
2156 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 53, NO. 11, NOVEMBER 2006

Estimating Parametric Line-Source Models
With Electroencephalography
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Abstract—We develop three parametric models for electroen-
cephalography (EEG) to estimate current sources that are spatially
distributed on a line. We assume a realistic head model and solve
the EEG forward problem using the boundary element method
(BEM). We present the models with increasing degrees of freedom,
provide the forward solutions, and derive the maximum-likelihood
estimates as well as Cramér-Rao bounds of the unknown source pa-
rameters. A series of experiments are conducted to evaluate the ap-
plicability of the proposed models. We use numerical examples to
demonstrate the usefulness of our line-source models in estimating
extended sources. We also apply our models to the real EEG data
of N20 response that is known to have an extended source. We ob-
serve that the line-source models explain the N20 measurements
better than the dipole model.

Index Terms—Cramér-Rao bounds, EEG, extended source
modeling.

I. INTRODUCTION

ELECTROENCEPHALOGRAPHY (EEG) is a noninvasive
technique to analyze the spatial and temporal activities in

the brain. It has a high temporal resolution on the order of a few
microseconds and is applied in clinical practice (e.g., neurology
and psychiatry) [1] as well as basic neuroscience (e.g., in the
investigation of primary sensory and motor functions or in the
analysis of cognition) [2]. The EEG inverse problem consists
of inferring the locations and signals of the underlying neural
activities from the electric potentials measured on the scalp. It
is ill-posed, and prior constraints need to be applied to obtain a
unique solution [3].

Choosing an appropriate source model is an important step
in solving the inverse problem. Most often, it is assumed that
the source is small compared with its distances to the sensors
and thus a current dipole is used to model it [4], [5]. Clearly,
this approach is valid only if the electric activity is confined to a
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very small area. Multiple dipoles might be useful for modeling
more separated and individually concentrated sources [6], [7],
where it is critical to obtain a correct estimate of the number
of sources, and the estimation performance will degrade if the
electric activities are spread over a large area [3].

In many cases, the true sources are spatially distributed, and
an extended source model is necessary to interpret the measure-
ments more precisely. One approach is to use distributed source
models and reconstruct the brain activities on a 3-D grid where
each point is considered as a possible location of a current dipole
source, therefore the restriction on the number of dipoles can
be removed [8], [9]. However, there are two major problems
with this approach. First, it is highly underdetermined: an infi-
nite number of source distributions can lead to exactly the same
potential map; and second, it has a high computational cost [3].
The ill-posed problem can be tackled by using regularization
techniques [9], [10] and iterative focalization approaches [11],
[12].

Another important issue with solving the EEG inverse
problem is the selection of a proper head model, which affects
the computation of induced potentials on the scalp. The sim-
plest model is the homogeneous spherical head model, where
the head is considered as a sphere with uniform conductivity
[13]. This approach allows an analytical solution to the EEG
forward problem and thus is computationally efficient, but
it results in low source localization accuracy. The multishell
spherical model can improve the performance by considering
the head as several concentric shells with different conductivity
values for the brain, skull, cerebrosphinal fluid, and scalp
[14]–[16]. However, this model is still an oversimplification of
the real head, and the localized source can not be coregistered
to the brain anatomy precisely [17]. Much progress has been
made recently in developing a realistic head model (RHM),
where the head is modeled as multiple layers with different
conductivities, and each inter-layer surface is obtained from
head cross-section images from magnetic resonance imaging
(MRI) or X-ray computerized tomography (CT) systems [5],
[18]. Several comparative studies have shown that more accu-
rate forward models can be achieved by RHM [19]–[21].

In this paper, we present three parametric line-source models
for EEG assuming a realistic head model. We note that although
we name our methods “line-source modeling,” the real sources
in the brain are not necessarily distributed exactly on a line.
Nevertheless, we aim to show that electric sources which are
more extended in one dimension could be better approximated
by line-like models, and the spatial extent is a significant
property of the source which should be considered in the
modeling. One-dimensional source distribution was modeled
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Fig. 1. Sketch of a realistic head model with M = 3 isotropic conductivity
layers, where � and � denote the conductivities of the layers inside and
outside S respectively (� = � ).

for MEG using current multipole expansion [22] or parametric
source models [23]. The authors of both papers applied their
approaches to the primary cortical response (“N20”) to electric
median nerve stimulation and showed improved estimation
accuracy over merely utilizing the dipole source model. Our
current work extends the ideas in [23] to EEG and incorporates
a new model that is more general than the one in [23]. This
extension is useful since EEG systems are less expensive and
more commonly used than MEG; there are clinical applications
where the MEG measurements are not available; and combined
with the methods in [23], our models can be used to improve the
estimation performance for simultaneous EEG/MEG record-
ings. We use the boundary element method (BEM) to solve the
quasi-static Maxwell equations and formulate the EEG forward
problem in a kernel-matrix form [24]. We estimate the source
parameters using the maximum-likelihood (ML) method and
derive the Cramér-Rao bound (CRB) to evaluate the estimation
performance [25], [26]. The CRB provides a lower bound on
the variance of any unbiased estimator. It is independent of the
estimation algorithm thus provides the best estimation accuracy
that can be expected from a certain model. We also compare
the performances of the proposed line-source models and the
dipole model in terms of the mean-squared error (MSE) and
the Akaike’s information criterion (AIC). AIC is a measure of
model fitness which accounts for the trade-off between model
complexity and accuracy [27], [28].

This paper is organized as follows. In Section II, we give a
brief review of the RHM and BEM. In Section III we describe
the line-source models with increasing degrees of freedom, for-
mulate the EEG forward model, and derive the ML estimates of
the unknown parameters. We discuss the CRBs in Section IV
and give numerical examples in Section V; using both simu-
lated data and real EEG measurements of N20 responses. Con-
clusions and future work are discussed in Section VI.

II. REALISTIC HEAD MODEL AND BOUNDARY

ELEMENT METHOD

In the realistic head model, the head is considered to be a
volume conductor of homogeneous and isotropic layers
separated by closed surfaces , . The layers
represent the scalp, skull, cerebro-spinal fluid, gray and white
matter in the brain and are assumed to be immersed in an infinite
homogeneous layer of zero conductivity, [18], [21]. See Fig. 1
for an example with .

We need to use numerical methods such as the boundary el-
ement method (BEM) [29] or the finite element method (FEM)

[30] to solve the EEG forward problem with a realistic head
model. Here, we utilize BEM and compute the solution in the
following steps. We first pose the quasi-static Maxwell’s equa-
tions as 2-D integral equations on all boundaries and then tes-
sellate each boundary into small triangular elements, producing
a set of nodes on each surface. We approximate the electric po-
tentials by a linear combination of basis functions and solve the
boundary integrals using the weighted residual technique. The
whole procedure leads to a system of linear equations whose
unknowns are the expansion coefficients. We solve for the co-
efficients and use them to interpolate the potentials at the EEG
sensor positions. Below we briefly summarize the results; see
[5], [18] for a detailed derivation.

Assuming an EEG sensor array with electrodes and a total
number of nodes on all boundaries, the electrical potentials
at sensor positions, denoted by , can be expressed as [5], [18]

(2.1)

where is an vector, and are matrices,
and is of dimension . Each entry of , , and

is a surface integral on a certain tessellation element, ex-
pressed as a function of the basis functions used to expand the
potential field and the weighting functions used by the method
of weighted residuals. The symbol “ ” denotes pseudo-inverse,
and the vector represents the electrical potentials at the
node points, assuming the same source but immersed in an in-
finite homogeneous medium with conductivity 1 . De-
noting the th element of by , which corresponds to the
potential at a node with position , we have

(2.2)

where represents the current source density and is
a differential volume element of . In particular, for a dipole
source at position with moment , i.e.,

(2.3)

Note that the source parameters appear only in the vector
in (2.1), and all the other matrices depend on the head geometry,
conductivities, and sensor configurations. This structure will be
utilized in Section III to construct the EEG forward model for
the line sources in a kernel-matrix form and to simplify the cal-
culation of the CRB.

III. SOURCE AND MEASUREMENT MODELS

We present three parametric line-source models for EEG with
increasing degrees of freedom, assuming a realistic head model.
Considering independent trials and time samples, the
measured potentials at time in the th trial can be written as

(3.4)
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where the vector represents the source location parameters,
the moment parameters, the measurements,

the array response matrix (also called lead field matrix), and
the additive noise. The terms , , and assume

different expressions for different line-source models as we de-
scribe in Sections III-A–C.

We use the maximum-likelihood method to estimate the
source parameters and . Assuming zero-mean Gaussian
noise that is spatially and temporarily uncorrelated, the max-
imum-likelihood estimate (MLE) of is [4], [23]

(3.5)

where

(3.6)

(3.7)

and the MLE of is

(3.8)

Note that it is possible to consider more complex noise models
such as spatially correlated [4] or spatiotemporally correlated
[31] Gaussian noise models, but we are not going to explore that
aspect in this paper since our main focus is on the line-source
modeling.

In the following, we describe in detail the proposed line
source models and in particular the EEG forward models
corresponding to each one.

A. Constant-Radius Constant-Moment (CRCM) Model

Here the source position is an arc with an arbitrary orienta-
tion on a spherical surface: it has a fixed distance from the head
center, its azimuth varies within a certain interval, and its eleva-
tion changes linearly with the azimuth. The source moment is
assumed to be uniformly distributed along the arc; see Fig. 2(a).
This model is an extension of the VACM model used for MEG
in [23], where the source orientation is fixed along the elevation
direction (corresponding to ). Using spherical coordinates
with representing the distance from the center, the elevation,
and the azimuth, we have

(3.9)

(3.10)

where is the fixed radius, and the azimuth limits, and
the constant elevation. The slope determines the source

orientation, and is the unit step function defined as
for and for Thus, in this model the

unknown position parameter vector is .

Fig. 2. Illustration of the three line-source models. (a) CRCM model,
(b) VPCM model, and (c) VPVM model. See Section III for more details.

Utilizing the sifting property of the delta function, (2.2) can
be written as

where

and is the position of the th node. Defining
an matrix as

Equation (2.1) becomes

(3.11)

and the measured EEG potentials can be expressed as

(3.12)

Equation (3.12) shows that the EEG forward model can be
written in the form of (3.4). For this particular case

and .

B. Variable-Position Constant-Moment (VPCM) Model

This model provides more degrees of freedom for the source
position than the CRCM model: the source position is allowed
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to be a parametric curve in 3-D space instead of an arc on a
spherical surface; see Fig. 2(b). We represent the source position
in Cartesian coordinates as

(3.13)

where is the curve parameter with limits and . Accord-
ingly, the source current density becomes

elsewhere
(3.14)

(3.15)

We assume the spatial distribution of the source position
can be described by a linear combination of basis functions as

(3.16)

where is a vector of
known basis functions, and is a matrix of unknown co-
efficients [4], [23]. This parametrization allows us to exploit the
prior information and reduce the number of unknown parame-
ters. Substituting (3.14)–(3.16) into (2.1) and (2.2), we have

(3.17)

where , the operator “vec” transforms
a matrix into a column vector by stacking its columns on top of
each other, , and the th
row of the matrix is

with

(3.18)

(3.19)

The superscript “ ” denotes the first derivative with respect to ,
and is the position of the th node.

C. Variable-Position Variable-Moment (VPVM) Model

This is the most general model: the source position consists
of a parametric curve and the source moment is allowed to vary
along the position; see Fig. 2(c). Hence, the current density is

elsewhere
(3.20)

(3.21)

We describe the spatial variation of the moment density
using basis functions as well

(3.22)

where is an vector
of known basis functions, and is a 3 matrix of time
varying unknown coefficients. Substituting (3.16), (3.20), and
(3.22) into (2.1) and (2.2), we have

(3.23)

where , , and
is an matrix

The th row of the th submatrix is

where and are defined in (3.18) and (3.19),
respectively.

D. Interrelationship Between the Models

The proposed line-source models are related to each other as
follows.

• CRCM is a special case of VPCM: VPCM becomes CRCM
if we select the azimuth as the curve parameter and let

(3.24)

(3.25)

(3.26)

• VPCM is a special case of VPVM: VPVM becomes VPCM
when .
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• CRCM is a special case of VPVM: VPVM becomes
CRCM if the conditions for the two special cases above
are satisfied.

E. Computational Issues

We can see from (3.12), (3.17), and (3.23) that for all line-
source models, the array response matrix is in the form
of

(3.27)

where the matrix has different expressions for different
source models.

A large proportion of the computational effort of calculating
(3.27) and the MLEs of the source parameters (3.5)–(3.8) lies
in computing 1) the entries of matrices , , and , which
are surface integrals over certain tessellation areas; 2) the pseu-
doinverse of the matrix , which depends on the number
of nodes . For the first part, there exist analytical formulae for
rapid calculation of each matrix element if the surface is tessel-
lated into triangles as is usually done [32]–[34]. Calculating the
pseudoinverse can be time consuming if is very large (e.g.,

is around 4500 for the data we use.) However, since and
depend only on the head geometry and conductivities, they

need to be calculated only once for a certain subject regardless
of the source parameters. Therefore, computing will
not pose a very big problem in the calculation of the MLE, which
is a minimization procedure over all possible source parameters
(see (3.5)). This separation will also be utilized for calculating
the CRBs in Section IV.

IV. CRAMÉR-RAO BOUNDS

The Cramér-Rao bound is a lower bound on the covariance
of any unbiased estimator. It is independent of the algorithm
used for the estimation, thus establishes a universal perfor-
mance limit. It is an asymptotically tight bound under certain
hypotheses; i.e., the bound can be achieved as the number of
data samples becomes very large. For a certain problem, if the
maximum-likelihood estimator exists, it can asymptotically
achieve the CRB [25], [26].

Let represent all the

unknown source parameters, be an unbiased estimator of
, and denote the Fisher information matrix (FIM). The

Cramér-Rao inequality establishes that

(4.28)

where the inequality sign states that the difference between the
matrices on the left and right sides is positive semidefinite. Note
that the diagonal elements of the matrix are particularly
useful since they set bounds on the variance of the parameters.

For the measurement model (3.4), assuming zero-mean
Gaussian noise with covariance matrix , the Fisher
information matrix is

...

(4.29)

where

the matrix is an identity matrix, “ ” denotes the
Kronecker product [35], and is defined as [4], [23]

(4.30)

Utilizing the structure of in (3.27), we rewrite as

(4.31)

where is the number of unknown position parameters and
is an identity matrix. In this way, we need to calculate
only the second part of (4.31) for any possible , reducing the
computational cost to obtain CRBs for a certain subject.

V. NUMERICAL RESULTS

We conducted a series of experiments to demonstrate the ap-
plicability of the proposed models in estimating the line sources.
We used a three-layer realistic head model composed of the
brain, skull, and scalp, assuming the conductivity values to be
0.33 for the scalp and brain, and 0.0042 for
the skull [18], [24], [36]. The inter-layer surfaces were tessel-
lated into a total of 9290 triangles (2884 on the brain, 3240 on
the skull, and 3166 on the scalp) through MRI (Philips, Ham-
burg, Germany). We used 32 electrodes glued to the scalp of the
subject (SynAmps, Compumedics Neuroscan, El Paso, USA),
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and they were placed close together over the stimulated hemi-
sphere; see [37] for more details on electrode setup.

For the BEM, we used linear discretization, where the vertices
of each triangle are regarded as node points [24], [32]–[34]. Let

, , and denote the three vertices of an arbitrary triangle
on the th surface, ordered in such a way that the permutation

corresponds to the right-hand rule to the outward
normal of the surface; the discretization consists of 1) choosing
the weighting function in a collocation form, i.e.,

, ; 2) defining the basis functions for potentials as
[5]

(5.32)

(5.33)

(5.34)

where corresponds to a position inside the triangle, “ ” denotes
the inner product, and “ ” the cross product. Linear interpo-
lation provides better accuracy in EEG forward modeling [34]
than the “center of gravity” (COG) method used in [18].

A. Numerical Results Using Simulated EEG Data

We first present the results using simulated EEG data. We
compared the performances of different source models and
calculated the Cramér-Rao bounds for the CRCM model.
Throughout the experiments in this subsection, we selected the
noise variance to obtain a signal-to-noise ratio (SNR) of 20
dB [36]. We define SNR as ,
where is the signal power at the th
sensor.

1) Comparison of Different Models: We assumed two types
of source distributions and estimated the source parameters
using the proposed line-source models and the dipole source
model. We analyzed the estimation accuracy and model fit-
ness using the mean-squared error (MSE) and the Akaike’s
information criterion (AIC) [27], [28]. The AIC penalizes the
log-likelihood function for additional source parameters, and
hence accounts for the tradeoff between model complexity and
accuracy. It is defined as

(5.35)

where is the likelihood function and is the number of
unknown parameters. For normally distributed noise with vari-
ance

(5.36)

where is the noise at the th time sample in the th trial.
Hence, a smaller AIC value indicates a better fit of the model.

2) Example 1: We used a line source with a fixed distance
from the center , a fixed elevation , ,

TABLE I
COMPARISON OF ESTIMATION PERFORMANCE USING SIMULATED DATA.
THE SOURCE POSITION IS ASSUMED TO BE AN ARC ON A SPHERE WITH

p = 85 mm, � = 45 , ' = 20 , AND ' = 60 . THE SOURCE MOMENT

DENSITY IS CHOSEN TO BE q = q = q = 150 nA

and varying azimuth with limits and . We
chose the moment density as , and
applied the CRCM model to generate the electric potentials.

We estimated the source parameters using the proposed line-
source models as well as the focal dipole model. For both VPCM
and VPVM models, we chose basis functions
to approximate the source position, and was
used to model the moment variation in the VPVM model.

The simulation results are shown in Table I. We observe that
the MSEs of all the estimated line-source models are smaller
than that of the dipole source model, showing that the line-
source models can explain the data better than the focal one
if the real source is extended sufficiently. Note that the VPCM
model has a higher MSE than the CRCM model even though it
is more general. The reason is that the estimation performance
of the VPCM parameters is closely related to the choice of basis
functions (see (3.16)), and in this case we used first order poly-
nomials to approximate a real source which lies on a spherical
surface. Choosing higher order polynomials could reduce the
MSE, but the AIC value would certainly increase. Therefore,
considering the tradeoff between the model complexity and es-
timation accuracy, we think it enough to stay with first order
polynomials. More discussion about how to choose basis func-
tions for the real data is given in Section VI.

The effectiveness of our line-source models in improving the
estimation performance is supported by the AIC values as well
(see the last column of Table I): both the CRCM and VPCM
models have smaller AICs than the dipole model. The VPVM
model has a larger AIC in this case due to the uniform distribu-
tion of the source moment density we chose. The advantage of
the VPVM model to model the spatially varying moment den-
sity is demonstrated by the second example below.

3) Example 2: In this example, the source position is
a straight line between and

. It has a length of 38 mm and a larger
change in the elevation than the azimuth. We chose the moment
density with ,

, and , so that it is small
at the ends and large at the center.

We produced the EEG data using the VPVM model and es-
timated the source parameters with the same basis functions as
in Example 1; see Table II. We observe that all the line-source
models have smaller MSEs and AICs than the dipole model.

These examples show that the line-source models fit the data
better than the dipole model if the real source extends over a
sufficiently large range. The VPVM model is useful to cap-
ture the spatial variation of the moment density even though the
large number of unknown parameters makes it less attractive in
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TABLE II
COMPARISON OF ESTIMATION PERFORMANCE USING SIMULATED DATA. THE

SOURCE IS ASSUMED TO LIE ON A STRAIGHT LINE BETWEEN [12; 15; 60] mm
AND [40;40;52] mm. THE SOURCE MOMENT DENSITY IS CHOSEN TO BE

q = �s + 400 nA, q = 200 nA, AND q = �s + 2s + 300 nA,
WHERE s IS THE CURVE PARAMETER

Fig. 3. CRBs on the unknown source position parameters for the CRCM model
(SNR = 20 dB). (a) p = 85 mm, � = 45 , � = 0, and ' = 60 ;
(b) p = 85 mm, � = 45 , � = 0, and ' = 20 ; (c) � = 45 , � = 0,
' = 20 , and ' = 60 ; (d) p = 85 mm and fixed source length.

some cases. We also observe during the simulations that the es-
timated dipole source is always in a neighborhood of the line
source. That is, the estimated dipole location can be used to ap-
proximate the center of mass of the actual source distribution.
Although this is a result from computer simulations, it is intu-
itively appealing and is helpful for the initialization of the ML
method when estimating the source parameters with real EEG
measurements.

4) Cramér-Rao Bound Results: We computed the
Cramér-Rao bounds for the CRCM model, and analyzed
the bounds on the variance of the position parameters (i.e., the
diagonal elements of the CRB). We considered only the CRCM
model, since its location parameters are physically meaningful:
they are the distance from the center, the elevation, and the
azimuth limits. On the other hand, the source positions in the
VPCM and VPVM models consist of curve parameters and
expansion coefficients that do not have such clear physical
meaning.

We first investigated the effects of the source length and depth
on the estimation performance. We chose a moment density

and set , since it affects only
the source orientation. The CRB results for this case are shown
in Fig. 3(a)–(c). Fig. 3(a) shows the CRB for when it changes
from 5 to 55 with , , and ;
Fig. 3(b) for when it varies from 25 to 75 with

, , and ; and Fig. 3(c) for with
, , and .

Fig. 4. An example of multichannel EEG recordings of N20 response for a
certain subject. The stimulus is applied at t = 0 and a peak can be clearly seen
at t = 20 ms (indicated by the vertical line).

Then we computed the CRB of in order to see the effect
of the orientation of the source position. In this case, we fixed
the center of the source at , , and

and rotated the source around its midpoint on the sphere
with a fixed length of 39 mm. We computed

CRBs for different values between and 15, and the result
is shown in Fig. 3(d).

We observe from the CRB values the following.
• Longer sources result in smaller CRBs of the azimuth

limits; that is, it is easier to estimate longer sources.
Fig. 3(a) and (b) shows that we can estimate and
with standard deviation less than 3 for a source longer
than 12 mm, at a depth of and elevation

. The estimation error increases drastically if the
two ends of the line are very close [see the part of the
curve when in Fig. 3(a) or when in
Fig. 3(b)].

• Deeper sources produce larger CRBs of the radius compo-
nent . We can infer from Fig. 3(c) that the source depth
can be estimated with less than 3 mm error if the source is
more than 70 mm away from the head center. Therefore,
deeper sources result in worse estimation accuracy.

• The CRB is larger for larger slope ; that is, it is easier
to estimate a line source that extends along the azimuth
direction.

B. Application to Real EEG Data of N20 Response

We present results using real EEG measurements of N20 re-
sponse from four healthy subjects. The N20 generator is known
to be along the wall of the central sulcus, which is more ex-
tended in one direction (from superior-posterior to inferior-an-
terior) and is a good example where the line-source models can
be applied. The EEG data were recorded over the contralat-
eral somatosensory cortex when square-wave current pulses of
0.2 ms were delivered to the right or left wrist at a stimulation
rate of 4 Hz. The data were sampled at 5000 Hz with a 1500 Hz
anti-aliasing low-pass filter, resulting in 250 time samples for
each subject; see Fig. 4 for an example of N20 response where
the stimulus is applied at .

For each subject, we picked the time point when the peak
occurs (around ) and applied the VPVM model to
estimate the line-source parameters. We used
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TABLE III
ESTIMATION PERFORMANCE RESULTS FOR REAL EEG

MEASUREMENTS OF N20 RESPONSES

Fig. 5. Estimated line and dipole sources for real EEG measurements of N20
responses. In each plot, the dot (“�”) represents the nodes on the brain mesh,
the star (“�”) the estimated dipole source, and the line (“�”) the estimated line
source.

and as basis functions to represent the source
location and its moment density, respectively. In order to ini-
tialize the estimate, we first used the dipole source model and
located the approximate center of the electrical activities; then
we determined the initial values of the VPVM parameters ac-
cording to this dipole position and estimated its extent. We com-
puted the MSEs for both the dipole and VPVM models and
estimated the source length; see Table III. We plot in Fig. 5
the estimated dipole and line-source positions for each sub-
ject in the brain meshes obtained from MRI. In Fig. 6, we give
the iso-contour maps of the original potential used for estima-
tion (the first column), the residual potential using the dipole
model (the second column), and the residual potential using the
line-source model (the third column). The residual data are com-
puted by

(5.37)

where is the measured potential and the fitted potential using
a certain kind of source model. Clearly, the smaller the residual
is, the better the source model fits the data. Comparing the last
two columns in Fig. 6, we can see that the line-source model
captures more spatial information of the source and clearly re-
duces the residual potential (see subjects a, b, and d). The im-
provement is not so obvious for the subject c, which may imply
that the real source in this subject is more focal than the others.
These plots are consistent with the results in Table III where we
can see that the VPVM model has a smaller MSEs for all four
subjects.

Fig. 6. The iso-contour maps of the original and residual potentials for four dif-
ferent subjects. Each row represents the results for a certain subject (a, b, c, or d)
and the corresponding line increment is 100, 50, 200, and 100 nV, respectively.
From left to right, each column represents the original potential, the residual po-
tential using the dipole model, and the residual potential using the line-source
model, respectively. The circles indicate the electrode positions.

We mentioned in Section I that other than the choice of source
model, the head model is also an important factor affecting the
accuracy of the inverse solutions. In our experiments, we used
the BEM based realistic head model and all the surfaces were
tessellated into triangles with size 7 mm. A previous study by
Haueisen et al. [38] showed that: 1) only with a triangle size less
than 10 mm it is possible to achieve stable estimation results; 2)
in order to get acceptable errors within the stable region, the
ratio between the dipole depth and the triangle size must not be
less than 0.5. Both conditions are satisfied in our case, resulting
in acceptable errors from head modeling.

VI. DISCUSSION

We proposed three parametric line-source models for EEG
with increasing degrees of freedom. We assumed a three-layer
realistic head model and solved the EEG forward problem using
the boundary element method. We derived the MLEs and CRBs
of the source parameters and evaluated the model fitness using
the MSE and AIC values. The main results can be summarized
as follows.

• Numerical results show that the proposed line-source
models fit better than the dipole source model for extended
sources.

• The CRB on the position parameters indicates that longer
sources result in better estimation accuracy, deeper sources
produce poorer performance, and it is easier to estimate the
sources extending along the azimuth direction.
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• The proposed models explain the real EEG measurements
of N20 responses (obtained by electric stimulation to the
median nerve) better than the dipole source model.

Our method is a useful addition to the current algorithms. It
provides a good approximation to the electric sources which are
more extended in one dimension (e.g., along the wall of sulcus
in the brain surface). Our models differ from the commonly used
distributed source imaging approaches in the following aspects.
First, the source’s spatial extent is directly parameterized and
estimated, providing more specific information. Secondly, using
the basis function expansion, we can easily incorporate the prior
information of the source spatial distribution into the forward
model, thus improve the localization accuracy. In this work,
we choose polynomials as our basis functions for the reasons
that 1) using polynomials is in general a natural choice since
enough numbers of polynomials can represent any function to
a certain degree of continuation; 2) we know a priori that the
source should be in a direction along the central sulcus which
goes from superior-posterior to inferior-anterior, hence it suf-
fices to use polynomials to represent it.

We showed using both the simulated data and real EEG
measurements that our line-source models provide smaller
MSEs than the dipole source model. This improvement may
look obvious at a first glance considering that our models are
more general and there are more unknown parameters involved.
However, the key point is that we are also able to estimate the
source extent information using our models, which is a useful
property and provides the basis for developing parametric
surface-source modeling for EEG. Surface-source modeling
will be practically useful, for example, for modeling the cortical
generators of scalp EEG interictal spikes in epilepsy. It was
recently shown by Tao et al. [39] that in order to produce scalp
recognizable potentials, 90% of the cortical spikes in their study
have a source area greater than 10 ; and it is common to
have synchronous or at least temporally overlapping activation
of 10–20 of gyral cortex. Therefore, it would be interesting
to see whether we can use parametric models to represent
such an extended source and even to capture the spreading
of the source with time. Additionally, we can also consider
more complex noise models (e.g., unknown spatially correlated
noise) and obtain the MLEs of the unknown parameters using
the extended GMANOVA technique as in [4].
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