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An Expectation-Maximization Algorithm Based
Kalman Smoother Approach for Event-Related
Desynchronization (ERD) Estimation from EEG

Mohammad Emtiyaz Khan* and Deshpande Narayana Dutt

Abstract—We consider the problem of event-related desynchro-
nization (ERD) estimation. In existing approaches, model param-
eters are usually found manually through experimentation, a te-
dious task that often leads to suboptimal estimates. We propose
an expectation-maximization (EM) algorithm for model param-
eter estimation that is fully automatic and gives optimal estimates.
Further, we apply a Kalman smoother to obtain ERD estimates.
Results show that the EM algorithm significantly improves the per-
formance of the Kalman smoother. Application of the proposed ap-
proach to the motor-imagery EEG data shows that useful ERD pat-
terns can be obtained even without careful selection of frequency
bands.

Index Terms—Event-related desynchronization, expectation-
maximization algorithm, Kalman smoother.

I. INTRODUCTION

VENT-RELATED desynchronization (ERD) and synchro-
Enization (ERS) are used to describe the decrease and in-
crease in activity in an EEG signal, caused by physical events
[1]. Experiments show that the preparation, planning and even
imagination of specific movements result in ERD in mu and
central-beta rhythms [2]-[4]. ERD also shows significant differ-
ences in EEG activity between left- and right-hand movements
[5]. These differences can be used to build communication chan-
nels known as brain-computer interfaces (BCI) which have been
very useful in providing assistance to paralyzed patients [6].

ERD has been studied extensively by researchers and many
methods have been proposed for its estimation [7]-[11]. The
intertrial variance (IV) method [7] is one of the first methods
proposed for quantification of ERD. In this method, ERD es-
timates are obtained by computing the average IV of a band-
pass filtered signal. Useful information about ERD time courses
and the hemispherical asymmetry can be obtained with these
estimates. However, the IV method cannot be used for on-line
classification because it requires averaging over multiple trials
[5]. Another problem is that it requires careful selection of fre-
quency bands for ERD estimation. To overcome these problems,
a method based on the adaptive-autoregressive (AAR) model
has been proposed [8]. The AAR model is also known as the
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time-varying AR (TVAR) model, and has been applied exten-
sively for EEG signal analysis [12], [13]. The TVAR coefficients
are usually estimated with the recursive-least square (RLS) al-
gorithm and classified with a linear-discriminator. It is shown in
[5] that the TVAR coefficients capture the EEG patterns and im-
prove classification accuracy. However, in this method, values
of various parameters (e.g., model order, update coefficients) are
required and are usually difficult to find.

The TVAR model can also be written as a state-space model.
The advantage of this formulation is that the optimal estimates
can be obtained using a Kalman filter [14]. The Kalman filter
is an optimal estimator in the mean-square sense. Other adap-
tive algorithms like the RLS algorithm can be derived as a
special case of the Kalman filter [15]. If future measurements
are available, smoothing equations can be used to further
improve estimation performance. The Kalman filter along with
the smoothing equations is usually referred to as a Kalman
smoother [16], [17]. The Kalman smoother has been used for
ERD estimation in [18], it has been reported to improve the
tracking of ERD patterns. However, in this formulation as in
the AAR model formulation, setting model parameters is a
problem. To make it easier to set the parameters, a very simple
random-walk model is used.

In all the methods discussed above, finding the values of
model parameters is a common issue. In this paper, we pro-
pose an expectation-maximization (EM) algorithm for model
parameter estimation. We use the information present in large
training datasets to estimate model parameters. The paper is
organized as follows: In Section II, we describe the state-space
formulation of the TVAR model. In Section III, we describe
our algorithm for ERD estimation. In Section IV we discuss the
results, followed by a conclusion in Section V

II. TIME-VARYING AUTOREGRESSIVE (TVAR) MODEL

We denote scalars/vectors/matrices by small/bold/capital let-
ters. We denote the transpose of a matrix A by A’. We assume
an EEG sequence follow the following TVAR model:

p
Y=Y aiyi—k +vr, 1)
k=1

Here, {a} }%_, are the TVAR coefficients!, p is the model order
and v, is the independent and identically distributed (i.i.d.)
Gaussian noise with zero mean and variance 2. We denote a

IThese are also called TVAR “parameters.” To avoid confusion with model
parameters we will always use the term “coefficients” for these, and reserve the
term “parameters” for model parameters.
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sequence of measurements by Yi.r = {y1,...,yr}. We also
assume TVAR coefficients to follow a Gauss-Markov process:

X1 = Axp + Wy ()

where x; = [aja}...a}] is the array of TVAR coefficients,
w; ~ N(0, Q) is the i.i.d. noise, A is the state transition matrix
and () is a symmetric, positive definite matrix (both of size p X
p). These equations can be written as a single state-space model

Measurement Equation : y; = h;xt + v

State Equation : x;11 = Ax; + wy 3)

where hy = [y;—1y:1—2 . . . y1—p]’ is the vector of the past p mea-
surements. X, is called the state of the system. The initial state
is assumed to be Gaussian: x; ~ N (g1, X1). For simplicity, the
initial state vector and noises are assumed to be independent of
each other. All the model parameters together are denoted by
0= {A/ 0'37 Q7“07 E0}

We now compare our model with two previous approaches
and show that they are special cases of our model. The first ap-
proach is based on an AAR model [8] wherein the RLS algo-
rithm is used to estimate x;. It is shown in [15] that the model
used by the RLS algorithm is a special case of the state-space
model given in (3), and can be written as follows:

Yt = h;Xt + V¢
Xpp1 =A%, )

where ) is the forgetting factor for the RLS algorithm. Rewriting
the AAR model as in (4) allows an easy comparison with our
model. There are two important differences. First, there is no
state noise in this model. Second, matrix A is constrained to a
scaled identity matrix which depends on the choice of A. Note
that the only tuning parameter in the AAR model is .

The second approach, proposed in [18], uses a random-walk
model given by

Xt41 = Xt + Wy )

There are two differences again. First, the noise covariance is
constrained to a scaled identity matrix: where Q = o021 (02,
is a nonnegative real number). Second, A is assumed to be an
identity matrix. With these assumptions the only unknown pa-
rameter is o2 . However, setting this parameter is even more dif-
ficult than A as its range is not known (A € (0,1)).

Both the AAR and the random-walk model impose con-
straints to reduce the number of tuning parameters. There are at
least two major consequences because of this. First, the same
model is assumed for all elements of the state vector. Second,
all the elements are assumed to be independent of each other.
These assumptions may deteriorate estimation performance
(we will show this in Section IV-A). Another important point
to note is that finding values of parameters is difficult even
when the number of parameters is small. This is because it
is usually done manually through trial-and-error. Most of the
time, manual settings give suboptimal solutions and an equally
good automatic tuning is always preferred. It is a well-known
fact that if any a priori knowledge is available, then it should be
used in formulation of the model [15]. We propose the use of an
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EM algorithm which allows model parameters to be estimated
using training datasets. We describe the proposed approach in
Section III.

III. EM ALGORITHM-BASED APPROACH

We split ERD estimation into the following three subprob-
lems:

1) estimation of the model parameter O;

2) estimation of the TVAR coefficients {x; };

3) estimation of the ERD given TVAR coefficients.
We first present our solution to 2), followed by 1) and 3).

A. Estimation of TVAR Coefficients

Given the measurement sequence Y;.r, we want to find es-
timates of the TVAR coefficients. For this purpose, we use the
Kalman filter [14] which gives the optimal estimate in the mean-
square sense (in this section, we assume that the model parame-
ters are available). We use the following definitions for the con-
ditional expectations of the states and the corresponding error
covariances:

)A(t\s =F (Xt|Y1:s)
Pf,l,tQ\s =F ((Xt1 - fih |s)(xt2 - )A(t2|s)l|Y1:s) . (6)
For convenience, when t1 = 1o = ¢, P, 1,| is written as P,.

The state estimate (Xy;, I;) can be obtained with the Kalman
filter, which is given as follows:

)A(t|t—1 :Af(t—1|t—1 @)
Pyi1 = APt—1|t—1A/ +@Q ®
K; = Pyy—1hy(hiPy;_1h; + o)t )
Xejt = Xyjp—1 + Ke(ys — h;it|t—1) (10)
Pt|t :(I_Kthgpt\t—l (1)

with the initial condition X1j0 = M1 and Pl\o = Y. Here, K;
is called the Kalman gain.

Note that the above Kalman filter is a time-varying filter as
h; depends on time. Hence, the gain and the error covariance
will also vary with time and can not be computed a priori, un-
like the classical Kalman filter [14]. Hence, it will require more
computation than the classical Kalman filter. However, the in-
crease in computation will not be very large as we are dealing
with scalar measurements. Another important difference is in
the convergence of the filter. As P, varies with the measure-
ment sequence, it does not converge to a steady-state value. To
monitor convergence we need to compute the expectation of Py
with Monte Carlo simulations and check if it settles down to a
value (see [19] for an example of a time-varying Kalman filter).

If the future measurements Y; 1. are available, then these
can be further used to improve the accuracy of the estimates.
The smoothed estimates [20] can be obtained as follows:

Jy :PﬂtA’Pt:_ll‘t (12)
&t|T = fit\t + Jt(kt+1|T - f(t+1|t) (13)
Pyr =Py + Ji(Piprjr — Pigae) Ji- (14)

Note that it is the designer’s choice whether to use smoothing
equations or not. For example, during an on-line analysis, the
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Kalman smoother will give estimates only after the end of the
experiment, which may not be acceptable. But for an off-line
analysis, getting the estimates after the experiment may not
matter.

B. Estimation of the Model Parameters With an EM Algorithm

In this section, we describe the estimation of model parame-
ters with an EM algorithm. The objective is to compute an esti-
mate of © given a measurement sequence. For Gaussian models,
maximum-likelihood (ML) estimate is an obvious choice [20],
which is given as follows: Our = arg maxg log p(Y1.7|©),
where p(Y7.7|©) is the probability density function of the
measurements (also called likelihood). Note that because of
the dependence on the states, which are not available, direct
maximization is not possible. The problem is to maximize the
likelihood with respect to two unknowns: states and model
parameters. The expectation-maximization (EM) algorithm
takes an iterative approach by first maximizing the likelihood
with respect to the states in the E-step, and then maximizing
with respect to the parameters in the M-step. The EM algorithm
was first introduced in [21], and has been used extensively for
model parameter estimation [22]-[24]. The E-step maximum
is given by the expected value of the complete log-likelihood
function as follows:

Q = Exy[logp(Yi.r X1.7(0)]. (15)
The M-step involves the direct differentiation of Q to find the
values of the parameters. These computations are done itera-
tively and the algorithm is guaranteed to converge [22].

We now describe an EM algorithm for our model. For deriva-
tion, we follow the procedure given in [23], and details are given
in Appendix A. A summary is given below.

1) E-Step: This step involves the computation of Q given
the measurements Y7.7 and an estimate of the model parameter
from the previous iteration, ©}. As shown in Appendix A, Q
depends on the following three quantities:

fit\T = B(x¢|Y1.1)
St\T = E(XtXHYl:T) = Pt\T + )A(t|T)A(;|T
Syt = E(xex; 1 |Y17)

(16)
a7
=Piyqr+ ﬁt\Tﬁ;_uT-(lS)
The first two quantities can be obtained using the Kalman

smoother as described in Section III-A. The last quantity can
be obtained as described in [20] with the following equation:

Pt,t—1|T = Jt—IPt\T~ (19)
Q is then obtained using (34) given in Appendix A.

2) M-Step: By direct differentiation of Q, we get the fol-
lowing expressions of the model parameter estimates:

A = (3 Sae) (B S
t=2 t=2
1 (XT: Syp — AFH XT: St—l,t\T) 1)
=2 t=2

(20)

Akl
@ T
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. k+1 £l

Z — 2%y 7 y: + 0y Syrhy) (22)
I~"1 =Xy (23)
53'1““ =81 — Xy ¥ p (24)

where k denotes the current iteration. We denote all these esti-
mates together as ©F 1,

Both E- and M-steps are iterated, and convergence is moni-
tored with the conditional likelihood function, obtained as fol-
lows:

log p(Yi.7|0%) = Zlog( (B%ije1, b Pryei by + 02) ).

(25)
The algorithm is said to have converged if the relative increase in
the likelihood at the current time step compared to the previous
time is below a certain threshold.

The above algorithm can be easily extended to multiple mea-
surements. Assuming trials to be i.i.d., the Kalman smoother es-
timates must be averaged over all measurement sequences. Sub-
stitution in M-step equations will then give the estimate of the
parameters corresponding to the multiple measurements.

There are a few practical issues which need to be addressed
when implementing the above algorithm. The first issue is of
numerical error. Because of its iterative nature, the algorithm is
susceptible to numerical round-off errors and can diverge. To
solve the numerical problem, we used a square-root filter [25]
implementation. The other issue concerns initialization. Some
methods are available for initialization (e.g., subspace identi-
fication method in [24], [26]). In this paper we use a simpler
method by assuming local stationarity. We divide the dataset
into overlapping windows, and for each window, we find x; and
o2 using MATLAB’s ARYULE function. From these local esti-
mates, we find ML estimates of (). We set A to identity and the
initial state mean and covariance to zero and identity matrix, re-
spectively.

C. Estimation of ERD

In this section, we describe the estimation of ERD using
the TVAR coefficient estimates obtained with the Kalman
smoother. The approach is motivated by an earlier analysis
using an AR spectrum, discussed in [27]. We use a similar
method, but with a TVAR spectrum. Given TVAR coefficients,
time-varying spectrum estimates can be obtained as follows:

o/:'U
H(t, f) = ——— (26)
[1— Y aie—2mif/fs
i=1
Here, f, is the sampling frequency, a: is the i*" element of

the estimated state-vector, and f is the frequency in the range
[0, fs/2]. As ERD is seen only in specific frequency bands, we
average the spectrum to get band-power Pp

f2

=2

f=rf

H(t, f)? (27)
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where (f1, f2) is the band of interest. The band can be set
through visual inspection or by using a threshold. We will show
later that a very precise selection of the frequency band is not
required, and that a rough setting serves well.

An ERD estimate is then found by computing the relative
band-power with respect to a reference window. First, a refer-
ence power is obtained by averaging band-power over a time
interval, where the ERD pattern is expected to be absent (most
probably at the start of the experiment). ERD estimates are then
obtained with the following equation:

— PB(t)_Pref

ERD(#) 5
ref

(28)

where Pof = tTiTl Pg(t) is the reference band-power for
time T} to T5. The ERD estimates obtained are further smoothed
by averaging over a time window. The above procedure is sim-
ilar to the IV method [7] where ERD estimates are obtained
in the time domain by computing the variance of a bandpass
filtered EEG. The difference is that the IV method does com-
putation in the time domain, while our method operates in the
frequency domain. A careful selection of the frequency band is
required for the IV method. We will show in Section IV that
our approach does not require such precision for the frequency
band.

IV. RESULTS

In this section, we study the effect of model parameter estima-
tion with the EM algorithm. We compare the proposed approach
with two previous approaches based on the RLS algorithm and
the Kalman smoother (KS) as discussed in [8] and [18], respec-
tively (see Section II for details of these approaches). In the rest
of the paper, we will refer to these approaches as RLS and KS
while we call our approach EMKS.

A. Simulation Results

We compare the approaches for two criteria relevant to the
estimation of ERD: 1) tracking of the TVAR coefficients; 2)
spectrum estimation of a nonstationary signal. Note that this
evaluation requires time-varying simulation data. To generate
a smoothly time-varying signal, we consider nonlinear models.
This helps us to study the effect of approximating a nonlinear
signal, such as an EEG signal, with a TVAR model. However,
a direct comparison of the model parameter estimates is not
possible for these cases as the actual model will be nonlinear.
Hence, we base our comparison on the performance of a filter
using the estimated model.

For the first criteria, we generate a smoothly varying AR(2)
process (see [18] for simulation details). The trace of the simu-
lated model root and a typical realization are shown in Fig. 1(a).
A signal is generated for 2 s, sampled at 128 Hz and the noise
variance is set to 0.2. The model order is set to p = 2, equal
to the actual model order. The model parameters are estimated
with the EM algorithm using a dataset of 100 sequences. The
same dataset is used to set parameters for RLS and KS. )\ and
o2 are optimized for minimum mean-square error. The opti-
mization results are shown in Fig. 1(a), and the values obtained
are A = 0.898 and 02, = 0.037. TVAR coefficients are then
estimated with these parameters.
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Fig. 1. (a) The root evolution and a typical realization of the AR(2) process
along with the optimization of A and 2. (b) The TVAR coefficient estimates
with EMKS (thick black line), KS (thin black line) and RLS (thin gray line).
The actual TVAR coefficients are shown with a thick gray line.

Estimates for one realization are shown in Fig. 1(b). From
these figures, it is clear that EMKS performance best. Although
RLS and KS track the first coefficient to some extent, they do not
track the second coefficient very well. This is because the same
model is assumed for both coefficients (see Section II). The op-
timization function is biased towards the first coefficient as its
magnitude is higher, and the estimate for the second coefficient
suffers. The model parameters estimated with EM algorithm do
not impose any such constraint on the model, and both coeffi-
cients have different models. The means and variances of the
estimates for 100 realizations are shown in Fig. 2 and they show
the same trends for the performance of the algorithms. Hence,
we conclude that the better performance of EMKS is due to the
better model parameter estimates.

Next we compare the performance for spectrum estimation.
For this purpose, we consider a frequency modulated signal
given by the following equation:

yr = 5sin(27 fit) + uy (29)
where f; is called the instantaneous frequency (IF) and w; is
zero-mean Gaussian noise with variance o2. We choose linear
frequency modulation: f; = 10¢. The signal is generated for
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Fig. 3. (a) Optimization of parameters along with a realization of linear FM
signal and the IF estimates with EMKS (thick black line), KS (thin black line),
RLS (thin gray line), and the actual f, (thick gray line). (b) Mean (thick black
line) and “mean £30 limit” (thin black line) for each method.

2 s, sampled at 128 Hz and the noise variance is set to 1. As
the simulated signal contains a single frequency component, we
need 2 poles to model it. However, empirical evidence suggests
that p = 4 is more appropriate for noisy data. Model parameters
are obtained with the same method used in the first simulation.
Optimized values of A and o2, are found to be 0.87 and 0.0006.
IF estimates are obtained by picking the peaks of the spectrum
obtained using estimated TVAR coefficients. Fig. 3(a) shows
the estimates for a realization. It can be seen that EMKS shows
smooth convergence, and lowest steady-state error. While per-
formance of RLS is quite poor, KS seems to track as well as
EMKS. However, the average performance in Fig. 3(b) shows
that variance of the estimates with KS is larger than that of
EMKS. In addition, both RLS and KS show oscillation in con-
vergence, while EMKS shows a slightly over-damped response.
Results for a fast varying FM signal show similar trends [28].

B. Motor-Imagery EEG Data

In this section, we apply our method to the motor-imagery
dataset provided by the Graz University of Technology. A de-
tailed description of the dataset can be found in [29]. In the
experiment, the subject’s task was to control a bar in one di-
mension by imagining left- or right-hand movements. The ex-
periment included 7 runs with 40 trials, each of 9 s (hence, 280
trials). Three bipolar EEG signals were measured over positions
Cs, C,, and Cy. The first 2 s were quiet and at £ = 2 s, an

0.3
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0 EMKS | 125
10F A
20
200
e KS
5 15
g 10 [ | ] ' Ll ' v
o
w
200 10
RLS
I J 5
10 e R )
20 : : : :
0 1 2 3 4 5
Time (sec)

Fig. 4. The time-varying spectral estimates of an EEG signal for a right-hand
motor-imagery experiment at position C'5.

acoustic stimulus indicated the beginning of the trial. A cross
(“+”) was displayed for 1 s. Then, at ¢ = 3 s, an arrow pointing
either to the left or right was displayed as a cue stimulus. The
subject was asked to imagine moving the bar in the direction of
the cue. The number of left-hand cues were equal to the number
of right-hand cues. For our analysis, we use a model order of
p = 5,and set A = 0.97 and 02, = 0.001 for RLS and KS, re-
spectively. These parameters are chosen to the best of our ability
based on visual inspection. For the EM algorithm, model pa-
rameters are estimated with 50 trials. For single-trial results, the
chosen dataset does not belong to the training dataset. However,
for average behavior the training dataset is included, because
there would be too little data otherwise.

Fig. 4 shows the time-varying spectrum estimates for the first
5 s of a trial. This trial shows a decrease in activity between 2
and 3 s and then after 4 s. We can clearly see that the EMKS
estimates capture these patterns accurately. Although KS de-
tects the decrease in activity, the estimates have noisy peaks and
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Fig. 5. The average spectrum for (a) the right-hand motor-imagery EEG data

and (b) the left-hand motor-imagery data. The cue is indicated with a vertical
lineatt = 3 s.

are not smooth. RLS also does not estimate the pattern prop-
erly. Note that all of these estimates show activity in the alpha
band (8-12 Hz) which is expected for a motor-imagery experi-
ment. Fig. 5(a) shows the mean of the spectrum for all 70 trials
of right-hand datasets at positions C3 and C4. We can see that
for all the methods there is a significant decrease in activity in
the alpha band-power at position C'3 after the cue is presented,
while there is no such pattern at position Cy. Hence, on av-
erage, the estimates show ERD. Comparisons between methods
show the same trend as performance for a single trial: EMKS
estimates are smooth, while KS and RLS are noisy. In addi-
tion, EMKS and KS both show better convergence than RLS.
The poor convergence may affect the ERD estimates. This is
because the reference level is obtained using initial estimates.
For completeness, Fig. 5(b) shows the EMKS spectrum esti-
mates for left-hand data. The ERD patterns are reversed here,
estimates for position Cy show ERD, while those for position
Cj3 do not. This clearly demonstrates the expected hemispher-
ical asymmetry due to the motor-imagery experiment.

We now discuss the results for ERD estimation. Fig. 6 shows a
trial of right-hand data at position C', its spectrum, and ERD es-
timates. ERD estimates are obtained with the following settings:
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Fig. 6. A motor-imagery trial (top) chosen from the right-hand movement ex-
periment at position C'3, along with the estimated spectrum and ERD.
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Fig. 7. ERD estimates with EMKS (thick line) and IV (thin line) for imagina-
tion of the right-hand (top) and the left-hand (bottom) movements at positions
C'5 and C,. The event time is shown with a vertical line at t = 3 s.

the frequency band for band-power is chosen to be 8—15 Hz, ref-
erence power is obtained by averaging the band-power from 0
to 2 s, and ERD estimates are smoothed over a window length
of 16 samples. We observe that the derived ERD pattern is in
accordance with activity changes in the spectrum. However, be-
cause of high variability between trials, it is difficult to draw any
conclusion about the general behavior of ERD estimates from
single-trial estimates. To prove the consistency of the ERD esti-
mate on average, we compare it with the standard IV method
[7]. Note that the IV method gives a good estimate of ERD,
but is sensitive to the selection of the frequency band. With vi-
sual inspection, a frequency band for the IV method is chosen to
be 9-12Hz. A dataset of 70 trials is used for estimation. Refer-
encing and smoothing are done with the same parameters used
for EMKS. ERD estimates are shown in Fig. 7. We can see
that both estimates show similar patterns. Also, both right- and
left-hand data show desynchronization. Note that the frequency
range chosen for EMKS is quite large (8—15 Hz), and does not
have to be chosen very precisely. This is due to a better time-fre-
quency resolution of spectrum estimates with EMKS as com-
pared to other methods.

Finally, we compare the classification accuracy obtained
using ERD estimates. We use a linear discrimination method
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Fig. 8. Time course of smoothed error rate ERR,; with EMKS, KS, and RLS
algorithms.

similar to one described in [5]. Training data consists of 140
trials (70 each for right- and left-hand imagery) at positions C's
and Cy. Four sets of model parameters are estimated with the
EM algorithm corresponding to left- and right-hand at positions
C3 and C4. TVAR coefficients are obtained with these models,
and a feature vector is formed as follows:

dt -

|:X§%3 - (30)

il
Xpa — X[4

Here, x4 ( or x% ;) denotes the TVAR coefficients of the signal
at position C'3 using the right-hand (or left-hand) data model.
Similar notations are used for other variables. A distance D can
be computed for a signal, using a linear discrimination function
as follows:

D, =wld, —wy (31)
where w; is the weight vector and wy is the offset. D; > 0 (< 0)
means that the signal is classified as a left-hand (right-hand)
trial. w, and wy are found with a support vector machine (SVM)
[30]. A test dataset of 140 trials is classified using the above
discrimination function, and a ten-times tenfold cross-validation
is applied every 125 ms [5]. A time-course of error ERR; is
then obtained. Fig. 8 shows the ERR; smoothed over a window
of 16 samples. As expected before the event, the error rate is
close to 50%, and it drops after the cue is presented. The lowest
classification error obtained is 15.4% at time point 4.6 s with
EMKS, 19.6% at 4.6 s with KS and 20.8 at 6.1 s for RLS. We see
that EMKS gives the lower error rate. Also note that the lowest
error is obtained at a later time by using RLS as compared to
EMKS and KS. This is because of the tracking lag introduced
by the RLS algorithm.

V. CONCLUSION

In this paper, we propose an EM algorithm based Kalman
smoother approach for ERD estimation. Previous approaches
impose several constraints on the AR model to make model pa-
rameter setting easier. We show that such constraints may dete-
riorate estimation performance. The proposed method does not
require any constraints or manual setting. In addition, optimal
estimates in the ML sense are obtained. Another advantage of
the proposed approach is that the Kalman smoother can be used
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for coefficient estimation with these estimated model parame-
ters. This further improves estimation performance compared
to RLS-based approaches. We show that the proposed approach
significantly improves tracking and spectrum estimation perfor-
mance. Application to real world EEG data shows that the spec-
trum estimates are smooth and show good convergence. Useful
ERD patterns are obtained with the proposed method for ERD
estimation. The advantage is that the method does not require a
careful selection of the frequency band, in contrast to previous
approaches. This paper also confirms the hemispherical asym-
metry obtained with ERD, and supports its use for BCIs.

Although the use of the EM algorithm is promising, there are
a few issues. The first one is related to convergence. We found
that convergence becomes very slow after a few cycles, and
training takes a lot of time. Also, to obtain a value close to the true
model parameter, a large dataset is necessary. Further work on
increasing the rate of convergence could be useful. The second
issue is about the validation of the above results. The proposed
approach shows very clear results for the dataset considered.
Although we do not expect a poor performance on other datasets,
validation with more datasets and multiple subjects will confirm
our method’s applicability in a practical BCI system.

APPENDIX
EM ALGORITHM: LOG-LIKELIHOOD DERIVATION AND M-STEP

The joint probability distribution of X;.7, Y7.7 can be written

as
T

p(a) [ p

t=2

T
Xt|Xr 1 Hp yfle ht
t=1
(32)

Taking log and expectation, we get the expectation of joint log-
likelihood with respect to the conditional expectation

Q = Exy[log p(X1.1, Y1.7|O)]

T
1 -
7 y,” — 2hiX,y; + h; Sy rhy]

p(X1.7,Y1.7|©) =

(33)

=——lno,
2

U=l

- = Z trace

+ ASt—l‘TA )]

“H(Syr — AS;_1 47 — Spa—r A’

., L

Y(Pyr — 2m%, 4+ mimy )] — §1n|V1|

(p+1)T
2

1 _
- Etrace[V1

T-1
-5 In|Q| — In 27r. 34)
For the M-step, we take the derivative of Q with respect to each
model parameter, and set it to zero to get the estimate, e.g., an

update for A can be found as

T
g—j - _% ; |:_ 2St,t—1|T + 2ASt—1|Ti| =0 (35)
which gives
T T »
AR+ (ZSH_HT) (Zst—l\T) (36)
t=2 t=2

Updates for other parameters can be obtained similarly.
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