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Abstract
Impeded by the rigid skull, assessment of physiological variables of the intracranial system is
difficult. A hidden state estimation approach is used in the present work to facilitate the estimation
of unobserved variables from available clinical measurements including intracranial pressure (ICP)
and cerebral blood flow velocity (CBFV). The estimation algorithm is based on a modified nonlinear
intracranial mathematical model, whose parameters are first identified in an offline stage using a
nonlinear optimization paradigm. Following the offline stage, an online filtering process is performed
using a nonlinear Kalman filter (KF)-like state estimator that is equipped with a new way of deriving
the Kalman gain satisfying the physiological constraints on the state variables. The proposed method
is then validated by comparing different state estimation methods and input/output (I/O)
configurations using simulated data. It is also applied to a set of CBFV, ICP and arterial blood pressure
(ABP) signal segments from brain injury patients. The results indicated that the proposed constrained
nonlinear KF achieved the best performance among the evaluated state estimators and that the state
estimator combined with the I/O configuration that has ICP as the measured output can potentially
be used to estimate CBFV continuously. Finally, the state estimator combined with the I/O
configuration that has both ICP and CBFV as outputs can potentially estimate the lumped cerebral
arterial radii, which are not measurable in a typical clinical environment.
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I. INTRODUCTION
Impeded by the rigid skull, assessment of many physiological variables inside the intracranial
compartment such as intracranial pressure (ICP), cerebral blood flow (CBF), and cerebral
arterial radii is difficult and often requires direct measurement using invasive procedures or
expensive imaging techniques not suitable for a continuous monitoring. One engineering
solution to facilitate the assessment of those difficult-to-measure variables is to integrate
measurements that are more readily available with a mathematical model of the dynamics
governing both observed and unobserved variables. Model-based state estimator is such a
technique.

To construct an state estimator for intracranial dynamics, mathematical models are needed that
integrate both the cerebral blood and cerebrospinal fluid (CSF) circulatory systems. The first
model of this type appeared in 1969 [1]. Its most significant contribution was the recognition
that vascular compliance in an enclosed compartment is constrained by the compartment
compliance, i.e., the craniospinal compliance. This recognition then prescribed the basic
structure of the model, i.e., compliances of each vascular compartment are arranged in parallel
to each other and in serial with the craniospinal compliance. Models designed later [2]–[4]
have followed this basic layout. Although these models provided an efficient structure for
simplifying the otherwise complex anatomic structures of the coupled CBF and CSF circulatory
systems, they are passive models lacking specifications of how the model parameters such as
resistance of blood flow should change with state variables. Ursino’s models since 1988 [5]–
[11] were the first to really encapsulate all the key known physiological factors that regulate
CBF and their interactions with the CSF circulation. Therefore, the state estimator used in the
present study is based on a modified version of one of Ursino’s model [9].

Parameterizing the model with individual patient’s measurement is the next step. The model
in the present context is nonlinear and continuous in time as will be shown in next section.
Parameterization of such models can be tackled as a nonlinear optimization problem where
errors between measured and model-simulated output are to be minimized with respect to
unknown model parameters. However, local search algorithms as commonly practiced require
a good initial guess of unknown parameters. In addition, the attainment of a global optima is
never guaranteed by using them. For these reasons, we have followed a strategy of combined
global and local search in the parameter space to parameterize the model. Among various global
search algorithms, the differential evolution (DE) algorithm has been selected in the present
work [12]. The success of using DE algorithm as a global search technique for parameterizing
mathematical models encounterered in various fields has been reported in several publications
[13]–[15].

The nonlinear optimization paradigm identifies the model using a block of measurements. With
the identified model, one hidden state estimation idea is to simulate the resultant model to
obtain all state variables for subsequent samples. Any inaccuracy of the model, any
physiological changes of parameters with time, or the accumulated error of numerical
integrator can drive the simulated results erroneous. The celebrated Kalman filter (KF) [16] is
a better solution because errors sensed in the simulated output are then used to correct the state
estimation at every measurement moment. The KF is an optimal state estimator for linear
Gaussian systems. Even though it is well known that such optimality is lost for a nonlinear
dynamic system, almost all of the recently proposed nonlinear state estimators still follow
[17]–[20] the KF’s general schema to achieve a suboptimal solution for such systems although
they differ in the particular form of propagating the statistics of state variables. However, all
these filters have usually derived the Kalman gain in an unconstrained fashion, meaning that
no domain knowledge has been used to define a feasible range of solutions for states and model
parameters. In an ICP dynamic model, such physiological constraints usually exist for state
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variables as well as for model parameters. One contribution of the present work is that we have
incorporated constraints in the derivation of the Kalman gain by using quadratic programming
technique as will be shown later in detail.

In summary, conduction of state estimation needs an integration of the three components
introduced above: a mathematical model of ICP dynamics, its parameterization, and the
quadratic programming KF (QPKF). It is proposed that the state estimation be performed in
two stages. A leading offline identification stage is used to obtain the unknown model
parameters that fit a block of measurements. Then an online Kalman filtering is invoked to
provide an up-to-date estimation of unobserved state variables given the concurrent
measurement. The objective of this paper is to present a study of this process with respect to
the performance of different state estimators and different input/output (I/O) configurations.

Three I/O configurations can be formulated based on continuous measurements of three typical
clinical variables including arterial blood pressure (ABP), cerebral blood flow velocity (CBFV)
at the middle cerebral artery and ICP. It then leads to the following state estimation problems:

1. given ABP as input and CBFV as output, can ICP be estimated?

2. given ABP as input and ICP as output, can CBFV be estimated?

3. given ABP as input, CBFV and ICP as output, what state variables can be estimated?

The first I/O represents a model-based noninvasive ICP assessment method because ABP and
CBFV can usually be obtained in a noninvasive way using tonometry and transcranial doppler
(TCD) techniques [21], respectively. The answer to the second question is also of importance
because it might provide continuous monitoring of the CBF for patients under continuous ICP
monitoring. The third question represents an important extension to use the conventional
monitoring techniques to extract any additional information such as nominal cerebral arterial
radii, which are derivable from model solutions.

The rest of the paper will first cover various methodological aspects including a brief summary
of the intracranial physiology in Section II-A, an introduction of the modified Ursino’s model
in Section II-B, a description of the optimization paradigm for parameterization in Section II-
C and the proposed constrained KF in Section II-D. Following the methodological description,
a study of the three state estimation problems posed above will be conducted first with
simulation data and then with real data from brain injury patients. The paper then concludes
with a discussion of the results.

II. Method
A. Summary of Intracranial Pathophysiology

Regarding the circulation of the CSF, it has been generally accepted that most of the CSF (50%
~ 80%) originates from the choroid plexus distributed in the walls of the four ventricles. Starting
from the two lateral ventricles, the CSF flows into the third one and then to the fourth. Via the
median and the lateral apertures inside the fourth ventricle, the CSF enters the cerebral
subarachnoid space where most of CSF is then absorbed into the blood by arachnoid villi. A
small portion of it also enters the spinal subarachnoid space. The main pathology of the CSF
circulation is the impairment of the CSF flow leading to an inefficient absorption into the blood
that can cause such disorders as hydrocephalous and intracranial hypertension.

The CSF circulation is not an independent process. It is tightly coupled with cerebral blood
circulation because the cranial vault is nearly incompressible and hence cerebral blood volume
fluctuations are inversely coupled with the volume of the remaining intracranial contents
including CSF. Moreover, ICP directly affects the perfusion pressure of CBF, whose
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fluctuation will invoke vasomotor reactions of cerebral vessels and in consequence lead to
changes of the vessel’s resistance and compliance. Hence, CSF circulation malfunction has
profound vascular effects.

A clearer understanding of the interactions among various variables may be achieved by
analyzing the three feedback loops existing in the system. They are schematically illustrated
in Fig. 1. In the first loop, arterial hypotension (decrease of arterial blood pressure) can induce
dilation of the autoregulated blood vessels. In the second loop, arterial hypotension can lead
to the decrease of CBF and subsequently ICP, which effectively increases cerebral perfusion
pressure (CPP) to enhance CBF. Both of them are negative feedbacks. On the other hand, the
third loop is a positive feedback that embodies the famous cascading theory [22]. In the light
of this theory, arterial hypotension will cause a vasodilation to maintain CBF. This increases
cerebral blood volume, which increases intracranial pressure and further reduces CPP, leading
to a further vasodilation. This cycle continues until maximal vasodilation is reached. ICP’s
response to blood pressure changes is characterized by two timescales: a fast pulsatile response
and a slow one. The pulsatile component of ICP results from the pulsatile blood volumetric
load on the craniospinal space. This represents a fast response to arterial blood pressure
changes. Its regulation is probably not under the influences of the three feedback loops
discussed here. On the other hand, the relationship between slow fluctuations in ICP and those
in arterial blood pressure are intimately influenced by these feedback loops whose time constant
is around 2–3 s according to prior CBF autoregulation studies [23], [24].

Hence, cerebral blood flow autoregulation plays a central role in the intracranial
pathophysiology. It is generally accepted that cerebral autoregulation is achieved via caliber
changes in local vascular beds at the arterial end [25]–[27] while minimal caliber changes in
the venous bed have been reported. The exact mechanism of autoregulation is still being
debated with several alternative theories [28]. As will be seen in the model, CBF autoregulation
also shows a heterogenic property such that the proximal portion of the arterial vessels is
probably under the neural control in response to transmural pressure fluctuations while the
distal end of arterial vascular bed is subject to a slower humoral control that is responsive to
changes of metabolic requirements.

B. Mathematical Model of Intracranial Compartment
The model is based on Ursino’ s work reported in [9] with two modifications. For the reason
of completeness and discussion of the model implementation, the full model equations are still
introduced here in a concise manner using the original notation [9].

1) A Model of Intracranial Dynamics—Shown in Fig. 2 is the proposed model illustrated
using an equivalent circuit. It shows that the cerebral arterial vasculature downstream to the
basal arteries, which includes the middle cerebral, the posterior cerebral, and the anterior
cerebral arteries, is segmented into a proximal portion and a distal portion with the later
representing the vascular bed starting from the small pial arteries to the arterioles and the former
representing the larger pial arteries. This segmentation is to handle the heterogeneity of the
control exerted on cerebral arteries with different radii. Top-level conduit cerebral arteries such
as the middle cerebral artery and the posterior cerebral artery etc. are not included in the model.
The flow through them equals the flow through node P1 in the circuit.

To start deriving the model, the Laplace law is first applied to each arterial portion resulting
in the following basic relationship:

P jr j − Pic(r j + h j) = T j, j = 1, 2 (1)
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where Pj is the lumped intravascular pressure, rj the radius and hj the wall thickness of the
vessels in the jth portion with j = 1 representing the proximal and j = 2 the distal portion. Pic
denotes the ICP and Tj the wall tension of the jth portion. To proceed for the jth portion, Tj is
decomposed into three components such that

T j = Te, j + Tv, j + Tm, j (2)

where Te,j is the passive elastic tension, Tv,j is the viscous tension, and Tm,j is the active tension
that is produced by the smooth muscle contraction in response to an autoregulation stimulus.

Te,j is calculated as

Te, j = σe, jh j (3)

where the stress σe,j assumes an exponential functional form of rj as

σe, j = σe0, j exp (Kσ, j
r j − r0, j

r0, j
) − 1 − σcoll, j (4)

where σe0,j, Kσ,j, r0,j, and σcoll,j are constant model parameters.

Tv,j is related to the viscous force introduced by blood flow and modeled as

Tv, j = σv, jh j (5)

where the viscous stress σv,j equals

σv, j =
η j

r0, j

dr j
dt (6)

with ηj being a constant model parameter as well.

The active tension Tm,j is a function of rj. Its regulation is modeled by modulating its maximal
tension T0,j with an activation factor Mj in the following way:

Tm, j = T0, j(1 + M j) exp ( − ∣
r j − rm, j

rt, j − rm, j
∣
nm, j) (7)

where Mj is the activation factor between [−1, 1] with Mj = 1 denoting maximal
vasoconstriction, Mj = −1 maximal vasodilation and Mj = 0 a neutral state. T0,j, rm,j, rt,j, and
nm,j are model parameters.

Mj responds to the transmural pressure fluctuations in the proximal portion and to the CBF
fluctuations in the distal portion. These two control functions are modeled using the same
mathematical form where a first-order low-pass system (characterized by time constant τj and
gain Gaj) filters the raw fluctuations which are then subject to a sigmoid function that limits
the excessive changes. The internal state xj of the filter is thus expressed for the proximal
portion as

τ1
dx1
dt = − x1 + Ga1

Pa − Pic − (Pan − Picn) (8)

and for the distal portion
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τ2
dx2
dt = − x2 + Ga2

q − qn
qn

(9)

where the CBF (q) can be calculated as the flow between the distal vascular bed and the
capillary as

q = 2(P2 − Pc)G2 (10)

Pan, Picn, and qn are the normal baseline values of Pa, Pic, and q, respectively. Mi can then be
calculated as Mi = (e2xi −l)/(e2xi +1). x1 and:x2 represent the low-pass filtered Pa − Pic and q
− qn, respectively.

To complete the model, the principle of mass conservation is then applied to each compartment.
• Volume changes of CSF compartment are balanced

Cic
dPic
dt =

dV1
dt +

dV2
dt + I f − Io (11)

where V1 and V2 are the blood volumes for the proximal and the distal arterial beds,
respectively.

• Volume change balance within the proximal vascular bed

dV1
dt = 2Kv,1r1

dr1
dt = 2G1(Pa − P1) − (P1 − P2)

2G1G2
(G1 + G2)

(12)

where Kv,1 is a constant parameter. G1 and G2 are one half of conductances of the
proximal and the distal compartment, respectively. They are related to r1 and r2 as

G1 = Kg,1r1
4 (13)

and

G2 = Kg,2r2
4 (14)

where Kg,1 and Kg,2 are constant parameters.
• Volume change balance within the distal vascular bed

dV2
dt = 2Kv,2r2

dr2
dt = (P1 − P2)

2G1G2
(G1 + G2)

− 2G2(P2 − Pc) (15)

where Kv,2 is a constant parameter.
• Volume change balance at the capillary vascular bed

2G2(P2 − Pc) = I f + (Pc − Pic)Gpv. (16)

In the above formulation, If denotes the CSF production rate that is modeled with a constant
conductance (Gf) as

I f = H (Pc − Pic)Gf . (17)

In a similar fashion, Io denotes the CSF outflow and is modeled with a constant outflow
conductance (Go) as
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Io = H (Pic − Ps)Go (18)

with Ps representing the sagittal sinus pressure and H being the Heaviside function.

Cic in (11) represents the craniospinal compliance that has been shown to be a nonlinear
function of ICP, which is commonly derived from an exponential pressure-volume curve such
that it assumes the following form:

Cic = 1
KePic

. (19)

where Ke is the elastance coefficient of the craniospinal compartment. However, Cic, thus
defined, becomes infinite where Pic = 0 and negative when Pic < 0. Both situations are not
physiologically meaningful. Hence, the first modification of the original model is to represent
Cic with the following function:

Cic = 1

Ke ∣ Pic − Picn ∣ + 1
Cm

(20)

which works for both the negative ICP and zero ICP. In addition, the existence of maximal
compliance at a particular ICP has been observed experimentally [29]. This phenomenon is
modeled by the above definition of Cic.

The second modification concerns modeling the cerebral venous bed. The collapsible nature
of the venous bed makes it behave like a Startling resistor indicating that the venous pressure
equals ICP at locations of cerebral venous collapse. Thus blood flow to venous bed can be fully
specified as (Pc−Pic)Gpv where Gpv is the conductance from the capillary to the location of
collapse. By further neglecting the venous compliance, the pressure in the venous compartment
is not any more a state variable as in the original model. This modification simplified the model.
Its validity has actually been illustrated in [6].

2) Implementation of the Model—In summary, there are five state variables in the model
including r1, r2, Pic, x1, and x2. The input of the model is ABP (Pa). State equations of x1, x2,
and Pic are given in (11), (8) and (9). However, explicit equations of r1 and r2 have to be
obtained by solving a set of linear algebraic equations. They are

2Kv,1r1
dr1
dt = 2(Pa − P1)G1 − (P1 − P2)G

′ (21)

2Kv,2r2
dr2
dt = (P1 − P2)G

′ − 2(P2 − Pc)G2 (22)

P1r1 = Te,1 + Tm,1 + Pic(r1 + h1) +
η1h1
r0,1

dr1
dt (23)

P2r2 = Te,2 + Tm,2 + Pic(r2 + h2) +
η2h2
r0,2

dr2
dt (24)

Pc =
Gpv

Gpv + 2G2
Pic +

2G2
Gpv + 2G2

P2 (25)

where G′ = 2G1G2/(G1 + G2). This set of equations results from simple manipulations of the
equations as previously laid out. Five unknowns dr1/dt, dr2/dt, P1, P2, and Pc can be solved
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from this set of five linear equations. Hence, the model implementation consists of first solving
the above linear equations, following which state equations of Pic, x1 and x2 can be easily
calculated.

The measurable output of the model may include ICP and CBFV in the middle cerebral artery
(MCA). Based on various experimental results showing that the basal arteries are passive to
the intramural pressure changes, the radius of MCA assumes the following form

rMCA = rMCA0( log ( Pa − Pic
Pan − Picn

)
Krmca

+ 1) (26)

where rMCA0 and Krmca are constant model parameters. By assuming that MCA flow accounts
for one-third of cerebral blood flow (q), it then follows that CBFVMCA can be expressed as

CBFVMCA = 1
3

q

πrMCA
2 . (27)

The baseline values of all the model parameters have been provided in Ursino’s original paper
with a detailed account of their derivation [9]. They are also provided in Table VI in Appendix
for convenience of readers. Cm is the only new parameter and its baseline value has been
assigned as 0.2.

C. Offline Model Identification
Offline model identification refers here to the initial stage of state estimation where a block
measurement of measured input and output data is used to identify unknown model parameters
by minimizing the difference between measured and simulated model output. This step is
necessary to start the online stage where a filter provides a sample-by-sample estimate of state
variables.

The nonlinear optimization paradigm adopted for identifying the model parameters is shown
in Fig. 3. A Matlab toolbox was created according to such a diagram. It is beyond the scope of
this paper to discuss this software package and, hence, only its key traits are summarized.

First of all, unknown initial values of state variables are treated as model parameters subject
to the nonlinear optimization process.

As shown in the flowchart, an ODE solver is used to provide forward solution of the differential
equations given the current estimate of model parameters. For better computational efficiency,
we have interfaced a long-established, well-tested C-language-based ODE solver CVODE
[30] with Matlab. Our experiences showed that the adoption of CVODE significantly improves
the speed of model identification by approximately 10 times as compared to the built-in solvers
of Matlab.

The nonlinear least squares routine1 in the Optimization Toolbox of Matlab was adopted as a
local search following the initial global search of parameter space using a modified differential
evolution algorithm. The DE algorithm [12] conducts population-based global search of
parameter space. It uses a linear combination operator to generate new candidates from last
population, a major difference from many existing genetic algorithms. Based on its
demonstrated superior performance in various studies [15], [31] the DE algorithm was selected

1lsqnonlin

Hu et al. Page 8

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2007 December 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



in the present work with a modification that introduced automatic expansion of search
boundaries [13].

The weighted sum of squared residuals was used as the objective function for optimization,
i.e.,

J (Θ) = ∑
i=1

M
∑
j=1

N
wi, j(yi, j − ŷi, j)

2 (28)

where M is the number of measured variables and N is the number of samples for a variable,
yi,j is the measurement of the ith sample of the jth variable. ŷi,j is its corresponding model
output, which is a function of unknown parameter vector Θ. wi,js are the weights that balance
the effect of individual variables on the objective function. A constant coefficient of variation
(CV) error model was adopted for generating wi,j such that wi, j = 1/ (v 2yi, j

2 ), where v is the
designated CV.

At the end of the optimization, an estimate of the covariance matrix of estimated parameters
is calculated using the standard formulas in [32] where the covariance of observation noise is
estimated from the residual of model fitting. Since unknown initial states are treated as model
parameters, the covariance matrix, thus, obtained is used to construct the covariance matrix of
the state variables for the succeeding nonlinear Kalman filtering.

D. QPKF
Extensive treatments of the KF can be found in many standard text books [33]–[36]. The
extension of the Kalman Filter to nonlinear systems is required for solving the intracranial state
estimation problem. Such a problem can be formulated as following: given a mathematical
model of a physical system as

xn+1 = F (xn, un, wn) (29)

and its measurement function as

yn = H (xn, un, vn) (30)

where xn, un, and wn are the state variables, input, and state noise, respectively, at time instant
n. yn and vn are the model output and observation noise, respectively. For a continuous system
studied here, xn+1 is obtained by the numerical integration procedure with xn, un and wn as
input. The optimal estimate of the state variables xn in the sense of least mean squares, given
the observation of yn, i = 1, …, n, is the conditional expectation E(xn|yn, i = 1, …, n). The most
significant contribution of the KF is that it realizes a recursive procedure to obtain this
conditional expectation for a linear Gaussian system. However, this optimality cannot be
retained for a nonlinear system. Instead, several extensions of the linear Kalman Filter can be
used to obtain a suboptimal solution for nonlinear systems. A brief introduction of the general
paradigm of the KF is necessary to see the links between the nonlinear and linear KFs.

In the subsequent mathematical developments, notation x̂i|j is used to denote an estimate of
xi based on the measurements up to discrete time j.

Let x̂n|n−1 denote the prior estimation of xn with its associated covariance matrix as
Px̂ n | n−1 Similarly, ŷn|n−1 denote the prior estimation of yn. At time n, a new measurement
yn is collected to derive a better estimation of xn. One way, which is the optimal one in the
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case of a linear Gaussian system, is to have a correction term added to x̂n|n−1 that is based on
the difference between the measured yn and ŷn|n−1 such that

x̂n∣n = x̂n∣n−1 + Kn(yn − ŷn∣n−1) (31)

where Kn is termed Kalman gain, which, for both linear and nonlinear systems, can be optimally
calculated as

Kn = Pxn−x̂n∣n−1,yn−ŷn∣n−1
Pyn−ŷn∣n−1

−1 (32)

where Pxn−x̂n|n−1, yn−ŷ n|n−1 is the covariance between xn − xn|n−1 and yn − yn|n−1.

The optimality of Kn is a classical result from linear optimal estimation theory. Its derivation
will be discussed in more detail later when deriving the QPKF. It is also not difficult to see
that the posterior covariance Pxn−x̂n|n can be calculated as

Pxn−x̂n∣n
= Pxn−x̂n∣n−1

− KnPyn−ŷn∣n−1
Kn

T (33)

whose diagonal terms give the variances of the posterior estimate of state variables.

Equation (31) to obtain x̂n|n from x̂n|n−1 is usually called measurement update since the upgrade
of the prior estimate to a better posterior estimate is achieved with the arrival of a new
measurement. With x̂n|n, a prediction of x̂n|n−1 can be made now as

x̂n+1∣n = E F (x̂n∣n, un, wn) (34)

where E[·] is the expectation operator. It implies the calculation of the conditional probability
of xn on the measurements up to n. This step is usually called time update. The prediction of
the measurement can be calculated in the similar fashion as

ŷn+1∣n = E H (x̂n∣n, un, vn) (35)

Having obtained x̂n+1|n, ŷn+1|n and their covariances, next run of measurement update can be
carried out. The whole iteration procedure then continues.

The time update step in the general KF paradigm is essentially the propagation of the
expectation and the covariances of random variables through functions. Different nonlinear
KFs address this propagation problem in different ways while the measurement update is
conducted in the same fashion. Three of them including Particle Filter [17], Unscented
Transform Filter (UTF) [18], [19], and filters based on interpolation for approximating a
nonlinear function (DD1 and DD2 filters) [20] have been proposed recently. The contribution
of the present work is an approach that calculates Kn with constraints. As shown before,
calculation of Kn is at the measurement step of the filtering process. Hence, such an approach
applies to any nonlinear filters following the basic Kalman filtering structure. As an illustrative
sample, we have modified a numerically robust implementation [37] of the DD1 filter by
incorporating the constraint handling when deriving Kn and used it for generating the results
reported in the paper.

Constraints on Kn are inevitable for many practical problems where state variables and model
parameters are constrained by the physical and physiological context of the model. In the
present scenario, for example, r1 and r2 are nominal vascular radii for the proximal and the
distal cerebral arterial bed, hence they cannot be negative. There are physiological bounds on
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ICP and other model parameters as well. Using (32) to calculate Kn can result in posterior
estimates well beyond those boundaries. Hence, adding constraints to the original problem of
optimizing Kn is necessary. It is shown that this can be formulated as a quadratic programming
problem for which efficient algorithms exist. Quadratic programming solves the following
problem:

min

θ∈Rn
J (θ) = 1

2 θTHθ + wTθ (36)

Aiθ = bi, i = 1, … , ne (37)

Aiθ ≤ bi, i = ne + 1, … , np (38)

where H, w, A, and b are known quantities. Ai is the ith row of constraint matrix A and bi is the
ith element of b. In the above formulation, there are ne equality and np − ne inequality
constraints. To formulate the calculation of Kn as a QP problem, it should be realized that Kn
is an optimal solution of linear least mean square problem, i.e.,

min
Kn

Tr E xn − x̂n∣n−1 − Kn(yn − ŷn∣n−1)

× xn − x̂n∣n−1 − Kn(yn − ŷn∣n−1)
T

(39)

where Tr[·] is the trace of a matrix. The above equation can be further simplified since all the
variables involved are real. With definitions of x̃ = xn − x̂n|n−1 and ỹ = yn − ŷn|n−1, it follows:

min
Kn

Tr Ex
∼
x
∼T

+ KnEy
∼
y
∼T

Kn
T − 2KnEy

∼
x
∼T

. (40)

Denoting the ith row of Kn as Kn,i and the dimension of state variable is d, the above problem
can be decomposed into d independent subproblems as

min
Kn,i

Ex
∼
i
2
+ Kn,iEy

∼
y
∼T

Kn,i
T − 2Kn,iEy

∼
x
∼
i
T

(41)

which is equivalently

min
Kn,i

1
2 Kn,iEy

∼
y
∼T

Kn,i
T + ( − Kn,i)Ey

∼
x
∼
i
T

(42)

hence θ in (36) is − Kn,i
T . Now suppose that the xn is constrained by [l(i), u(i)], which leads to

l (i) ≤ x̂n∣n−1,i + Kn,i(yn − ŷn∣n−1) ≤ u (i) (43)

simple manipulations lead to the standard form of inequity constraints as

Kn,i(yn − ŷn∣n−1) ≤ u (i) − x̂n∣n−1,i (44)

Kn,i(ŷn∣n−1 − yn) ≤ x̂n∣n−1,i − l (i). (45)

This clearly indicates that Kn,i can be calculated by solving a QP problem instead of the original
unconstrained least mean square solution.
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E. Selecting Parameters to Be Identified
The model contains many unknown parameters. Whether all of them are identifiable from the
measured data is difficult to answer definitely. It has been shown by results from previous
simulation studies of the model that following parameters may be critical for fitting the
measured data with the model. They include: Ga1, τ1, Ga2, τ2, Go, Ke, Cm, Kv2, rMCA0, and
Tm,2. After considering unknown initial values, there are 14 parameters to be estimated from
I/O configurations Nos. 2 and 3, and 15 unknown parameters for I/O configuration No. 1.

F. Data
Eleven recordings of ABP, ICP, and CBFV from nine brain injury patients were available for
validating the proposed method. Table I gives basic clinical information for the patients except
for the ninth one whose identification information was lost. Three of these eleven recordings
were made during propofol infusions, which were numbered as records Nos. 1–3. Five
recordings, which were numbered as records Nos. 4–8, were made without any manipulation
on patients during the monitoring. The remaining three recordings were obtained during
hyperventilation test. These recordings were performed, with proper internal review board
approval and after obtaining patients’ informed consents, in a previous clinical study
comparing different ways of controlling intracranial hypertension [38].

All signals were originally sampled at 75 Hz. They were down sampled at 1 Hz after filtering
using a low-pass third-order infinite input response (IIR) filter with 0.1 Hz as the cutoff
frequency. Signals were processed by the filter in both the forward and reverse directions to
achieve zero-phase lag in output.

To evaluate the proposed method in a quantitative way, an additional data set was generated
from model simulation. The five passive recordings were used for this purpose. To proceed,
five ICP models were first identified using the first 2–min data of the five passive recordings,
respectively. Next, the identified models were simulated with ABP from the same patient with
a simulation time horizon of 15 min. The resultant CBFV and ICP were then mixed with 25
independent realizations of Gaussian series at a signal-to-noise-ratio (SNR) of 20 dB simulating
a measurement process that is contaminated with noise. 20 dB is an appropriate SNR for
mimicking the degree of noise contamination in our data set. These five simulated data sets
are referenced as sim1–sim5 in later discussions.

This simulated data set thus provides a test bed for evaluating three different state estimation
algorithms including a pure open-loop simulation, a nonlinear KF without constraints, and the
proposed quadratic programming nonlinear KF. In addition, the three I/O configurations
introduced before can be also evaluated using this data set. These quantitative comparisons
were made possible because true state variables, including r1 and r2, were known precisely
from the simulation. As discussed before, the advantage of KF-like state estimators over a pure
model simulation is due to their robustness to model uncertainties that exist inevitably in values
of model parameters. To introduce parameter uncertainties in the simulation, the offline model-
fitting was done purposefully using a local search algorithm starting from baseline values of
the parameters as listed in Table VI. In addition, uncertainties in the initial values of state
variables were introduced by further randomly perturbing their identified values within ±3%
range. In this way, the models used in online state estimation are subject to a certain amount
of model uncertainty, to allow different state estimation methods to be evaluated.
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III. RESULTS
A. Validation of the Modified ICP Dynamic Model

The original Ursino’s model has been shown able to simulate various ICP patterns observed
clinically [5], [8]. A similar simulation of plateau wave was performed to verify that the
modified model retains that capability. Plateau wave corresponds to a severe pathological
condition. This condition can be associated with the coexistence of a preserved or enhanced
autoregulation, impaired CSF circulation, and a more rigid intracranial system. One simulated
ICP plateau wave is shown in Fig. 4 together with a measured ICP plateau wave. This figure
clearly shows that the simulated plateau wave retains the main characteristics of the measured
one. This plateau wave was simulated for a hypothetical patient with enhanced CBF
autoregulation (smaller τ1 and τ2, larger Ga1 and Ga2), impaired CSF outflow pathway
(decreased Go) and stiffer intracranial compartment (larger Ke). A constant ABP (100 mmHg)
was used as the input in the simulation.

B. Assessment Using Simulation Data
The average normalized error of estimated parameters, using the local search algorithm with
a common starting point, taken as their baseline values, is reported in Table II. ith row of this
table reports averaged results as well as standard deviation, for ith simulation data set, from
25 runs with independent realizations of observation noise. The third I/O configuration was
used for this study. In addition, final errors of estimating r1, r2, and ICP using three state
estimators including the pure model simulation, the KF, and the QPKF are reported in Table
III.

Normalized error of each estimated parameter is calculated as

Ep =
∥ p̂ − p0 ∥

∥ p0 ∥ (46)

where ||e|| is the absolute value of scalar e, p̂ the estimated parameter and p0 is the true
parameter. The performance of state estimation was assessed using the Spearman correlation
coefficient (CC) between the true value and its estimated counterpart because the absolute
value of CBFV is not estimable based on measurement of ICP alone.

Table II clearly shows that local search, starting from baseline values of model parameters,
can produce large parameter estimation errors. This is evidenced by appearance of large Ep for
some parameters. As Table III shows, the combined effects of parameter uncertainty and initial
value uncertainty resulted in large errors in state estimation produced by the pure model
simulation. However, both the KF and the QPKF succeeded in reducing the state estimation
error while QPKF achieved better performance with the incorporation of state constraints.
Furthermore, paired-t tests of difference of CC between model simulation, the KF and the
QPKF indicated that significant improvement was achieved by using the QPKF (p < 0.05). It
can also be seen from Table II that r2 of the second case was poorly estimated by all three
methods. By cross-referencing Table II, the parameter estimation error for case No. 2 was also
quite large. This result indicates that the model has to be identified with certain minimal
accuracy to get good state estimation performance.

We proceeded to using the same experimental settings to compare state estimation performance
of different I/O configurations. The results are reported in Table IV. As in previous
experiments, large parameter uncertainties in case No. 2 prevented a comparison of the three
I/O configurations. Therefore, only initial value uncertainty was kept by performing state
estimation with true parameters. This result is reported as case 2*. As expected, additional
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measurement improved the state estimation such that performance of I/O configuration No. 3
is generally better than the other two. Furthermore, ICP is more informative than CBFV as
shown by a better state estimation performance of I/O configuration No. 2 over No. 1.

C. Assessment Using Measured Data
Performance of QPKF was evaluated using the eleven real data sets. The first 3-min segment
was used for offline identification employing the DE algorithm, which was run for a maximum
of three hundred iterations. Quantitative results can only be obtained for I/O configurations
Nos. 1 and 2. These are shown in Table V. The first row of this table shows, for each of the
eleven records, the Spearman CC between the measured and the estimated ICP that was
obtained using the first I/O configuration. The second row shows the Spearman CC between
the measured and the estimated CBFV obtained using the second I/O configuration. Similar
to the results assessed using the simulation data, CBFV was estimated with better accuracy.

The state estimation performance using the third configuration can only be assessed
qualitatively based on the known physiological effects of hyperventilation and propofol on the
diameters of cerebral arterial vessels. Figs. 5–7 summarize a representative example of
hyperventilation case. Fig. 5 shows overlapped plots of measured ICP and CBFV and their
model-fitted counterparts at the end of offline identification stage. It can be seen from the figure
that gross feature of measured signals was well represented in the fitted signals. Comparison
of measured and estimated results that were obtained in online stage are shown in Fig. 6(B)
and (C) with the input signal ABP shown in Fig. 6(A). The starting time of introducing
hyperventilation is shown at corresponding places in this figure. Fig. 7 gives the estimated r1
and r2 and their 3 STD bounds for this hyperventilation case. It can be seen from the figure
that both r1 and r2 started to decrease in response to the introduction of hyperventilation.

Similar presentation for a representative propofol case is shown in Figs. 8–10. Comparable
results to those obtained for the hyperventilation case were obtained except that accuracy of
online CBFV and ICP estimate started to deteriorate in the later 5 min as shown in Fig. 9. This
will be discussed further in next section. As expected, estimated r1 and r2 started to decrease
in response to the propofol infusion as shown in Fig. 10.

IV. Discussion
The present work has extended the application of mathematical models in studying ICP
dynamics beyond the traditional role of simulation. Two such extended aspects have been
addressed. It has been shown that the parameterization of the model with individual patient’s
measured data is possible by using a general nonlinear optimization paradigm with the aid of
global search algorithms. Furthermore, as the second aspect, it has been shown that model-
based state estimation using measured data is a potentially powerful way of integrating
physiological knowledge in signal processing for information extraction. In our view, this is
an important topic because it can help overcome the physical limitations imposed by the rigid
skull with respect to measuring physiological variables inside the head.

A. Different State Estimators
A study of the performance of three different state estimators, including a pure model
simulation, an unconstrained nonlinear KF, and a quadratic programming nonlinear KF, was
conducted using simulated data. The model used for generating each simulation data set was
based on data from a real patient. Hence, the parameter range under study was within the
pathophysiological region that might be encountered in a clinical situation. The three state
estimators used models that were identified using a local parameter search and noise-
contaminated simulation data. This means that models used in the simulation contained
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uncertainties, both in terms of model parameters and initial values. Consequently, these
simulation results reflect better what could be encountered in a real situation. As expected,
pure model simulation, operating in a non-perfect modeling condition, could not produce
satisfactory results. State estimators generally improved the accuracy of state estimation of
unknown state variables but could also perform poorly if several of the initial model parameters
were far from the true values. In such a case, a sensible way to improve the state estimation is
to improve the accuracy of model and to identify unknown parameters more accurately in an
offline stage. The importance of model accuracy can also be appreciated in Fig. 9 where it is
shown that ICP and CBFV estimate deteriorated after propofol infusion started. This was
probably due to the fact that an additional model calibration using offline identification was
necessary after propofol infusion. Therefore, monitoring consistency of state estimates, during
online filtering, is desirable for triggering model re-calibration so that model accuracy can be
maintained. For example, consistency of state estimation could be checked using the method
proposed in [41].

The proposed Quadratic Programming KF is potentially useful to enable the adoption of well-
developed nonlinear state estimators to solve the intracranial state estimation problem because
the physiological constraints can now be incorporated into the state estimation process.

B. Different I/O Configurations
Performance of the quadratic programming Kalman state estimator using three I/O
configurations was also investigated. The first I/O configuration is clinically significant
because of its implication for building a CBFV-based noninvasive ICP estimator. Yet, it did
not produce satisfactory results for simulation data nor for real data. On the other hand, the
simulation study indicated that the second I/O configuration showed better performance in
estimating CBFV, r1 and r2. This may indicate that ICP does indeed contain information that
can be used for characterizing cerebral vascular dynamics. Results from applying the same
configuration to real data further strengthened the above conclusion because Spearman CC
between estimate and measurement of CBFV was higher for this configuration. Nevertheless,
it should be pointed out that ICP measurement alone cannot be used to estimate the absolute
value of CBFV because the scaling factor from CBF to CBFV in the model can not be
determined using ICP measurement (26) and (27).

The third I/O configuration using real patient data is able to qualitatively replicate the known
physiological effects of hyperventilation and propofol on cerebral arterial vasculature, i.e.,
decreasing of r1 and r2 in response to the introduction of hyperventilation and propofol infusion
as shown in Figs. 7 and 10. Although these results cannot be assessed quantitatively in the
present study, they do indicate the potential of using ICP and CBFV to estimate the lumped
cerebral arterial radii. Future prospective studies that incorporate cerebral angiography
components may be needed to provide more definitive and quantitative results.

C. Limitations
The first limitation of the present work concerns the adopted mathematical model. The model
of the coupled CSF and CBF circulatory systems used in the present work is an extension of
the classic Windkessel model for the systemic circulatory system. It thus has the same limitation
of using Windkessel model for solving hemodynamic inverse problem that involves pulsatile
blood pressure and blood flow [42]. This limitation was addressed by low-pass filtering the
pulsatile signals that were used for fitting the model and running the state estimator. A second
limitation is that two other factors known to affect CBF circulation, PaCO2 and PaO2, have
been omitted in the present work due to a lack of their measurements. These two factors have
been studied by Ursino [9], [43] we will incorporate them into future version of the proposed
estimation method. The third limitation is that the nonlinear first-order DD1 filter may be
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inferior to other higher-order approaches. This limitation could be easily addressed by
implementing several alterative filters and comparing their results. A fourth limitation is that
running the DE algorithm in the offline identification stage may not be possible for real-time
applications due to the enormous time consumed in global searching. To address this, additional
knowledge regarding model parameters could be obtained by applying our estimation method
to a larger sample and improve the initial guess of the unknown parameters.

D. Conclusion
In conclusion, the present work integrates techniques of modeling, parameter identification
and nonlinear filtering to achieve a model-based state estimation for the human intracranial
system. Such an approach is desirable to overcome the physical limitations to assessing the
state of the intracranial system with high temporal resolution and noninvasively. The results
of this study demonstrate that ICP and ABP may be used to estimate changes in CBFV in major
cerebral arteries and that ICP and CBFV may potentially be used to estimate changes in cerebral
arterial diameters.
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APPENDIX
Table VI lists baseline values of the parameters in the ICP dynamics model presented in the
text. These values were derived by Ursino [9]. The only new parameter is Cm.
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Fig. 1.
A schematic representation of three feedback loops that maintain constant cerebral blood flow.
The first loop indicates that CBF decrease due to hypotension could be compensated by the
vasodilation caused by the autoregulation in response to hypotension. The second loop shows
that CBF could also be compensated by CPP increase because ICP is reduced when cerebral
blood volume decreases. The third one is a positive feedback loop. It shows that decrease of
CBF triggers autoregulation that leads to cerebral vasodilation. Given a rigid craniospinal
space, this vasodilation can lead to significant increase of ICP that decreases CPP and hence
CBF. ABP=arterial blood pressure; CBF=cerebral blood flow; CVR=cerebral vascular
resistance; ICP=intracranial pressure; CPP=cerebral perfusion pressure.
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Fig. 2.
A circuit representation of the proposed model where pressure corresponds to voltage and flow
to current. It is largely based on Ursino’s original model. ABP=arterial blood pressure;
CBF=cerebral blood flow; CSF=cerebrospinal fluid; Pic=intracranial pressure; Pss=sagittal
sinus pressure; P1=blood pressure of proximal cerebral arterial bed; P2=blood pressure of distal
cerebral arterial bed; C1 =compliance of proximal cerebral arterial bed; C2=compliance of
distal cerebral arterial bed; Cic=compliance of craniospinal space; G1=CBF conductance of
proximal cerebral arterial bed; G2=CBF conductance of distal cerebral arterial bed; Gf =CSF
production conductance; Go=CSF resorption conductance; Gpv=CBF conductance of the rigid
portion of cerebral venous bed; Gvs=CBF conductance of the collapsed portion of cerebral
venous bed.

Hu et al. Page 22

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2007 December 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 3.
Nonlinear optimization paradigm for identifying parameters of a system of ordinary differential
equations. ODE solver is used to simulate the model given state space model, input and initial
guess of unknown parameters to obtain state variables which are then fed into output equations
for obtaining simulated output signal. The error between this simulated output and measured
output is then used to drive an optimization process that runs until any of stop criteria is met.
The optimization process can be a hybrid of global and gradient-based local search.
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Fig. 4.
Demonstration of a simulated ICP plateau wave using the modified model. (A) Simulated ICP
and (B) the simulated CBFV. As a comparison, a measured ICP plateau wave is shown in (C)
together with measured CBFV in (D). It can be seen that the main characteristics of plateau
wave are well maintained in the simulation.
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Fig. 5.
Offline fitting results for a representative hyperventilation case. I/O configuration No. 3 was
applied to data set No. 10. (A) The fitted ICP superimposed on the measured one at the end of
the offline fitting while (B) shows results of CBFV.
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Fig. 6.
Online estimation results for a representative hyperventilation case. I/O configuration No. 3
was applied to data set No. 10. (A) The input, i.e., the measured ABP. (B) The estimated ICP
and the measured ICP and (C) that of the CBFV. The estimated signals are virtually on top of
their measured counterparts. Hyperventilation started around the fifth minute that caused a
decrease of ICP and CBFV as expected.
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Fig. 7.
Online estimation results for a representative hyperventilation case. I/O configuration No. 3
was applied to data set No. 10. (A) The unobserved r1 together with its ±3 STD limit and (B)
that of r2. It should be noted that estimated standard deviation of r1 is too small such that its
±3 STD limit cannot be shown in this scale.
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Fig. 8.
Offline fitting results for a representative propofol case. I/O configuration No. 3 was applied
to data set No. 1. (A) The fitted ICP superimposed on the measured one at the end of the offline
fitting while (B) is that of the CBFV.
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Fig. 9.
Online estimation results for a representative propofol case. I/O configuration No. 3 was
applied to data set No. 1. (A) The input, i.e., the measured Pa. (B) The estimated ICP and the
measured ICP and (C) that of the CBFV. The estimated signals are virtually on top of their
measured counterparts except after the sixteenth minute. Propofol infusion started around the
fourteenth minute that caused a decreases of ICP and CBFV as expected.
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Fig. 10.
Online estimation results for a representative propofol case. I/O configuration No. 3 was
applied to data set No. 1. (A) The unobserved r1 together with its ±3 STD limit and (B) that
of r2.
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TABLE VI
list of baseline values of model parameters

Parameter Values

r0,1 = 0.015 cm r0,2 = 0.0075 cm
h0,1 = 0.003 cm h0,2 = 0.00025 cm

σe0,1 = 0.1425 mmHg σe0,2 = 11.19 mmHg
Kσ,1 = 10 Kσ,2 = 4.5

σcoll,1 = 62.79 mmHg σcoll,2 = 41.32 mmHg
T0,1 = 2.16 mmHg cm T0,2 = 1.50 mmHg cm

rm,1 =0.027 cm rm,1 = 0.0128 cm
rt,1 = 0.018 cm rt,2 = 0.0174 cm
nm,1 = 1.83 cm nm,2 = 1.75 cm
η1 = 232 mmHg s η2 = 47.8 mmHg s

Kg,1 = 1.43e6 (mmHg s cm)−1 Kg,2 = 1.02e8 (mmHg s cm)−1

Kv,1 = 4.64e3 cm Kv,2 = 154.32e3 cm
τ1 = 10 s τ2 = 20 s

Ga1 = 0.02 mmHg−1 Ga2 = 5.2 mmHg−1

Gpv = 1.136 mmHg−1 s−1 ml rMCAo = 0.14 cm
Gf = 4.2e − 4 mmHg−1 s−1 ml Go = 1.9e − 3 mmHg−1 s−1 ml

Ke = 0.11 ml−1 Cm = 0.2 mmHg−1 ml
Pan = 100 mmHg Picn = 9.5 mmHg
qn = 12.5 ml s−1 Ps = 6.0 mmHg

Krmca = 5
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