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Image Processing for a High-Resolution
Optoelectronic Retinal Prosthesis

Alon Asher*, William A. Segal, Stephen A. Baccus, Leonid P. Yaroslavsky, and Daniel V. Palanker

Abstract—In an effort to restore visual perception in retinal dis-
eases such as age-related macular degeneration or retinitis pigmen-
tosa, a design was recently presented for a high-resolution opto-
electronic retinal prosthesis having thousands of electrodes. This
system requires real-time image processing fast enough to convert
a video stream of images into electrical stimulus patterns that can
be properly interpreted by the brain. Here, we present image-pro-
cessing and tracking algorithms for a subretinal implant designed
to stimulate the second neuron in the visual pathway, bypassing the
degenerated first synaptic layer. For this task, we have developed
and implemented: 1) A tracking algorithm that determines the im-
plant’s position in each frame. 2) Image cropping outside of the im-
plant boundaries. 3) A geometrical transformation that distorts the
image appropriate to the geometry of the fovea. 4) Spatio-temporal
image filtering to reproduce the visual processing normally occur-
ring in photoceptors and at the photoreceptor-bipolar cell synapse.
5) Conversion of the filtered visual information into a pattern of
electrical current. Methods to accelerate real-time transformations
include the exploitation of data redundancy in the time domain,
and the use of precomputed lookup tables that are adjustable to
retinal physiology and allow flexible control of stimulation parame-
ters. A software implementation of these algorithms processes nat-
ural visual scenes with sufficient speed for real-time operation. This
computationally efficient algorithm resembles, in some aspects, bi-
ological strategies of efficient coding in the retina and could provide
a refresh rate higher than fifty frames per second on our system.

Index Terms—Biomedical image processing, macular degenera-
tion, retinal prosthesis, retinitis pigmentosa.

I. INTRODUCTION

MANY cases of intractable vision loss arise from selective
photoreceptor degeneration. Retinitis pigmentosa (RP),

for example, causes the loss of up to 95% of the photoreceptor
layer, but spares up to 80% of the inner nuclear layer and 30%
of the ganglion cell layer [1]. Similarly, patients with age-re-
lated macular degeneration (AMD) can lose up to 70% of pho-
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toreceptors with no loss of other retinal cell types [2], [3]. Ap-
proximately 1 in 4000 newborns inherits the genotype for RP,
while AMD, which arises from multiple causes including nat-
ural aging and environmental stresses, is diagnosed in 700 000
Americans annually. No treatment currently exists for RP, while
progression of AMD can be slowed but not prevented.

In cases of selective photoreceptor loss, a potential treatment
is to bypass the damaged neural tissue, using electrical stimu-
lation to artificially deliver visual information to the surviving
retina. It has been shown in cat models that information can be
transmitted from a retinal implant to the brain with temporal res-
olution corresponding to video rate (40 ms or 25 Hz) and spa-
tial resolution sufficient for simple object recognition [4], [5]. In
early human trials, simple visual percepts such as spots and pat-
terns have been produced by electrically stimulating the degen-
erated retina with just a few electrodes [1], [6], [7]. Recently, we
reported a design for a high-resolution retinal prosthetic implant
containing up to 18 000 pixels on a 3-mm disk, geometrically
corresponding to a visual acuity of up to 20/80 within 10 of
visual field [8], [9]. This strategy has an inherent requirement:
replacing a damaged part of the nervous system with an elec-
tronic system requires that lost neural information processing
be replaced as well [10], [11].

A potential complication of this approach is that remod-
eling of retinal architecture in the absence of photoreceptors
signaling can lead to a progressive retinal miswiring [12]. How-
ever, highly resolved chronic electrical stimulation may induce
neuronal migration and rewiring so as to utilize the provided
stimulation [13]. To properly transmit visual signals through the
optic nerve, any such remodeling must not drastically change
the encoding of visual input in the inner retina.

Here, we describe a set of real-time computer algorithms to
restore lost visual processing and prepare images for transmis-
sion to the implant placed in the fovea. The fovea is chosen be-
cause it supports the highest acuity vision, and because the rep-
resentation of the fovea is greatest in the visual cortex [14]. This
software tracks the location of the implant, crops away unneces-
sary visual information, distorts the image appropriately for the
neural circuitry of the fovea, and applies spatio-temporal filters
characteristic of the missing first visual synapse.

In our hardware design (Fig. 1) described previously [8], [9],
a video camera transmits 640 480 pixel images at 25 Hz to
a pocket PC [8]. The computer processes the data as described
in this report, and displays the resulting images on an LCD ma-
trix of similar resolution, mounted on goggles worn by the pa-
tient. The LCD screen is illuminated with a pulsed near-infrared
(near-IR) light, projecting the images through the eye and onto
the retina. The infrared (IR) light is then received by photodi-
odes on an implanted chip, which is approximately 3 mm in
diameter and centered on the fovea. Each photodiode converts
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Fig. 1. Prosthetic system design. Images captured by the scene camera are pro-
cessed and broadcast through a pulsed IR LCD display. The IR light reflects
from goggles worn by the patient and is projected through the eye optics onto
the chip. Inductive coils provide power to the chip, which lies in the subretinal
space and interfaces primarily with inner nuclear layer cells. Each pixel in the
chip converts IR light into pulsed biphasic current using a common power line.

the IR signal into a proportional electric current using a common
pulsed biphasic power supply. Electrical stimulation by the chip
introduces visual information into diseased retinal tissue, while
any remaining peripheral vision responds normally to visible
light passing through the transparent goggles.

High resolution retinal stimulation can be achieved only if
the electrode-to-target-cell distances are small, on the order
of the electrode diameter [8], [15]. To achieve a proximity of
better than 50 , we developed 3-D subretinal implants that
induce retinal tissue to migrate very close to the stimulation
sites [16]. The implant is placed in the subretinal space so as
to predominantly stimulate bipolar cells, second-stage retinal
neurons that normally receive input from photoreceptors.
Although subretinal insertion is more challenging surgically
than epiretinal placement, by positioning the implant as early
as possible in the visual system, the software need only com-
pensate for the first missing synaptic layer. In addition, more
accurate computational models exist of visual processing in the
first synaptic layer than exist for the complex neural circuitry
of the second synaptic layer in the inner retina.

Because visual information is projected onto the implant
through the natural eye optics, the patient can shift gaze
naturally about the image. Although the scene video camera
captures 30 of the visual field and the IR LCD screen can
display the whole image, the chip covers only 10 on the
retina. A second, tracking video camera continually monitors
direction of gaze or, in other words, the position of the chip

in the field of view. Based on the chip’s location, the IR LCD
screen displays an image spanning only 10 , corresponding
to the chip’s instantaneous location. Cropping away the parts
of the image that would not fall on the implant reduces tissue
heating from IR light and saves computational resources.

The input to the signal processing software consists of video
images from the scene camera (gray-scale, 8-bit VGA with 640

480 pixels, corresponding to a 30 field) and the tracking
camera. The output of the software is an image of 213 213
pixels corresponding to a 10 field, which is transmitted by the
IR LCD display (also having VGA resolution). The IR image
projected onto the implant is sampled at the resolution of the
stimulating array and converted into pulsed electric current in
each pixel. The resolution of the retinal implant is lower than
that of the LCD screen: each pixel of the screen is projected onto
a 14 square, while pixels in the retinal implant are at least
20 in size. In comparison, foveal cones are normally spaced
about 3 apart. From each cone, the highest-resolution vi-
sual information travels in parallel through a single ON-type and
OFF-type “midget” bipolar cell. In addition, information travels
through other bipolar cells at lower resolution [17].

Light adaptation, an important function normally performed
in part by photoreceptors, is implemented by the automatic gain
of the scene camera. For each frame, the signal processing soft-
ware accomplishes five tasks.

1) Determine the location of the implant from the tracking
camera image.

2) Crop away visual data that would not fall upon the chip.
3) Distort the image appropriate to the geometry of the fovea.

In the normal foveal center, bipolar cells are pushed aside
to reduce loss of acuity from light scattering [Fig. 3(A)].
Thus, to accommodate the foveal anatomy, where there
are no bipolar cells, an algorithm performs a geometric
“stretching” of part of the image.

4) Implement visual processing of the first synapse. At the
level of the photoreceptor to bipolar cell synapse, hori-
zontal cells feed back to photoreceptor synaptic terminals.
The three cells are arranged in a synaptic triad that en-
hances spatial edges and temporal change. This transfor-
mation is closely approximated by a linear spatio-temporal
filter. Because this synaptic processing is lost when pho-
toreceptors are lost, this spatio-temporal filter is imple-
mented in software.

5) Convert the filtered visual information into an appropriate
pattern of electrical current. Although the implant stim-
ulates with short electrical pulses, bipolar cells normally
signal with a continuous modulation of membrane poten-
tial. Thus, the final step is to choose a pattern that will most
closely generate a continuous output from bipolar cells.

A critical requirement of this algorithm is computational ef-
ficiency. To provide a naturally appearing sequence of images,
the software must process 640 480 pixel images at a frame
rate of 25 Hz. To that end, parts of some tasks are carried out in
preprocessing algorithms, resulting in fast “lookup tables” refer-
enced during separate real-time algorithms. Previous reports on
retinal prostheses have not discussed whether necessary image
processing can be carried out in real-time. The present algorithm
and software implementation is efficient enough that it is ex-
pected to execute on a standard portable microcomputer (pocket
PC) in real-time at a video frame rate of 25 Hz.
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Fig. 2. Tracking algorithm. (A) Image captured by tracking camera. Three
reference spots indicate the position and orientation of the chip. The tracking
window (white rectangle) contains the reference spots with some additional pe-
ripheral space, such that, during fixational eye drift, the reference spots in the
next frame will be contained within the same window. (B) Extraction of torsion
angle, calculated as � � �.

II. SOFTWARE ALGORITHMS

A. Tracking

The tracking algorithm provides the instantaneous position
and torsion angle of the chip for later use by the image pro-
cessing software. As the center of gaze shifts, the chip moves
with the retina. As it does, the tracking camera captures light
from three reference points on the chip’s anterior surface. These
reference points might be mirrored pyramidal indentations that
reflect some IR light back through the pupil and into the gaze-
tracking system. We previously calculated that current video
cameras could track the chip’s location at 25 Hz and with a pre-
cision up to 10 , about half the width of a pixel on the chip
[8].

The input to the tracking algorithm is a stream of video
frames, from the tracking camera, containing images of the
three reference points [Fig. 2(A)]. The triangle formed by these
points can move translationally and torsionally. During gaze
fixation, eye position drifts at an average angular velocity of
0.5 per second, up to 2 per second [18]; in the 40 msec
between tracking camera frames, the amount of change in the
direction of gaze is limited by 0.1 . Therefore, given a 640
480 tracking camera image size covering 30 of visual field, the
maximal movement of the triangle between sequential frames
during eye fixation is less than three pixels. For each frame,
we can define a tracking window [Fig. 2(A)] that contains the
triangle plus three pixels of vertical and horizontal free space
around each vertex of the triangle. The size of the tracking
window depends on the area of the triangle and the patient’s
speed of eye scanning. In our simulation, it was 80 88
pixels, approximately of the movie frame size.
The tracking algorithm saves time in the subsequent frame
by searching for the shifted reference points only within this
window.

Large, gaze-shifting eye movements, known as saccades, can
reach hundreds of degrees per second, and will shift the implant
out of the reduced search window. When scanning a scene, sac-
cades normally occur at a frequency of less than three times per
second. Although saccades are under voluntary control, they
occur at a slightly higher frequency in cases of damage to the
central visual field [19]. If the three tracking points are not
found within the reduced window, the algorithm searches for
them within the whole tracking camera image, re-initializing the
tracking window to their new location.

Smooth pursuit eye movements used to track a moving object
can also reach speeds exceeding tens of degrees per second
[20]. However, the opportunity exists to track these smooth
eye movements predictively, shifting the tracking window an
amount equal to the current measured velocity.

We arbitrarily define the top reference spot’s coordinates as
the “location” of the implant. We calibrate the tracking
algorithm by defining and during the
first frame. Fig. 2(B) illustrates the computation of the torsional
angle as , where and are easily computed using the
coordinates of the triangles’ vertices.

For each input video frame, therefore, the tracking algorithm
performs two tasks. 1) It extracts the positions of the reference
points, reporting the coordinates of the top spot as the posi-
tion of the chip and calculating the torsional angle as
described.

2) It adjusts the tracking window so that the current triangle
lies in the center. In the context of gaze fixation, this guarantees
that the triangle in the next frame will also remain within the
tracking window.

B. Cropping

The scene video camera captures approximately 30 of visual
field, but the chip only covers 10 . To increase the efficiency of
image processing, the software crops away parts of the image
that would not fall on the chip. This also diminishes the amount
of light emitted by the IR LCD display, thereby decreasing its
power requirements and the heating of intraocular tissue. As the
chip moves within the eye, the tracking algorithm reports the
position and the rotational angle of the chip. The cropping algo-
rithm identifies a rectilinear window entirely containing the chip
and then sets to zero the values of all pixels outside this window.
Since the algorithm removes all but 10 of visual field from the
30 captured by the scene camera, subsequent processing algo-
rithms increase in efficiency by operating on one ninth as many
pixels.

C. Geometrical Transformation

In the normal retina, photoreceptors lying in the fovea spread
radially to contact bipolar cells outside the foveal center, or
foveola Fig. 3(A). Since there are no bipolar cells within the
foveola for the chip to stimulate, we deliver no IR light to that
region. The system must instead reroute the visual information
that would fall on the foveola to bipolar cells outside the foveola,
just as the photoreceptors reroute that information naturally. As
in a healthy retina, the information that would arrive near the
foveal center is delivered to bipolar cells close to the fovea’s
edge, while information that would arrive near the foveal pe-
riphery goes to bipolar cells further away.

For the geometrical transformation, we define a “coordinates
mapping function” F to approximate the natural spread of vi-
sual information. Assuming radial symmetry, the sole argument
of F is a point’s radial distance from the foveal center. If r is
the distance of a photoreceptor from the foveal center, then F(r)
is the distance between the foveal center and the bipolar cell
that would normally receive a synapse from that photoreceptor.
Fig. 3(B) gives an example of a coordinates mapping function.
Coordinates in the input frame that are located within the in-
terval are mapped to the interval , where
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Fig. 3. Geometric transformation. (A) Retinal morphology at the fovea. PR = photoreceptor layer; IN = inner nuclear layer; GC = ganglion cell layer. Photorecep-
tors in the foveola connect to bipolar cells spread to the side. (B) Coordinates mapping function. Based on the “old radius,” the distance of a pixel from the foveal
center, a pixel’s value is assigned to a larger “new radius” from that center. Thus, image data near the center of the fovea is rerouted farther away to appropriately
match the anatomical spreading. Far from the center, at radius R , the new radius is equal to the old radius; where the retina does not exhibit any spreading, the
mapping function does not reroute any information. (C) Geometric transformation applied to an image. The part of the image that would fall upon the foveola is
black because there are no bipolar cells for the chip to stimulate there. The visual information in the foveal area appears stretched, radially symmetrically, around
a black spot of radius R

is the radius of the fovea and is some radial distance sub-
stantially outside the fovea. In practice, pixels in the input frame
within of the origin are visually distorted in the output frame
around a black circle of radius [Fig. 3(C)].

When image geometrical transformations are required, a
common method is to map output image samples onto the
input image coordinate system. That is, instead of considering
each input pixel and finding the output pixel to which its value
should be routed, we consider each output pixel and calculate
which input-frame point will dictate its value. This technique
is termed “backward coordinate mapping” [21]. The mapped
coordinates in the input image coordinates system, calculated
with backwards coordinates mapping, may not have integer
coordinates. However, the actual input images from the scene
camera consist solely of pixels, which, by definition, do have
integer coordinates. To relate these actual input pixel values to
the values of the noninteger-coordinate input points we need,
we use interpolation. For an arbitrary pixel (j, k), let I(j, k) be
the intensity of that pixel—the pixel’s value. Using bilinear
interpolation in view of its low computational complexity, we
express the value of any noninteger-coordinate point as
a weighted average of the 4 pixels in the nearest 2 2 neigh-
borhood of the point (Fig. 4). For any , one can easily identify

, , , and , which are the four nearest points

Fig. 4. Bilinear interpolation. We can express the value of a noninteger-coordi-
nate point a as a weighted sum of the values of its integer-coordinate neighbors
a ,a ,a , anda . The pointa has a vertical distance v and a horizontal
distance u froma;a ’s horizontal distance is (1� u), etc. A pixel’s weight co-
efficient is inversely proportional to its distance from a, as shown by (1).

with integer coordinates, and the distances u and v indicated in
Fig. 4. For any , bilinear interpretation approximates that

(1)
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Thus, for a given noninteger coordinate point , each neigh-
boring pixel is assigned a weight coefficient inversely propor-
tional to its distance from . Here, is the weight
coefficient of ; is the weight coefficient of , etc.

We can now divide the geometric transformation task into two
algorithms. 1) A preprocessing algorithm computes the map-
ping of output pixels onto input pixels and uses bilinear inter-
polation to relate noninteger-coordinate input points to input
pixels. The preprocessing algorithm stores its results in a lookup
table wherein each entry relates to a specific output pixel. 2) A
real-time algorithm consults the lookup table to quickly calcu-
late the value of an output pixel based on the values of input
pixels that map to that output pixel.

For each pixel in the output frame, the preprocessing algo-
rithm works as follows.

1) Convert the output pixel’s Cartesian coordinates (x0; y0) to
polar coordinates (r0; �0), where the origin coordinate is
the instantaneous center of gaze determined by the tracking
algorithm. Map the output pixel’s coordinates to an input
pixel’s coordinates using the inverse mapping function:
(r; �) = (f�1(r0); �0) Then, convert the result to Cartesian
coordinates: (x; y) = (r cos �; r sin �).

2) Use bilinear interpolation (1) to express the value I(a) � I(x; y)
as a weighted sum of the values of its integer-coordinate
neighbors.

3) Store, in a 2-D lookup table, the set of input pixel coordinates
fa1;1; a1;2; a2;1; a2;2g and the corresponding set of weight coef-
ficients f(1�u)(1� v);u(1� v); (1�u)v;uvg within an entry
that is addressed with the output pixel coordinates (x0; y0).

The lookup table created by this preprocessing algorithm has
an entry for each output pixel. Each such entry contains a set of
pixel coordinates and a set of weight coefficients. These sets de-
scribe how, under a geometric transformation, four appropriate
input pixels will influence the value of the output pixel. This
preprocessing algorithm does not depend on the actual values
of input pixels, since all its operations are on pixel coordinates.
Nor does it depend on the direction of gaze, since the pixel co-
ordinates in the lookup table are all relative to the origin coor-
dinate, which is defined as the direction of gaze during a given
frame. Therefore, the algorithm may be entirely carried out prior
to receiving any input data from the camera.

For a given frame, the real-time algorithm evaluates the in-
tensity of each output pixel as follows.

1) Extract, from the output pixel’s entry in the lookup table,
the set of input pixel coordinates f(x; y)kjk = 1 . . .ng and
corresponding weight coefficients fwkjk = 1 . . .ng generated
in the preprocessing algorithm.

2) Calculate the output pixel’s value I(x0; y0) with the following
weighted sum:

I(x0; y0) =

n

k=1

wk � I(x; y)k:

Here, are the actual values, in the input frame, of
the pixels with the coordinates identified in the prepro-
cessing algorithm.

To generate a lookup table using the coordinates mapping
function shown in Fig. 3(B), the preprocessing algorithm ex-
ecutes 10 multiplications, 4 additions, and 3 root operations
for each output pixel. All of these operations can be consid-
ered as operations “saved” from having to be performed during
real-time execution. The real-time algorithm performs only four
multiplications and three additions per pixel. These different op-
erations require different amounts of processing power, but we
estimate that the preprocessing algorithm confers a gain in effi-
ciency of roughly 50%.

Importantly, the preprocessing algorithm provides a flexible
control of image processing. One might expect that individ-
uals with different foveal geometries might require different
coordinates mapping functions; new lookup tables reflecting
such variations can easily be generated with no change in the
implementation of the real-time algorithm. Moreover, the pre-
processing algorithm insures that the number of operations per
frame during real-time processing is based on the number of
output pixels rather than the number of input pixels.

It should be noted that an extrafoveal implant might not re-
quire image stretching and, thus, could avoid this step in image
processing. However, there are advantages for having central vi-
sion and, thus, it is worth exploring the issues related to the as-
sociated image processing. In addition, the approach described
here based on the preprocessed lookup table provides a general
platform for any geometrical transformations of the image in
real time for retinal mapping functions, not necessarily limited
to a radial foveal spread.

D. Spatial Filtering

A network of connections in the outer plexiform layer
performs the first step in the spatial filtering of natural im-
ages. In the normal mammalian retina, each horizontal cell
in the outer plexiform layer has reciprocal connections with
several photoreceptors. A photoreceptor excites a horizontal
cell, which then negatively feeds back to that photoreceptor
and neighboring photoreceptors, effectively decreasing their
signal [22]. A bipolar cell, thus, receives direct input of one
sign in the center region of its receptive field, but also feels
an opposite-sign influence, mediated by horizontal cells, from
surrounding photoreceptors. In this way bipolar cells develop
“center-surround” receptive fields [Fig. 5(A)], wherein light
at the center of the field has one effect, either excitatory or
inhibitory, and light farther away has the opposite effect. Since
a uniform pattern of light within a receptive field activates the
center and its antagonistic surround approximately equally,
yielding much less net bipolar cell stimulation, this center-sur-
round architecture provides a contrast-enhancing spatial filter,
sharpening an image and effectively decreasing the amount of
information sent to the brain. When photoreceptors are lost in
disease, horizontal cell-photoreceptor synapses are lost as well.
To effectively replace the outer nuclear layer, therefore, the
image processing system must also recreate the spatial filtering
produced by these synapses.

In general, a 2-D spatial filter can be defined by its discrete
point-spread function (PSF) [21]

(2)
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Fig. 5. Spatial filtering. (A) Model of the center-surround receptive field of an ON cell. The cell receives input such that light is excitatory (white) in the receptive
field center, inhibitory (dark) in the surround, and neutral (gray) outside the field. (B) A discrete, 7-element, 1-D DOG filter modeling an ON-center receptive
field. (C) An image that has undergone cropping and geometrical transformation. (D) The same image with a 2-D DOG filter applied; this particular filter enhances
contrast.

Here, are the filter coefficients, is the value of pixel ,
and and are the horizontal and vertical extents of the
filter.

The required extent of spatial filtering for bipolar cell stimula-
tion can be estimated from published physiological and anatom-
ical measurements. Within 5 of the macaque fovea, ganglion
cells with the smallest receptive fields, parvocellular (P) cells,
have receptive field centers ranging from 0.05 –0.15 of visual
field [23]. Foveal P cells receive excitatory synaptic input from
a single midget bipolar cell and, thus, these bipolar cells can be
assumed to have receptive field centers of the same size. These
receptive field centers are somewhat larger than expected from
anatomical data, given that these bipolar and ganglion cells re-
ceive direct input from a single cone. The larger size recep-
tive field is thought to arise from electrical coupling between
cones. Human P cell receptive fields are likely similar in size, as
macaque and human P cells have dendrites of similar size near
the fovea [24]. Using a conversion factor of 300 microns/de-
gree near the fovea, this range corresponds to 1–3 pixels of
14 each projected from an LCD display with VGA resolu-
tion. Receptive field surrounds for P cells range from 0.16 –1.2
in diameter [23], corresponding to 3–26 LCD pixels. This de-
fines the expected minimum extent for the spatial filter.

The center-surround filters that bipolar cells normally inherit
can be modeled as difference-of-Gaussian (DOG) functions
[25], combining a positive and a negative Gaussian shape
[Fig. 5(B)]. Whereas a single Gaussian filter would smooth an
image, a DOG filter sharpens edges and deemphasizes areas of
constant intensity Fig. 5(D).

To allow maximum flexibility in the software, each output
pixel is assigned its own DOG filter, even though in practice
the same DOG filter may be used by many pixels. We first
create a lookup table the size of an output frame. Each entry
corresponds to an output pixel and contains the discrete PSF
values of the pixel’s assigned DOG filter. During a given
frame, we could directly implement each output pixel’s filter

with the following algorithm.

1) Extract the set of filter coefficients fhn;mjn = 0; 1; . . .Nh �
1;m = 0; 1; . . .Mh�1g from the entry addressed by the output
pixel’s coordinates.

2) Perform spatial filtering by applying (2), where ak;l are the
input frame samples.

Such a direct implementation is computationally expensive,
requiring multiplications and
additions per output pixel.

Because a different PSF will be applied to each output pixel in
our system, common methods for increasing efficiency, such as
recursive filtering and Discrete Fourier Transform Domain fil-
tering, are not appropriate here. Data redundancy is commonly
exploited to increase computational efficiency in the compres-
sion of images [26]. Due to the high rate of frame acquisition by
the scene camera in our system, many input pixel values will not
change much between frames; exploiting this data redundancy
in the time domain, we can accelerate our image processing soft-
ware by updating output pixel intensities from their previous
values based on changes in input pixel intensities.

To use such an updating paradigm, we must first establish
the pixel values of an initial output frame. That is, before we
can implement a spatial filtering algorithm capitalizing on data
redundancy, we first establish an algorithm to process a single
image. To do so, we now combine the geometric transformation
step with the spatial filtering step to create a new lookup table
structure. We employ the following preprocessing algorithm.

1) Convolve the geometrical transformation lookup table with
the spatial filtering lookup table to form a new lookup table.
This is possible because both original tables have the same
structure—each entry corresponding to one output pixel—and
each entry of both tables contains input pixel coordinates and
weight coefficients contributing to the value of the entry’s output
pixel. The result of the convolution is another lookup table with
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one entry per output pixel, each entry now containing all the
input pixel coordinates and weight coefficients from both the
corresponding entries in the original two tables.

2) Generate a new lookup table that is the inverse of the combined
table. Each entry in the filter created in step 1) corresponded to an
output pixel (x0; y0) containing the set of input pixel coordinates
and weight coefficients contributing to its output value I(x0; y0).
Here, we reorganize that information so that each entry in the new
table corresponds to an input pixel (x; y) containing the set of
output pixels that (x; y) contributes its value to, and the corre-
sponding weight coefficients.

For a given frame, we can now calculate the spatially filtered
values of each output pixel with the following real-time algo-
rithm (which we name ISR, for “inverse structure real-time”
algorithm):

1) Initialize the value of each output pixel to zero: I(x0; y0) = 0
2) Each entry in the lookup table created in the preprocessing algo-

rithm corresponds to an input pixel (x; y). Extract, from one entry,
the set of output pixel coordinates f(x0; y0)kjk = 1 . . .ng and the
set of weight coefficients fwkjk = 1 . . .ng. For each output pixel
(x0; y0)k in the extracted set, add the corresponding weight coef-
ficient multiplied by the value of the input pixel (x; y):
For k = 1 to n, let I(x0; y0)k = I(x0; y0)k + wkI(x; y).
In this step, we distribute the influence of one input pixel to the
appropriate output pixels.

3) Repeat step 2) for each entry in the lookup table, distributing the
influence of each input pixel.

After the ISR algorithm implements both the geometric trans-
formation and the spatial filtering to calculate output pixels for
a given frame, data redundancy is used to calculate pixel values
in subsequent frames. As stated, output pixels are updated based
on changes in input pixels. Moreover, output pixels will only be
updated by increments or decrements that exceed a predefined
threshold .

For the data redundancy real-time (DRR) algorithm, the ISR
lookup table is first modified so that each entry’s set of weight
coordinates is sorted in descending order: the set becomes

, where .
The first output frame is computed in one iteration of the real-

time algorithm ISR described above. From the second frame on,
DRR performs the following for each input pixel in the
th input frame:

1) Define �i
(x;y) = I(x; y)i� I(x; y)i�1, the change in input pixel

(x; y)’s value between frame i � 1 and frame i.
2) Extract, from the entry addressed by (x; y) in the inverse-logic

lookup table, the descending-order set of weight coefficients
fwkjk = 1 . . .ng and their corresponding output pixel coordi-
nates f(x0; y0)kjk = 1 . . .ng. Define wj and pj , initializing their
values respectively to w1 and (x0; y0)1. If jwj � �i

(x;y)j > �
then proceed to step 3). Otherwise start step 1) again with the
next pixel in the input frame.

3) Add wj ��i
(x;y) to the value of pixel pj . Note that wj ��i

(x;y)

can be positive or negative.
4) Assign to wj and pj the next weight coefficient and the next

pixel indices from the sets fwkjk = 1 . . .ng and f(x0; y0)kjk =
1 . . .ng respectively. If jwj � �i

(x;y)j > � then return to step
3). Otherwise, start step 1) again with the next pixel in the input
frame.

The real-time algorithm DRR computes an output frame by
updating the previous output frame. Each input pixel influences

the same set of output pixels in this algorithm as it did in ISR,
and with the same weights. In DRR, however, it is a variation in
an input pixel’s intensity that contributes to variations in output
pixels’ intensities, rather than an absolute value contributing to
absolute values as in ISR. Another important difference is that,
in DRR, output pixel increments or decrements less than are
considered to be negligible and ignored. An input pixel that
would influence n output pixels in ISR might influence only r,
some number less than n, during a certain frame of DRR. Say
that, for input pixel

Here, the values of are updated
but ’s value is not. Furthermore, the algorithm does not
bother checking later output pixels to
test whether their increments would be greater than . Because
the weight coefficients are arranged in descending order, the
fact that means that
for . Thus, none of the output pixels

would be changed; after , the
input pixel will not contribute to any more output pixels
and the algorithm can start over with the next input pixel. In this
way we save multiplication and addition operations per
pixel, greatly accelerating the real-time processing.

The more that an input pixel changes its value between
frames, the higher its and, thus, it will contribute its value
to more output pixels. Note also that if an input pixel does not
change its intensity between two sequential frames, its
is 0 and the algorithm moves to the next input pixel without
performing any further calculations.

Using a spatial filter whose vertical and horizontal extents
were both 7 pixels, direct computational implementation per-
formed 53 multiplications and 39 addition steps per pixel to
apply a geometric stretch and spatial filter in a video of a natural
scene. DRR, operating on the same video with a threshold set
at gray levels, performed on average only 12 multipli-
cations and 12 additions per pixel. Thus, in this particular case,
the use of DRR eliminated 41 multiplications and 27 additions
per pixel per frame, which we estimate to represent a savings of
roughly 75%. In practice, the increase in efficiency conferred by
the use of data redundancy will depend on the chosen threshold
and the statistics of the visual scene.

A compromise exists in choosing the value of the threshold
, between accuracy of the image representation and processing

speed. With a higher , the contribution of more input pixels
are ignored; therefore, the software performs fewer calculations
per frame but output images deviate more from the images that
would be calculated from ISR. Moreover, since the data redun-
dancy algorithm is a recursive process, its error is cumulative. A
quantification of this tradeoff is discussed in the Results section
below.

E. Temporal Filtering

Fluctuations in light intensity cause continuous fluctuations
of the bipolar cell membrane potential [27]. At a constant av-
erage luminance, bipolar cell responses are captured well by a
linear model consisting of the light intensity convolved with a
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temporal filter [28], [29]. In this model, each photon leads to a
change of membrane potential, the impulse response function of
cell, which peaks at tens of milliseconds and can last for several
hundred milliseconds. This temporal filter is typically biphasic,
with the consequence that a step in light intensity causes a tran-
sient change in membrane potential. This property emphasizes
variations in intensity over steady illumination, although dif-
ferent bipolar cell types vary, ranging from more transient, em-
phasizing change, to more sustained, emphasizing steady lumi-
nance [25], [30].

The temporal filtering properties of a bipolar cell are in part
inherited from photoreceptors [28], in part due to neurotrans-
mitter receptor properties of the photoreceptor-bipolar cell
synapse [31], and in part from intrinsic membrane dynamics of
the bipolar cell [32]. To replace lost filtering properties of the
first cell and synapse in the visual pathway, temporal filtering
is artificially reintroduced in software.

For a signal defined by its sequence of samples , a dis-
crete temporal filter is applied with the equation

(3)

The set of temporal filter coefficients is ,
where is the number of samples included in the filter
and I indicates the current sample.

We implement the map of temporal filters as a lookup table
with each entry containing an output pixel’s temporal filter co-
efficients. Once again, for the sake of flexibility, we allow each
pixel to have its own filter, although in practice many pixels may
share the same filter. We carry out the filter for each output pixel
by a direct implementation of (3), where
are the values of the pixel during the last frames and

is the most recent. More specifically, the pixel value , in
this case, is the result of the spatial filtering algorithm during
frame i; the inputs to the temporal filter have all been cropped,
geometrically stretched, and spatially filtered. Note also that the
last output frames of the spatial filtering algorithm must
constantly be held in storage for use by the temporal filter.

As a DOG spatial filter emphasizes pixels whose values
differ from values of neighboring pixels, the temporal filter we
use in our software emphasizes pixels whose values change
in time. We show an example of a temporal filter’s effect in
Fig. 6, using a simple, 3-member set of filter coefficients:

.

III. ELECTRICAL STIMULUS PATTERN

Normal bipolar cells signal visual information by continu-
ously varying their membrane potential. However, in the case
of the electronic implant, visual information is communicated
to bipolar cells through a sequence of individual biphasic pulses
lasting about 0.5 ms each. A goal of this design is to closely
match the expected pattern of signaling to the nervous system.
Thus, we considered the most appropriate pattern of stimulation
to achieve approximately continuous signaling from bipolar
cells given the biophysical mechanisms of neurotransmitter
synaptic release.

Extracellular pulses will very briefly depolarize the bipolar
cell membrane, and the potential will return nearly to rest at

Fig. 6. Temporal filtering. After video images have been cropped, geometri-
cally transformed, and spatially filtered, a temporal filter was applied. The frame
shown here is the resulting output after the temporal filter f�(1=2); 1;�(1=2)g
is applied to a sequence of three sequential images, one which is shown in
Fig. 5(D). Light pixels have changed intensity within the previous three frames.

the end of a stimulation pulse. However, bipolar cell synaptic
release has ultrafast kinetics in response to changes in mem-
brane potential; depolarizing pulses as brief as 0.5 ms can pro-
duce measurable synaptic release, transmitting signals to the
next stage of visual processing in the retina. These fast kinetics
are limited by the opening of voltage dependent chan-
nels, which have a characteristic time constant of 1.5 ms [33].

In addition to direct membrane depolarization, extracellular
stimulation will have a second effect on the membrane potential,
mediated through the resulting ionic currents. Though bipolar
cells do not produce action potentials, they do have fast, voltage-
dependent channels [34]. In response to the 0.5 ms pulses,
it is expected that these channels, plus voltage-dependent
channels, will open, producing a small ionic current which will
tend to depolarize the membrane further. This ionic current will
have a more lasting effect, being filtered by the membrane time
constant of tens of ms [32]. Each pulse will, thus, produce a
small signal, acting through ion channels, with kinetics on a mil-
lisecond time scale. The pulse amplitude is set by the amount of
light from each pixel for each video frame, but the pulse fre-
quency can be set to be greater than the video frame rate, up to
1 kHz. If generating a continuously varying membrane poten-
tial were the only goal, a stimulus rate approaching 1 kHz would
likely be preferable. However, another important constraint ex-
ists: to maintain the level of average power below a safe max-
imum limit to reduce tissue heating. Thus, an increase in stim-
ulus frequency should be accompanied by a decrease in peak
power. As a consequence, a tradeoff exists between the con-
tinuous encoding of a signal and the signal’s amplitude. Low
frequencies would allow higher stimulus amplitude, but would
produce a less continuously varying potential. Higher frequen-
cies would allow a more continuous signal at lower amplitude.
Perceptually, it is expected that this will translate to a tradeoff
between temporal bandwidth and contrast sensitivity. Thus, to
optimize the pulse duration and frequency, simple psychophys-
ical tests can be performed, including measuring contrast sen-
sitivity to flashes and drifting gratings at different temporal fre-
quencies. It is also possible that the system may adapt its pulse
duration and frequency based on the statistics of the visual input.
For a low contrast scene the pulse frequency could be lowered,
sacrificing temporal bandwidth in favor of contrast sensitivity,
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Fig. 7. Software performances measured on our computer and operating on a stored video of a natural scene. (A) Measured maximum frame rates. Using direct
implementation of spatial filtering, the software performed image processing at 41 frames per second. When we used DRR instead, the frame rate increased and
depended on the threshold � (units of gray levels) as shown. (B) Error accumulation with DRR. Using L2 metric [defined by (4)], normalized by the number of
pixels in the image, to quantify error, we find that the error accumulates with time and higher thresholds give higher errors. (C) Strategy for reducing error. A use
of ISR instead of DRR resets the error to zero; by using ISR once every 25 frames and DRR the rest of the time, we maintain a lower error than in (B) with little
sacrifice in efficiency. (D) An image with accumulated error. The input frame is the same as that from Fig. 5(D), and both this image and the image in Fig. 5(d)
have been cropped, geometrically transformed, and spatially filtered. However, the spatial filter in Fig. 5(d) was implemented directly, whereas the spatial filter of
this frame (and the frames preceding it in stored video) was implemented under the DRR algorithm. The magnitude of this image’s error is L = 0:03, quantified
(4) by comparison with the errorless spatially filtered image in Fig. 5(D).

whereas for a high contrast scene the pulse frequency could be
increased. In fact, contrast adaptation with these general prop-
erties is known to occur in the inner retina and higher visual
system [28].

Further modifications may provide even more sophisticated
temporal patterns of stimulation. To decrease crosstalk between
neighboring pixels, the LCD could deliver each output image
in a series of interlaced partial frames—this would require ad-
ditional (but very simple) processing from the controller of the
LCD display. Since the IR flash and the power supply of the
retinal implant are controlled independently of the LCD screen,
no additional image processing power will be required. Pulse
duration and repetition rate will be additional adjustable param-
eters for a patient dialogue-based optimization.

IV. RESULTS AND DISCUSSION

We implemented the preprocessing algorithms in Matlab,
generating lookup tables in ASCII format; the real-time algo-
rithms were programmed in C. Our software was executed on
a computer with an Intel 2.6GHz processor, 512 MB of RAM,
under Windows XP operating system. To measure the efficiency
of the overall software, we allowed the real-time algorithms to
operate at their maximum speed on a stored video—in other
words, we timed how long it took various algorithms to process
an already-acquired set of consecutive images. (Note that
here the only factor limiting the speed of output is algorithm
efficiency, whereas when the software is used in an actual pros-
thesis, its output cannot be generated faster than its 25-Hz input
is provided.) The input to the tracking algorithm was a video
of three red spots from laser pointers, arranged in a triangle
on a dark background to simulate input from reference spots

on the implant; this triangle could translate and rotate in time.
The input to the cropping, geometrical transformation, spatial
filtering, and temporal filtering algorithm was a video of a
natural scene that included buildings, trees and moving people.
The video was recorded with a hand-held camera, and was
similar to what a head-mounted camera would record. When
we used a direct computational implementation of filtering, we
found that the software could sustain a refresh rate of 41 frames
per second (fps) with the tracking and all the image-processing
tasks running serially. When we instead used DRR, capitalizing
on data redundancy to speed up the stretching and filtering,
we achieved higher frame rates; higher DRR thresholds led
monotonically to higher frame rates [Fig. 7(A)].

As discussed in the Spatial Filtering section, the use of thresh-
olding introduces an error into the output image [Fig. 7(D)]. Vi-
sual information is lost when the algorithm discards the change
in an output pixel’s value as unimportantly low. Moreover, the
error is cumulative in time: under DRR, an output pixel’s value
may stray increasingly from the value it would have with loss-
less calculations under ISR. We can quantify an output frame’s
accumulated error with the distance metric

(4)

where is the value of a pixel k calculated using ISR, is k’s
value calculated using DRR, and N is the number of pixels in an
output frame. Fig. 7(B) shows how error increases with time and
how higher thresholds in DRR give faster error accumulation.
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Recall that in ISR, there is no error because no data is dis-
carded or ignored; the absolute input pixel intensities determine
the absolute output pixel intensities. In DRR, as we adjust output
pixel intensities based on changes in input pixel intensities, we
must establish the absolute intensities of the first set of output
pixels using ISR. To lessen the error accumulation in DRR,
the software can periodically “start over”, using DRR for most
frames but occasionally resetting the error to zero by calculating
an output frame with ISR. Fig. 7(C) illustrates how this process
zeroes the cumulative error every 25 frames. Here, the frame
rate was nearly unchanged from that seen using DRR alone.

Our exploitation of data redundancy allowed us to achieve
a refresh rate higher than 50 fps on our system. Further tests
will investigate the performance of the software on real portable
microcomputers. Rewriting the real-time algorithm in assembly
code optimized for the portable microprocessor may further in-
crease to the speed of processing. We believe that our software,
run on a Pocket PC, will indeed be able to provide real-time
image processing, at the video rate of 25 Hz, for our system.

One might suggest that, if the algorithms using lookup tables
are times as efficient as those using direct implementation,
the lookup-table strategy will become unnecessary once pocket
PCs’ processing power increases by a factor of . However, it
is always prudent for the image processing algorithms to be as
efficient as possible: saved computational resources can be de-
voted to expanding the extents of spatial and temporal filters, in-
creasing the number of transmitted pixels, increasing bit depth,
or lowering the DRR threshold .

In an effort to make the software computationally efficient,
some aspects of the algorithms have unexpectedly converged
with biological solutions in the retina. Because bipolar cells
are offset from the foveal center, we likewise shifted visual
data away from the fovea through a geometric transformation.
This mapping was implemented in software by a fixed lookup
table and, thus, could be computed prior to the real-time algo-
rithm. This fixed mapping is analogous to the fixed photore-
ceptor-bipolar cell synaptic connections, which normally ac-
complish the mapping between the two coordinate systems. In
addition, a biological parallel exists for the DRR algorithm,
which measures the change in light intensity between frames
within a pixel’s spatial receptive field, and then applies a tem-
poral filter to a pixel only if the change exceeds a threshold.
This process is very similar to the operation performed by the
retina as a whole. Because the bipolar cell temporal filter em-
phasizes change, a retinal ganglion cell receives a change in
synaptic input when the light intensity changes within its recep-
tive field. The ganglion cell then signals with an action poten-
tial only when the temporally filtered light intensity exceeds a
threshold [35]. The similar strategies have common benefit be-
cause both electronic and biological systems face the problem
of encoding information through channels of limited dynamic
range. In natural visual scenes, changes in light intensity are
typically much less common than periods of steady light inten-
sity. Consequently, operations that emphasize temporal change
tend to convey visual information more efficiently [36].

The software allows the user to assign separate spatial and
temporal filters to every pixel. These parameters include the
width and height of the positive and negative Gaussians, and
each coefficient of the temporal filter. One strategy for setting

these parameters for different regions is based on known phys-
iological properties. For example, bipolar cell dendritic size in-
creases at greater distances from the fovea [37], indicating larger
receptive fields requiring spatial filtering across a wider extent.
Another reason to allow different regions to contain different
filters is that the cell-to-stimulating electrode distances may not
be constant over the whole chip. A greater distance would re-
quire stronger electrical stimulation to yield a given response
in the cell. Varying the amplitude of the filter in different re-
gions could potentially compensate for nonuniformities in elec-
trode-cell distances.

It is important to note that applying different filters to visual
information directed to different regions on the implant requires
tracking of the implant on that same scale. A more advanced
approach could vary filters for individual pixels to address in-
dividual bipolar cell types. For example, an increase in light
intensity causes ON-type bipolar cells to depolarize, whereas
OFF-type bipolar cells hyperpolarize. Applying different filters
to the different cell types would require that one electrode will
affect primarily one cell, which might be possible with 10
electrodes [38], but the feasibility of such a highly resolved
stimulation in patients remains to be tested experimentally. The
recovery of chromatic sensitivity would similarly require an im-
plant that could address different chromate filters to individual
bipolar cells that normally have different chromatic sensitivity.
In addition, psychophysical measurements would need to be
performed to discover whether an individual bipolar cell trans-
mitted information to the parvocellular pathway, which encodes
color information, or the magnocellular pathway, which does
not.

A critical component of this system will be the adaptive prop-
erties of the nervous system. It is conceivable that upon pro-
viding highly resolved chronic electrical stimulation, neurons in
the partially degenerated retina will migrate and rewire to adapt
and maximally utilize the provided stimulation, but the extent
to which this will occur is unknown [13]. However, retinal plas-
ticity in the form of degenerative remodeling or miswiring might
also serve as an obstacle to the artificial introduction of visual
information [12].

Similarly, another important component of the system will be
the adaptability of the software system. To optimize the commu-
nication of visual information through the implant, a number of
psychophysical tests could be developed to tune the spatio-tem-
poral filters in dialogue with the patient. A direct and quantita-
tive approach to optimize the filters would involve perception of
patterns of different spatial and temporal characteristics. Failure
to detect or discriminate lines of low or high spatial or temporal
frequencies could be directly compensated by a change in the
frequency spectrum of the spatial or temporal filters. The soft-
ware described here gives a great deal of flexibility in image
processing and should perform, in clinical trials, at the compu-
tational efficiency necessary to allow such investigations.
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