in the muscle was approximated 

with a current tripole [13] with parameters described in Figure 

1. The numerical implementation requires the truncation of the 

perturbation series in Eqs. (4) and (6). We truncated the series 

to the first three terms. The six equations to be solved in this 

case, for the fat and muscle layer, are the following: 
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In the spatial frequency domain, Eqs. (19) can be written as:  
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and Eqs. (20) as: 
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Boundary and interface conditions are those provided in Eqs. 

(8) and (9), with the index i taking values 1 and 2.  

The solution ),,(ˆ zx kyk  of the previous perturbation 

problem is obtained analytically, in the Fourier domain for x 

and z, and in the spatial domain for y. The solution in the 

spatial domain for the three coordinates is obtained by 

numerical inverse Fourier transform. The solution 

),,(ˆ zx kyk  is determined for a discrete set of values of the 

variables kx and kz. Moreover, the spatial frequencies are 

bounded to a value corresponding in time domain to 1024 Hz 

(avoiding aliasing), assuming a conduction velocity of 4 m/s.  

 

III. RESULTS 

The concepts previously described have been implemented 

in Matlab version 6.5 (The Mathworks, Natick, MA). The zero 

order solution was obtained from [15], sampling the variable y 

at steps of 0.2 mm. The first order perturbation solution was 

calculated for equispaced y values (as it enters the second 

order perturbation equation). The second order perturbation 

solution was calculated only at the surface of the volume 

conductor (where the surface EMG signal is recorded). 

Figure 2 reports simulated single fiber action potentials 

(considering the propagation of a tripole current source, 

neglecting generation and end-of-fiber effects) recorded from 

the volume conductor described in Figure 1, with two 

selections of the conductivity of the fat layer. The perturbation 

function )(z  was Gaussian in these simulations. The 

variable conductivity along the muscle fiber direction 

introduced shape changes in the recorded action potentials. 

The approximated solution for variable conductivity is 

consistent with the exact solutions for constant conductivities. 

Indeed, the amplitude of the monopolar potential detected at 

the point of maximum conductivity (i.e., at z = 0 in Figure 2) is 

approximately the same as that obtained in the case of a model 

with homogeneous subcutaneous layer with 

 )(1max z
z

F   . This property was checked for 
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many other values of   and perturbation functions )(z  

(results not shown). In a set of simulations (not shown), it was 

observed that with  smaller than 0.7 and standard deviation of 

)(z  larger than 5, a second order perturbation represented 

the solution with an error smaller than 2 % with respect to 

higher order perturbations. 

 

Const. Conductivity (7.5 mS/m)
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Fig. 2 Monopolar detection by 5 electrodes (inter-electrode 

distance 10 mm). Conduction velocity 4 m/s; fat layer 

thickness 4 mm; fiber depth 4 mm; fat conductivities 0.075 

S/m (dashed line) and 
















100

2

5.0105.0

z

e  S/m (solid line); 

muscle longitudinal conductivity 0.5 S/m, transversal 

conductivity 0.1 S/m. Potentials relative to perturbation free 

(black, dashed line), zero order (black solid line), first order 

(grey, dashed line), and second order (grey, solid line) 

perturbation are shown. A.U.: Arbitrary Units. 

 

Figure 3 shows the surface potential distribution generated by 

a single muscle fiber and recorded on the surface of the 

volume conductor with a monopolar system. The second order 

perturbation term is also shown for different locations of the 

current tripole along the fiber direction. The spatial filter used 

for signal detection, fiber depth and thickness of the fat layer 

affect the perturbation term due to the inhomogeneity, as 

shown in Figures 4 and 5.  

 

a)

b)

c)

d)

e)

f)
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Fig. 3 Monopolar surface potentials (a, b, c) and perturbation 

term (second order approximation) (d, e, f) for different 

locations of the propagating source (tripole source as in Figure 

1). The central pole of the tripole is at a distance of 16 mm (a, 

d), 8 mm (b, e), and 0 mm (c, f) from the point in which the 

conductivity is maximum. Fat layer thickness 4 mm; fiber 

depth 4 mm; fat conductivity 

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S/m. A.U.: Arbitrary Units. 
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Fig. 4 Perturbation term (second order approximation) in case 

of monopolar, single differential (LSD), double differential 

(LDD), and Laplacian (NDD) recording. Interelectrode 

distance 5 mm; fat layer thickness 4 mm; fiber depth 4 mm; fat 

conductivity 
















100

2

5.0105.0

z

e  S/m; muscle longitudinal 

conductivity 0.5 S/m, transversal conductivity 0.1 S/m. The 

amplitudes of the perturbation signals are normalized with 

respect to the range of the perturbation free signal. 
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Monopolar - perturbation term -

Effect of fiber depth

Fat 4 mm thick

Fat 2 mm thick

Fat 6 mm thickFiber 6 mm depth in the muscle
Fiber 4 mm depth in the muscle
Fiber 2 mm depth in the muscle

Monopolar - perturbation term -

Effect of fat layer thicknessa) b)

5 ms

A.U.

 
Fig. 5 Effect of a) the muscle fiber depth and b) the fat layer 

thickness on the perturbation term (monopolar detection; 

second order approximation). A.U.: Arbitrary Units. 

 

Since the shape of the action potentials is different depending 

on the location of the recording electrodes, estimates of muscle 

fiber conduction velocity are influenced by the variable 

conductivity. Figure 6 shows estimates of conduction velocity 

from single fiber action potentials simulated with the proposed 

model by varying the parameter of the generation system (the 

list of parameters for the simulation conditions is shown in 

Table 1). Results from monopolar and single differential 

detection systems are shown. The simulated fibers were 

infinite in length, thus there were no end-plate or end-of-fiber 

components and the bias in the estimates is due exclusively to 

the variation in conductivity.  
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Fig. 6 Estimates of conduction velocity (CV) from two 

simulated surface EMG signals using the spectral matching 

approach [12]. The simulation conditions are described in 

Table 1. The function describing the perturbation on 

conductivity of the fat layer is 
















2

2

105.0 

z

e , with the values 

  and   reported in Table 1. Single muscle fiber action 

potentials were simulated. The fibers were infinite in length 

(no end-plate or end-of-fiber components) in order to show 

only the effect of the perturbation in conductivity. Signals 

were detected with two a) monopolar and b) single differential 

systems. The center of the detection systems corresponded to 

the maximum of the Gaussian perturbation of conductivity. 

Inter-electrode and inter-channel distance 5 mm, detection 

systems aligned along the fiber propagation path. The 

simulated conduction velocity value was in all cases 4 m/s. 

The solid line indicates the estimate of conduction velocity 

without any perturbation in the conductivity of the fat layer. In 

this case there is no bias since the shape of the action 

potentials is unchanged. 

 

Table 1 Parameters of the model for the 14 simulation 

conditions reported in Figure 6. 
Anatomy 

(identification number) 
1 2 3 4 5 6 7 

Fiber Depth (within the 

muscle) - mm 

4  2  6  4  4  4  4  

Fat Thickness - mm 4  4  4  2  6  4  4  

Perturbation Variance 10 10 10 10 10 20 10 

Perturbation Parameter 0.5 0.5 0.5 0.5 0.5 0.5 0.25 

 

Anatomy 

(identification number) 

8 9 10 11 12 13 14 

Fiber Depth (within the 

muscle) - mm 

4  2  6  4  4  4  4  

Fat Thickness - mm 4  4  4  2  6  4  4  

Perturbation Variance 10 10 10 10 10 20 10 

Perturbation Parameter -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.25 

 

IV. DISCUSSION AND CONCLUSIONS 

Modeling surface EMG signals provides the means for 

assessing the limitations of methods for information extraction 

from the surface EMG [6] and for solving the inverse problem 

[20]. Many EMG models are currently available but most 

analytical models assume volume conductors homogeneous in 

the muscle fiber direction. In this case, the volume conductor 

is space-invariant in the direction of source propagation, which 

implies unchanged shape of the recorded surface action 

potentials along the muscle fiber (excluding end-plate and end-

of-fiber components). In this study we propose an analytical 

method to approximate the solution of the Poisson equation in 

presence of conductivity slowly varying along the fiber 

direction. This provides a new tool for simulating surface 

EMG signals. The effect of a variable conductivity on the 

action potential shape has been shown in representative 

simulations (Figures 2-5). It was previously shown that 

changes in action potential shape due to inhomogeneities 

affects the estimation of muscle fiber conduction velocity from 

surface EMG recordings [8]. This has also been confirmed in 

the present study (Figure 6). Moreover, a non-space-invariant 

volume conductor allows the analysis of spatial filters for 

EMG signal detection. The theoretical transfer function of 

spatial filters is based on the assumption of absence of shape 

changes during propagation (space-invariant model). With this 

assumption, the propagation of the potential along the fiber 

direction and the weighted summation of signals recorded at 

different detection surfaces is equivalent to a spatial 

convolution [17][18]. However, in case of inhomogeneous 

volume conductors, the effect of spatial filters can be 

significantly different with respect to the ideal condition. 
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The proposed model of volume conductor assumes a slowly 

varying conductivity. This may reflect a practical situation of 

tissues with different conductivity properties in different 

locations due to glands, small vessels, scars or other structures. 

Moreover, this model can be used for describing transitions 

between tissues of different properties. Finally, a change in 

conductivity along the fiber direction may be considered as an 

approximation of a change in subcutaneous layer thickness 

along the muscle, which is relevant in practical condition. 

In conclusion, a new model for the generation of surface 

EMG signals has been proposed. The model describes a 

layered volume conductor, with one layer presenting variable 

conductivity along the direction of source propagation. The 

mathematical problem of the determination of the surface 

potential distribution has been addressed by the regular 

perturbation theory, which has never been applied before to 

surface EMG simulation. The model finds applications in 

testing algorithms for information extraction from the surface 

EMG signal. 
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