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Abstract
In this paper, we developed a new deformable model, the charged fluid model (CFM), that uses
the simulation of a charged fluid to segment anatomic structures in magnetic resonance (MR)
images of the brain. Conceptually, the charged fluid behaves like a liquid such that it flows
through and around different obstacles. The simulation evolves in two steps governed by
Poisson’s equation. The first step distributes the elements of the charged fluid within the
propagating interface until an electrostatic equilibrium is achieved. The second step advances the
propagating front of the charged fluid such that it deforms into a new shape in response to the
image gradient. This approach required no prior knowledge of anatomic structures, required the
use of only one parameter, and provided subpixel precision in the region of interest. We
demonstrated the performance of this new algorithm in the segmentation of anatomic structures on
simulated and real brain MR images of different subjects. The CFM was compared to the level-
set-based methods [Caselles et al. (1993) and Malladi et al. (1995)] in segmenting difficult objects
in a variety of brain MR images. The experimental results in different types of MR images
indicate that the CFM algorithm achieves good segmentation results and is of potential value in
brain image processing applications.

Index Terms
Charged fluid model (CFM); deformable models; electrostatic equilibrium; fast Fourier transform
(FFT); finite-size particles (FSP); magnetic resonance imaging (MRI); Poisson’s equation;
segmentation
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I. Introduction
Image segmentation is the partition of an image into several regions of interest such that the
contents of each region have similar characteristics. The segmentation of anatomic
structures in the brain plays a crucial role in neuroimaging analyses. The complexity of
human brain structure mandates the use of computerized approaches derived from computer
vision, image analysis, and applied mathematics fields to extract brain data. Successful
numerical algorithms in segmenting anatomic structures in neuroimages can help
researchers, physicians, and neurosurgeons to investigate and diagnose the structure and
function of the brain in both health and disease. However, extracting the ventricle, the brain,
and brain tumors in magnetic resonance (MR) images is often highly challenging due to the
convoluted shape, blurred boundaries, inhomogeneous intensity distribution, background
noise, and low intensity contrast between adjacent brain tissues.

This has motivated the need for segmentation techniques that are robust in applications
involving a broad range of anatomic structure, disease, and imaging type [3], [4]. A number
of segmentation methods have been proposed to extract specific brain structures, including
threshold-, region-, and statistics-based methods, deformable models, atlas-guided
techniques, and knowledge-based approaches [3]–[5]. One of the most popular and
successful approaches has been the deformable model due to its ability to accurately recover
the shape of biological structures in many segmentation applications [6], [7].

Deformable models involve the formulation of a propagating interface, which is a closed
curve in 2-D or a closed surface in 3-D, that is moving under a speed function determined by
local, global, and independent properties [8]. Given the initial position of a propagating
interface and the corresponding speed function, deformable models track the evolution of
the interface during the segmentation process. Existing deformable models can be divided
into two broad categories: parametric and geometric. Parametric deformable models,
originating from the active contour model introduced by Kass et al. [9], explicitly represent
the interface as parameterized contours in a Lagrangian framework. Active contour models
use an energy-minimizing spline that is guided by internal and external energies in such a
way that the spline is deformed by geometric shape forces and influenced by image forces.
By optimizing the weights used in the internal energy and choosing the proper image forces
(e.g., lines or edges), one can use active contour models to evolve the curve toward the
boundary of objects being segmented. Subsequently, Cohen and Cohen [10] proposed a 3-D
deformable model that uses finite-element methods to deform a balloon-like surface. Xu and
Prince [11] introduced an external force called gradient vector flow (GVF) to guide the
active contour into boundary concavities and achieve a larger capture range. McInerney and
Terzopoulos [12] proposed a new deformable model called topology adaptive snakes (T-
snakes) to address the topology limitations of standard snakes by introducing an affine cell
image decomposition reparameterization mechanism to notably improve automation.

With the introduction of the level set numerical algorithm developed by Osher and Sethian
[13], geometric deformable models enable automatic topological changes without using
special tracking procedures. Level set methods use an Eulerian approach to implicitly model
the propagating interface using a level set function φ, whose zero-level set always
corresponds to the position of the interface [8]. The evolution of this propagating interface is
governed by a partial differential equation in one higher dimension. The level set function
can be constructed with high accuracy in space and time. The position of the zero-level set is
evolved using a speed function that consists of a constant term and a curvature deformation
in its normal direction [13]. This speed function can then be incorporated with image-based
stopping terms (e.g., image gradient forces) for segmentation purposes. Caselles et al. [1]
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and Malladi et al. [2] proposed geometric deformable contours with an image gradient
stopping force (GDCIG) that satisfied the evolution

(1)

where V0and ε are constant weights, k is the level set curvature, ∇ is the gradient operator,
and g(I) is the stopping force based upon the image gradient given as

where Gσ is a Gaussian filter with standard deviation σ, I(x, y) is a given 2-D image, and p =
1 or 2. In the previous equation, * represents convolution and | · |is the modulus of the
smoothed image gradients.

Kichenassamy et al. [14] and Yezzi et al. [15] added a doublet term ∇g · ∇φ to (1) to
efficiently attract the evolving contour to the desired feature. Siddiqi et al. [16] subsequently
modified the speed function by adding a term based upon the gradient flow derived from a
weighted area energy functional so that the contour could more flexibly evolve toward the
desired edges. Recently, Xu et al. [17] proposed a level-set-based segmentation method that
uses an adaptive triangular mesh to achieve higher resolution at the interface. Gout et al.
[18] proposed a segmentation approach that combines the idea of the geodesic active
contour and interpolation of points in the Osher–Sethian level set framework to find a
boundary contour from a finite set of given points.

Traditional level-set-based deformable methods require the contour to be symmetrically
initialized somewhere near the center with respect to the boundary of interest [7], [8].
Therefore, it is not easy to successfully segment irregularly shaped structures in medical
images. For example, Fig. 1 illustrates that it is difficult to choose an appropriate stopping
factor to achieve satisfactory results based upon the image gradient force in (1). Moreover,
the stopping criteria in many deformable models (e.g., [14], [16], [17], and [19]) are often
determined empirically or are poorly defined. As a consequence, it is difficult to extend and
modify these algorithms for practical brain image segmentation problems.

In this paper, we propose a new deformable model, the charged fluid model (CFM), that
uses a system of charged elements on a propagating interface to guide the evolution of the
contour for brain image segmentation. This electrostatic charged system is governed by
Poisson’s equation that has only one driving force resulting from the repulsion between fluid
elements. In our approach, the electric force is numerically calculated using the finite-size
particle (FSP) method implemented via the fast Fourier transform (FFT) algorithm. Two
alternate procedures are developed to guide the evolution of the CFM in such a way that the
charged fluid behaves like a liquid flowing through and around different obstacles. Our
approach can automatically handle topological changes at the interface, in response to the
geometry of objects, and provide subpixel precision for the area and length of the segmented
region.

The remainder of this paper is organized as follows. In Section II, we describe the theory
and system of the CFM algorithm embedded in an electrostatic model governed by
Poisson’s equation. In Section III, we describe the numerical techniques used to perform the
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CFM, including the FSP technique implemented via the FFT algorithm for efficient electric
potential computation. In Section IV, we show the evaluation of our approach on simulated,
T1-weighted, T2-weighted and proton density (PD)-weighted brain MR images, and
compare the segmentation results to the GDCIG method. Finally, in Section V, we discuss
the intrinsic properties and essential characteristics of the CFM algorithm and summarize
the contributions of this paper.

II. Charged Fluid Model
Biomedical researchers have used physics-based particle systems to investigate and analyze
biological models for many years. For example, Wang et al. [20], [21] proposed an
electrical- field-based method to unravel and trace the convoluted colon by distributing
charges along the central colon path. In their model, curved cross sections were defined by
the electrical force lines. Now, suppose that a number of charged particles with like sign are
initialized inside a region of interest (ROI) in an image for segmentation. The particles will
keep advancing outward due to the repelling electric force until they encounter a balancing
inward force related to features in the image (e.g., the gradient). However, it is complicated
to organize and guide the particles toward the boundary of interest such that the final
contour corresponding to the particle positions can accurately and correctly represent the
ROI. This will become quite obvious when dealing with noisy images.

It is essential to introduce new approaches with reasonable computation complexity to
perform image segmentation using a system of charged particles. Suppose that the charged
particles (indicated by the solid dots in Fig. 2) are confined inside an isolated conductor that
models a closed propagating interface as a curve (in 2-D) or a surface (in 3-D), such that the
particles can only move within the interface until an electrostatic equilibrium is achieved.
Following the equilibrium properties (see Table I), the particles accumulate where there is a
locally greater curvature in the equilibrium state as shown in Fig. 2. With these new
concepts, we will develop our electrostatic deformable model, which we refer to as a
charged fluid system.

Each fluid element (the large circles in Fig. 2) has its own charge as if it were calculated by
interpolating the charges of the covered particles (the solid dots in Fig. 2). At equilibrium,
the electric forces (Fele in Fig. 2) are perpendicular to the contour and their magnitudes are
proportional to the charges at the corresponding positions. The charged fluid behaves like a
liquid such that it flows through and around obstacles as well as deforms in response to
external forces Fext (e.g., the image gradient) as illustrated in Fig. 2. In Sections II-A–II-C,
we describe the theory behind the charged fluid and the evolution procedures that constitute
the foundations of our segmentation algorithm, the CFM. We use the notation (x, y) to
represent Cartesian coordinates in the spatial domain, (m, n) to represent discrete
coordinates in the spatial domain, and (u, v) to represent the corresponding discrete
coordinates in the Fourier domain throughout the paper.

A. Charge Density
Let us first describe the behavior of a single fluid element with charge q. Suppose that a
fluid element i with zero momentum is advanced a distance d along the direction of an
electric force Fi whenever we advance it. Then, based upon Newton’s lawof motion, the
distance d is only a function of the electric force Fi, the mass m, and the time interval Δt. In
addition, the trivial ratio of q to m can be set to 1.0 and the distance d can be expressed as

Chang et al. Page 4

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2011 October 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(2)

where Ei is the electric field corresponding to Fi.

Now, assume the fluid element is advanced a distance (dx, dy) to position (xi, yi), as
illustrated in Fig. 3. For computational convenience and efficiency, we approximate the
charge density by summing the charges on grids. We do this by interpolating the charge in
Fig. 3(a) to the nearest grid point (NGP) and its 4-neighbors using the subtracted dipole
scheme (SUDS) [22] associated with the FSP technique [23], [24], which is described in
Section III-A.

B. Evolution
Once the charge distribution of an electrostatic system is known, the electric potential Φ can
be calculated through Poisson’s equation

(3)

where ρ(r) is the charge density. The corresponding electric field E can then be computed in
terms of the scalar potential Φ

(4)

Note that the magnitude of E is proportional to 1/r in 2-D and 1/r2 in 3-D. Therefore, the
motion of each fluid element in the electrostatic system for each time step can be updated
using (2)–(4). In order to well organize each individual fluid element on the propagating
interface of a deformable model, we develop a two-stage evolution algorithm for image
segmentation. The first procedure, charge distribution, enables the CFM to flow within the
propagating interface until a specified electrostatic equilibrium is achieved. The second
procedure, front deformation, deforms the propagating front into a new shape in response to
the electric potential in equilibrium and the image potential, which is related to the image
gradient. Those two procedures are repeated until the propagating front resides on the
boundary of objects being segmented.

1) Charge Distribution—To advance fluid elements with given charges, we first have to
solve the electric potential using (3). In reality, the electrostatic potential varies in response
to the positions of elements if the total charge of the system is conservative. This will not be
a problem when using a single charged fluid to perform curve evolution since fluid elements
keep advancing outward due to the repelling force. However, when using multiple charged
fluids, the one having the stronger electric potential dominates the behavior of the overall
system. This can dramatically influence the contours of other charged fluids by, for
example, repelling the fluid elements in the weaker charged fluids, which will prevent them
from reaching the desired object boundary.

One way to solve this problem is to normalize the electric potential for each charged fluid

through Poisson’s equation. Therefore, we define the normalized electric potential  for
the charged fluid j as
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where Φ0 is an arbitrary positive constant and Φ̄jis the mean electric potential in the charged
fluid j. Note that Φ̄j = Φ0 at the beginning of the evolution since there is no potential at all.
The corresponding normalized charge density is defined as

(5)

Therefore, the overall system is governed by the modified Poisson’s equation

(6)

where Φ̂ele is the normalized electric potential and ρ̂ is the normalized charge density of the
overall system at each time step. The numerical solution of Poisson’s equation in (6) can be
rapidly computed using the FSP method implemented via the FFT algorithm, which is
described in Section III-B. During this procedure, the electric field Eeleis directly computed
using the normalized electric potential

(7)

Once the electric potential is obtained, the electric field on each fluid element is numerically
computed using the central difference approximation of (7).

In order not to cross over possible edges of interest, we further restrict the motion of the
fluid element having the maximum electric field in the system such that it is advanced the
half grid spacing (h/2) in the electric field direction. The time interval for each fluid element
can then be obtained from (2)

(8)

where Emax is the magnitude of the maximum electric field on the propagating interface of
the system for each iteration and Em and En are the components of Emax in the m- and n-
axes, respectively. One advantage of this approach is that there is no explicit time interval
setting for advancing fluid elements. There is no need to adjust the time interval for specific
segmentation problems. It can also reduce the number of parameters in the CFM algorithm.

Substituting (8) into (2), the distances  and  for each fluid element i can be easily
obtained
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(9)

where  and  are the electric field components of element i in the m- and n-axes,
respectively. Equation (9) implies that varied time intervals related to the maximum electric
field in the system are implicitly used to compute the distance that each fluid element
advances. Once the distances are obtained, we can use the SUDS technique described in
Section III-A to interpolate the charge to the five discrete neighbors as shown in Fig. 3.

Electrostatic equilibrium is defined as a state of zero net flow of electric charge (see Table
I). In order for the simulation to converge, we define the condition of electrostatic
equilibrium such that a small amount of charge flow is still permitted. This is the case when
the following inequality is satisfied:

(10)

where Qtotal is the total charge of the overall system for each iteration, ΔQtotal is the net
flowing charge in total, and γ > 0 determines the degree of electrostatic equilibrium. In our
experience, the selection of 0.01 ≤ γ ≤ 0.1 is suggested because a smaller value of γ can
retard the convergence speed without significantly improving the quality of equilibrium, and
it is possible for the procedure to oscillate if a very tiny value of γ is used. Note that the
system conserves charge throughout the charge distribution procedure, i.e., Qtotal is the same
for each iteration during this process.

At the beginning of this procedure, a uniform charge distribution over the fluid elements is
placed on the 2–pixel-wide propagating interface that is obtained in the other procedure, as
illustrated in Fig. 4(a). The fluid elements are repeatedly advanced inside the charged fluid
until the overall system converges to an equilibrium state that satisfies (10). Note that if any
of the 4-neighbors is not within the propagating interface, its charge is interpolated to other
neighboring positions based upon the corresponding weights (see Fig. 3).

One of the interesting properties of conductors in electrostatic equilibrium (see Table I) is
that the electric field is perpendicular to the curve in 2-D or surface in 3-D as illustrated in
Fig. 4(b). Note that the system reaches an electrostatic equilibrium charge distribution,
which is related to the equilibrium quality γ and to the geometry of the propagating
interface. Also note that the contour remains the same shape. Another important property of
an isolated conductor in equilibrium is that any net charge resides entirely on its curve or
surface. After the system reaches electrostatic equilibrium in (10), a curve corresponding to
a 1–pixel-wide propagating front (contour) is defined such that only fluid elements on that
contour are preserved. We quickly generate the 1–pixel-wide front of the CFM using the
boundary element detection method described in Section III-C.

2) Front Deformation—The front deformation procedure allows the CFM to interact with
the image data such that the1–pixel-wide propagating front deforms the shape in response to
the gradient of an image. We define the image gradient potential as
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(11)

where β is a weighting factor (β ≥ 0) to adjust the image gradient potential, | · | is the
modulus of the smoothed image gradients, and | · |max is the maximum modulus in the
computation domain. The smoothing of the image is usually performed by convolution with
a 3 × 3 or 5 × 5 Gaussian filter kernel.

The image potential Φimg in (11) is incorporated into our electrostatic model by defining the
effective potential Φeff

where Φ̂equ is the normalized electric potential in electrostatic equilibrium, which
corresponds to Φ̂ele when equilibrium is achieved in the charge distribution procedure. In
order to deform the propagating front in response to the effective potential, the
corresponding effective field Eeff is defined

(12)

where Eequ is the electric field in equilibrium corresponding to Φ̂equ and Eimg is the image
field corresponding to Φimg. The effective field components are numerically computed using
the central difference approximation.

When the gradient of the image potential is insignificant, i.e., in a relatively homogenous
region, the front of the CFM deforms approximately in its normal direction. However, when
the gradient of the image potential is larger than that of the electric potential, the directions
of the effective fields at those positions are changed dramatically as shown in Fig. 5(a). The
charged fluid relies on the salient image gradient to change the direction of Eeff in (12) such
that the fluid elements can be stopped at boundaries of interest. The front deformation is
executed on each fluid element by locating binary positions corresponding to the four
adjacent grid points based upon the effective field direction as illustrated in Fig. 6.
Therefore, we can generate the 2–pixel-wide binary interface by applying this binary
localization method to each fluid element as shown in Fig. 5(b). Note that, after this
procedure, the propagating interface of the CFM evolves into a different shape in response
to the effective field.

C. Subpixel Precision—Most existing deformable model methods provide subpixel
precision for the area and length of the ROI. The CFM can also provide subpixel precision,
however, the fluid elements are constrained on a grid during the evolution. After the
evolution is terminated and the object of interest is detected, the effective fields of all fluid
elements are approximately oriented inward based upon (12) as illustrated in Fig. 7(a).
However, the effective fields on the rest of the interface [the circles in Fig. 7(a)] are
approximately oriented outward. Therefore, the true boundary of the ROI is somewhere
inside the final propagating interface; this is similar to the localization of the zero-level set
function. We locate the boundary with subpixel precision by advancing the fluid element a
real number distance computed by substituting the effective fields into (9). Now, the fluid
elements in Fig. 7(b) are located on real number points and the precision required for a
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specific application is obtained by using the appropriate interpolation techniques [25], [26]
to calculate the area and length of the ROI.

III. Numerical Implementation
A. SUDS

Systems of charged particles have been widely studied in the physics community for
decades [24]. Computer simulation and modeling methods have been extensively used to
investigate the behavior of such systems [27], [28]. One computationally efficient approach
to calculate the charge density is to arrange the particles to the grid points via the FSP
method [23], [24]. Consider a collection of FSPs in 2-D. The charge density ρ can be
expressed as

(13)

where qi and ri = (xi, yi) are the charge and location of the ith particle as shown in Fig. 3,
and S(r) is the shape factor giving the way a particle charge is distributed about its center.
The shape factor is not required to be isotropic or symmetric but it usually is [23]. In this
paper, we assume that the shape factor is real and isotropic as [24], [29]

(14)

We now perform a multipole expansion of ρ in (13) with respect to the NGP location using
Taylor series and truncate the expansion at the dipole term [22], [28]. This gives us a dipole
expansion approximation and replaces the sum over particles by a sum over grid points as
[22], [24]

where (xg, yg) is the NGP location. Finally, let us approximate the derivatives of using the
central difference method over the adjacent grids

(15)

where QNGP is the monopole charge contribution

and D(ξg) is the dipole charge contributions
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Using this approximation based upon (15), we can obtain the charge density by summing the
charge over the corresponding five neighboring grids on each fluid element.

B. Electric Potential Computation
Having charges distributed on a uniformly spaced grid enables rapid numerical solution of
Poisson’s equation [see (6)] by using the FSP model [23]. For a detailed description of
electrostatic particle models, please refer to [24], [27], and [28]. The FSP method reduces
collision effects between particles and avoids singularities in the use of Coulomb’s law
when the distance is zero, while retaining long-distance charge interactions. We now have a
system of charged particles having charge Q(m, n) on grid (m, n) in a discrete spatial
domain. To numerically solve Poisson’s equation, we first compute the discrete Fourier
transform (DFT) of the charge Q(m, n)

(16)

where Lm and Ln are the lengths along the m- and n-axes, respectively. Substituting (14) into
(13) and taking the Fourier transform of it, we can obtain the relationship between ρ and Q
in the Fourier domain. Then, applying the same technique to (6) to relate ρ to Φ in the
Fourier domain, we can finally establish the relationship between Φ and Q in the Fourier
domain through a simple arithmetic function.

Now, taking the inverse Fourier transform of Φ and assuming that the electric potential Φ is
evaluated only on grid points and interpolated between them, we can facilitate the
computation and obtain the discrete potential Φ(m, n) through Poisson’s equation [29], [30]

(17)

where the prime represents that u = v = 0 is excluded from the sum. The DFT pair in (16)
and (17) can then be rapidly computed via the FFT algorithm provided that Lm = 2sand Ln =
2t with s and t positive integers.

C. Boundary Element Detection
The 2–pixel-wide interface was refined to a 1–pixel-wide front by boundary element
detection using a boolean array corresponding to the image dimension. An initial boolean
value was assigned to each corresponding pixel based upon the following rules: true if it was
inside the initial contour and false if it was outside. True pixels were reset to the position of
the new fluid element during curve evolution. An examination was performed at each time
step by checking the boolean values of the 3 × 3 neighboring positions of each element on
the 2–pixel-wide interface. If the boolean value of any of the eight neighbors was false, the
fluid element was treated as a boundary element, which constitutes the 1–pixel-wide front. If
the boolean values of all neighbors were true, the fluid element was treated as an inner
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element and discarded. Using this simple technique, the 1–pixel-wide front was quickly
constructed and the fluid elements were connected by 4-connectivity as illustrated in Fig.
5(a). Note that the topological changes of fronts for multiple charged fluids were also
handled during this procedure.

D. Mean Electric Field
One problem of using a pure electrostatic model for the CFM is that the magnitude of the
electric field on each fluid element varies greatly when the geometry of the contour is
irregularly shaped. This is due to the fact that the magnitude of the electric field is
proportional to the corresponding local charge density (see Table I). When segmenting noisy
images using the CFM, it is possible that some weak fluid elements that have a relatively
small electric field magnitude will be confined by inner obstacles (e.g., the ventricle in Fig.
8) during the evolution based upon (12). As a consequence, the contour of the CFM
becomes more ragged and those inner fluid elements can dramatically retard the
convergence speed of the overall system. We addressed this problem by using the mean
magnitude of the electric fields in the charged fluid system. The magnitude of Eequ in (12)
was modified as

(18)

where | · |is the magnitude of Eequ, 〈 · 〉 is the mean magnitude of Eequ on all fluid elements
for each charged fluid, and max(·, ·) is the greater of the two values. Therefore, the electric
strength of weak fluid elements was increased such that the magnitude of the overall electric
field in the charged fluid systemwas uniform, which makes the CFM more robust in
segmenting noisy images.

E. Segmentation Algorithm
There are two effective parameters in the CFM algorithm: γ in (10) and β in (11). The
performance of the algorithm using different values of parameter γ was similar provided that
it was between 0.01 and 0.1 as suggested in Section II-B1. We therefore set the value of γ to
3% for all segmentation tasks, which leaves one parameter (β). The setting of β is discussed
in Section IV. The algorithm was terminated when the number of the fluid elements on the
1–pixel-wide front [see Fig. 5(a)] remained equivalent for two consecutive steps, i.e., there
was no deformation in the charged fluid shape after one more iteration. After the evolution
was terminated, an ROI extraction procedure was performed on the entire image using a
standard contour tracing algorithm [31]. The pseudocode for the CFM algorithm is
summarized in Algorithm 1, which consists of two core algorithms corresponding to the
charge distribution procedure and the front deformation procedure, respectively.

F. Computational Complexity
The charge distribution procedure (Algorithm 2) dominated the overall computational cost
of the charged fluid algorithm. Using an FFT-based FSP algorithm changed the
computational complexity from approximately O(N2), with N equal to the number of
particles, to O(M2 log M), where M is the length of the square that is used for the electric
potential computation provided that Lm = Ln = M [see (16) and (17)]. Most parametric
deformable models have complexity O(m), with m equal to the number of nodes. Since the
level set framework added one extra dimension to the problem [13], early deformable
models have complexity O(n3) in 3-D with n equal to the number of grid points in the spatial
direction [8]. The more efficient narrowband implementation technique has computational
complexity O(kn2), with k equal to the number of cells in the narrowband. Nevertheless,
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unlike most existing level-set-based methods that require the contour to be located at
floating points throughout the process, we limit the contour on the lattice during the
evolution and terminate the algorithm with one extra iteration. In addition, there is no
intensive initialization procedure to establish the signed distance function using our
approach.

IV. Results
To demonstrate the CFM algorithm, we used both simulated images as well as real brain
data from several subjects. The data from the first four subjects was acquired from the
medical image database in the Division of Interventional Neuro Radiology, Department of
Radiology, University of California at Los Angeles (UCLA) under an approved Human
Research Subject Protection Protocol. The size of these images is 256 × 256 with spatial
resolution 0.94 × 0.94 mm. Subjects 5 and 6 were taken from the BrainWeb simulator
repository [32] and the Internet Brain Segmentation Repository (IBSR) [33], respectively.
The Laboratory of Neuro Imaging (LONI) Debabeler [34] was used to manage image data
and to convert file formats. The raw data of the images was directly used to test our
approach without any preprocessing. For visualization, the dynamic range of the images was
compressed into 256 gray levels.

The results of using the CFM algorithm to segment brain MR images were compared to the
results obtained using the GDCIG method. Since there were no clear stopping criteria for the
GDCIG algorithm, the results were obtained after a steady state was observed by inspection,
unless stated otherwise. Some trivial constants in our approach were set as follows: Φ0 = 10
000 in (11) and h = 1 in (9). The value of β is usually set close to unity, however, if the
position of the maximum gradient is outside the ROI, then a larger value of β is required. A
normalized image gradient map can be used to facilitate the procedure of finding an
appropriate value of β for the ROI. To evaluate the CFM algorithm, we used five different
performance measures, three of which are widely used performance metrics, i.e., the Jaccard
coefficient kj, the Dice coefficient kd, and the sensitivity measure ks. We defined two new
performance measures: conformity kc and particularity kp. As shown in the Appendix, the kc
has a wider range of index score and provides more insight into the performance compared
to the kj and kd. While the kp has similar function with the well known specificity metric, it
offers a more sensitive measure. The performance measures for the first four subjects were
computed based upon the manual segmentation results by experts who have good
knowledge in Anatomy and Radiographics at UCLA. The software1 was developed in Java
using the UCLA jViewBox [35] for image input/output (I/O), display, and manipulation. All
experiments were executed on a Pentium M1.6-GHz machine running the Windows XP
operating system.

A. Initial Position and Capture Range
The CFM algorithm is accomplished via an initial contour to start the evolution process. The
position and size of the initial contour are crucial to the repeatability of segmentation. We
first investigated the effect of placing the initial contours of the CFM algorithm at different
locations in a brain MR image from subject 1. Three different contours with the same
parameter setting of β = 1.2 were initialized at the anterior, middle, and posterior part of the
brain as shown in Fig. 8. Similar brain segmentation results were obtained by the CFM
compared to the results by the GDCIG. The computation times were approximately 34 s for
Fig. 8(d), 16 s for Fig. 8(h), and 37 s for Fig. 8(l).

1The executable files and source code can be accessed at http://www.loni.ucla.edu/
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We studied the robustness of the CFM to initialization with different contours. Square
contours with sizes equal to 2 × 2, 4 × 4, 16 × 16, and 64 × 64 as well as circular contours
with diameters equal to 8, 16, 32, and 64 were automatically created at the center of PD-
weighted MR images from subject 1. Close segmentation results were obtained, kc = 98.94 ±
0.01% for squares and kc = 98.96 ± 0.03% for circles, using the same β = 0.5 to segment the
brain as illustrated in Fig. 9. The computation time for each experiment was approximately
the same (13–14 s) regardless of initial contour geometry and size.

B. Sensitivity Analysis of Parameter β
We also investigated the ability of the CFM to detect anatomic structures in brain MR
images using different values of the parameter β. We repeated the experiment in Fig. 9 using
two other values of β. The statistical analyses of the performance measures are presented in
Table II, which shows very close segmentation results using three different values of β. Fig.
10 illustrates the performance of the CFM in segmenting the ventricle with blurred
boundaries in T1-weighted MR images from subject 2 using different values of β. The
contour leaked through weak boundaries using small values of β until a larger value was
used. Note that the contour was influenced by the image gradients for β = 20.0 as shown in
Fig. 10(d), which worsened the conformity score. This is because an overweighted value of
β enhances the noise in the image based on the image gradient potential in (11). The
computation time was approximately 1 s.

C. Noise Sensitivity of Simulated Brain Data
The noise sensitivity experiment was performed on T2-weighted simulated brain data of
subject 5 from the BrainWeb with 1%–9% noise levels and no spatial inhomogeneity. Fig.
11 shows the brain segmentation results with similar conformity scores on slice 95 of
subject 5 across varying noise levels. A constant value of β = 0.8 was used for all
experiments. The average computation times were approximately 16.8, 18.6, 22.6, 26.2, and
36.5 s for noise levels 1%, 3%, 5%, 7%, and 9%, respectively. The overall performance
measures are summarized in Table III.

D. Segmentation of the Brain
This section demonstrates the use of the CFM to separate brain from nonbrain tissue (known
as skull stripping) on real brain MR image data. Fig. 12 shows the comparison of the
GDCIG and CFM methods in the extraction of the brain in different T2-weighted MR
images from subjects 1 (upper row) and 3 (lower row). It was not easy to use the GDCIG to
successfully extract the brain due to the convoluted shape of the structures. A slightly
stronger stopping force limited the propagation of the contour as shown in Fig. 12(b) and (f),
while a slightly weaker one resulted in leakage as shown in Fig. 12(c) and (g). Compared to
the GDCIG method, the CFM using β = 0.6 accurately extracted the brain boundaries as
illustrated in Fig. 12(d) with kc = 98.66% and Fig. 12(h) with kc = 98.99%. The average
computation time was approximately 16 s.

We also validated the CFM to segment the brain in a large number of consecutive MR
images from subjects 1 and 3. Each subject consists of eight PD-weighted and eight T2-
weighted brain MR images with an equal slice distance 3 mm. Without any prior knowledge
being used, the CFM successfully segmented the PD-weighted images using β = 0.6 ~ 1.5
and T2-weighted images using β = 0.4 ~ 0.8 that had similar performance scores as
presented in Table III.
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E. Segmentation of Brain Tumors
An important neuroimaging application is the volumetric measurement of brain tumors (e.g.,
in response to therapy), which requires the segmentation of the tumor boundary [36]. The
CFM was evaluated to segment over eight brain tumor images of subjects 3 and 4 as well as
12 brain MR images of subject 6 from the IBSR with tumor 536. Figs. 13 and 14 show the
segmentation results of the CFM algorithm as compared to the GDCIG method.

With the embedded curvature constraint force [see (1)], the contours of the GDCIG tended
to be smooth, without entirely reaching the deep concavities of the tumors as shown in Figs.
13(b) and (e) and 14(a)–(c). The results obtained using the CFM were better than those
obtained using the GDCIG in that the contour faithfully deformed in response to the shape
of the tumors as illustrated in Figs. 13(c) and (f) and 14(g)–(i). Finally, Fig. 15 shows the
use of two simultaneous charged fluids to segment the tumor and surrounding tissue from
subject 4 (upper row), and the irregularly shaped tumor from subject 6 (lower row). Note
that the ROI consists of regions with blurred boundaries and a large variation of gray level.
The processing times were approximately 1 s for Figs. 13(f), 14(g)–(i), and 15(d), 4 s for
Fig. 13(c), and 8 s for Fig. 15(b).

V. Discussion and Conclusion
We described a new deformable model, the CFM algorithm, that is based upon the theory of
electrostatics. We validated the ability of this algorithm in segmenting anatomic structures in
brain images without requiring prior knowledge of the underlying brain anatomy. Our
approach is conceptually straightforward, using a two-stage evolution procedure as
described in Section II-B. The topological changes of the contours are handled by the
boundary element detection technique described in Section III-C. The spirit of our approach
is to rapidly advance the contour toward the boundary of the ROI (pixel by pixel) during the
evolution, and then refine the results to the desired precision. We evaluated different initial
contour positions with the same value of β to segment the brain in T2-weighted MR images
as illustrated in Fig. 8. The segmentation results were quite close with less sensitivity to the
initial contour positions compared to the GDCIG method.

The segmentation results of the CFM were closely matched using different geometries and
sizes of initial contours as illustrated in Fig. 9. The computation times were approximately
the same regardless of the size of initial contours. This was because the electric potential
computation using the FFT algorithm dominated the overall computational cost of the CFM
algorithm as described in Section III-F. As a consequence, the computation time of using a
short length of the FFT corresponding to a small contour was insignificant compared to that
of using a larger length of the FFT corresponding to a bigger contour (see Section III-B). It
is thus the size of the ROI rather than that of initial contours that dominates the computation
time of the CFM algorithm.

We studied the sensitivity of the CFM to segment the ventricle and brain in MR images
using different values of the parameter β in Section IV-B. A broad range of β can be used to
achieve similar segmentation results. Noise sensitivity was also evaluated using a variety of
simulated brain data across different noise levels. The CFM was robust to noise in
segmenting the brain with close performance measure scores as summarized in Table III.
This is due to the two-stage evolution procedures described in Section II-B. The fluid
elements continuously advance outward due to the repelling force during the evolution.
Therefore, the fluid elements can flow through and around inner obstacles (e.g., noise) to
successfully extract the brain. This unique property of the CFM is advantageous in
segmenting objects in images containing high-intensity noise.
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The results of the CFM were compared to those of the GDCIG method in a variety of
practical MR image processing applications. The CFM algorithm performed better than the
GDCIG method in segmenting anatomic structures on the brain MR image data presented in
this paper. The GDCIG tended to smooth the resulting contours (e.g., Figs. 13 and 14), in a
way that was analogous to filling an elastic balloon. The CFM tended to better match the
shape of the ROI in a way that was analogous to the behavior of a liquid in a container.

The GDCIG method used an edge-based stopping force to slow the propagating curve as it
approached an image gradient [see (1)]. In practice, the image gradient stopping force is
small but nonzero (since the image intensity values are always finite), making it difficult to
choose the appropriate stopping factor required to achieve accurate segmentation. This is
illustrated in Figs. 13 and 14, where the boundaries of the tumors were not accurately
captured. In addition, a stronger stopping force limited curve evolution as illustrated in Fig.
12(b) and (f), while a weaker one resulted in leakage as illustrated in Fig. 12(c) and (g). The
GDCIG was also sensitive to the initial contour positions as illustrated in Fig. 8.

With only one effective parameter, the CFM algorithm is easier to manipulate. The CFM
also uses the image gradient force to confine the contour inside the ROI [see (11)].
However, the effective field that is used to guide curve evolution is the vector sum of the
electric field and the gradient of the image potential [see (12)]. The fluid element changes
the advancement direction when it encounters an image gradient that is regarded as the
object boundary as described in Section II-C and illustrated in Fig. 7(a). Therefore, the
initial contour does not have to be placed close to or symmetrically with respect to the
boundary (although symmetric initialization could save computation time) as illustrated in
Fig. 8.

One limitation of the CFM algorithm is that it must be initialized inside the ROI, but it is not
necessary to place the initial contour at the center of the region. If the contour is initialized
across the boundary of an object, the fluid elements that are not at the boundary will advance
outward since they have no salient image gradient force. This can make the entire contour
move across the object after further evolution. For example, we used two charged fluid
contours initialized across the tumors in Fig. 15(a), and the contours passed the tumor
boundary and merged to one that was partly stopped by the surrounding tissue.

In developing the CFM, we addressed two key problems: the simulation of a charged fluid
using an electrostatic model and the propagation of the interface in deformable models. The
challenge was to find an optimal simulation with sufficient accuracy at the lowest
computational cost. We used the electrostatic plasma models that were originally developed
for particle simulation, as described in Sections III-A and III-B, to develop the CFM
embedded in a deformable model for front propagation. Unlike other charged particle
systems, we changed the property and structure of charged particles in such a way that the
charged fluid behaves like a liquid that flows through and around objects. We established
the correlation of the intrinsic properties between the deformable model and the electrostatic
system such that the explicit parameters (curvature and normal direction) in a deformable
model are implicitly related to the electrostatic equilibrium properties (see Table I).

In summary, we demonstrated the ability of the CFM algorithm to capture a variety of
anatomic structures in brain MR images. Our results illustrate that this new approach
requires only one parameter (β) for robust brain MR image segmentation problems such as
the extraction of brain tumors and skull stripping as compared with the GDCIG method. In
particular, our approach is useful in segmenting regions with blurred boundaries and large
variations in intensity without requiring prior knowledge as illustrated in Section IV.
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Some properties of the CFM for brain image segmentation are as follows: 1) no computation
of curvature, velocity, or acceleration terms is required to advance the fluid elements, 2)
there is no time interval setting, 3) only one effective parameter setting is needed, 4)
topological changes of the propagating interface are handled automatically, and 5) the CFM
can provide subpixel precision.

Further research is required to improve the electric potential computation via more efficient
numerical techniques. We could also introduce other attractive forces, or we could include
image regional forces to guide the CFM contour toward the ROI. Additional work is needed
to investigate the current CFM algorithm for interactive segmentation tools. Another
interesting application is that, since fluid element charges vary in response to the geometry
of objects, this feature can be used as a guide for spatial transformation in image registration
across different types of medical imaging modalities. We believe that the CFM is of
potential value in a variety of brain image processing applications requiring semiautomatic
and fully automatic procedures.
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APPENDIX. PERFORMANCE MEASURES
The CFM algorithm was evaluated by several performance measures, two of which are
widely used global performance metrics. The Jaccard coefficient kj measures the ratio of the
intersection area of two sets (Ω1 and Ω2) divided by the area of their union, while the Dice
coefficient kd computes the ratio of the intersection divided by the sum of each individual
area [37]

(19)

We also defined a global measure of conformity kc to measure the similarity of two sets
using the relationship

where FP represents false positives, FN represents false negatives, and TP represents true
positives of the segmentation results. Note that kj is related to kc through the following:
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(20)

Fig. 16 illustrates the relationship between kd, kj, and kc based upon (19) and (20) in the
domain of to kc = 0% to 100%, which shows that kc is always smaller than the other two
indexes (except at the apex where they are equal). The three metrics agree when the two sets
are perfectly matched, but the conformity measure kc has a wider range of index scores,
which provides more insight into the performance of segmentation algorithms. For
reference, kc = 0% corresponds to kj = 50% and kd = 66.67%, respectively. We are also
interested in how much of the ROI is being excluded or included, respectively. The
sensitivity measure ks is used for measuring how many pixels in the ROI are correctly
segmented as

While the specificity metric TN/(TN + FP) is sensitive to true negatives TN, we defined a
metric, particularity kp, for measuring how many pixels outside the ROI are included as
given in the following:

The major disadvantage of using the specificity metric for evaluating segmentation
performance is that one can obtain different scores when measuring the same target in
various images with different dimensions due to TN. The manual delineation is treated as a
reference for the measurement of the segmentation performance. Note that when the
segmentation mask entirely includes the referenced one, i.e., FN = 0, we can obtain that ks =
100% and kp = kc. Also note that when the segmentation mask is inside the referenced one,
i.e., FP = 0, we can obtain that kp = 100% and ks = kj.
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Fig. 1.
Difficulty of using the GDCIG method in segmenting the ventricle in T1-weighted MR
images. (a) Initial contour. (b) Using a slightly stronger stopping force, the contour of the
GDCIG was confined inside the ventricle. (c) Using a slightly weaker stopping force made
the contour stretch toward both ends of the ventricle, but it also leaked through the
boundary.
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Fig. 2.
Schematic illustrating the concept of a charged fluid. A charged fluid conceptually consists
of charged elements (the large circles), each of which exerts a repelling electric force upon
the others. The fluid elements, as if they were consisted of different numbers of charged
particles (the solid dots), are connected to one another by 4-connectivity when they advance.
The charged fluid, behaving like a liquid, can be influenced by internal electric forces Fele of
repulsion as well as external forces Fext from the image data.
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Fig. 3.
Charge interpolation using the SUDS technique. (a) Fluid element with charge q is advanced
a distance (dx, dy). (b) Charge of the fluid element at (xi, yi) is interpolated to the NGP
location and its 4-neighbors with different charge, if any.
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Fig. 4.
Charge distribution procedure. (a) At the beginning of this procedure, a uniform charge
distribution is applied to the fluid elements (the red solid dots). They are only allowed to
share charge within the 2–pixel-wide propagating interface that is obtained from the front
deformation procedure (see Fig. 5). Note that the empty charge positions on the interface are
represented by the blue hollow circles. (b) System reaches the equilibrium charge
distribution and the electric fields (the arrows) on the elements are approximately
perpendicular to the contour. The 1–pixel-wide front (not shown) is then obtained by using
the boundary element detection technique as described in Section III-C. Note that the CFM
in this procedure is a pure electrostatic system without the influence of external forces and
the change of contour shapes.
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Fig. 5.
Front deformation procedure. (a) After the charge distribution procedure, the fluid elements
are on the 1–pixel-wide front by 4-connectivity. Note that the tiny inner charges in Fig. 4(b)
are discarded after the boundary element detection procedure. The effective fields (the
arrows) are computed based upon the electric field in equilibrium and the gradient of the
image potential. Some of the effective fields are in very different directions compared to the
electric fields at the corresponding positions in Fig. 4(b). (b) New 2–pixel-wide propagating
interface is obtained by locating the four adjacent grid points according to the effective field
directions in (a) based upon Fig. 6 for all elements. Note that, compared to Fig. 4(a), the
propagating interface evolves into a different shape in response to the effective fields in (a).
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Fig. 6.
Schematic illustrating the localization of the 2–pixel-wide binary interface on an individual
fluid element. (a) Effective field Eeff on a fluid element (the red solid dot). (b) Four adjacent
grid points (the blue hollow circles) of the element are generated according to the effective
field direction in (a) and denoted as a part of the 2–pixel-wide propagating interface.
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Fig. 7.
Schematic illustrating the subpixel precision computation. (a) Effective fields on the fluid
elements (the red solid dots) are approximately oriented inward after the evolution is
terminated. (b) Subpixel precision for the area and length of the ROI can be calculated by
advancing the fluid elements a real number distance based upon the effective fields in (a)
using (9).
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Fig. 8.
Effect of initial contour positions in segmenting T2-weighted MR images using the GDCIG
and CFM methods. The figures in the first column show the initial contours respectively
located at the (a) anterior, (e) middle, and (i) posterior region of the brain. The figures in the
middle two columns show the GDCIG results and those in the last column the CFM results.
Using a slightly stronger stopping force, the GDCIG contours were confined inside as
shown in (b), (f), and (j). Using a slightly weaker stopping force, the GDCIG contours
leaked over the brain as shown in (c), (g), and (k). An appropriate stopping factor was
difficult to choose for the GDCIG to achieve successful results. (d), (h), and (l)
Segmentation results of the CFM using the same β = 1.2 with conformity kc = 97.45%, kc =
97.45%, and kc = 97.56%, respectively. The computation times were approximately (d) 34 s,
(h) 16 s, and (l) 37 s.
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Fig. 9.
Experimental results on the effect of initial contours with different shapes and dimensions in
segmenting the brain in PD-weighted MR images. All initial contours were automatically
created at the center of the image with the same β = 0.5. The CFM achieved kc =
98.94±0.01% segmentation results using square contours with sizes equal to 2×2 (a), 4×4
(not shown), 16×16 (not shown), and 64×64 (b), respectively. Close segmentation results
with kc = 98.96 ± 0.03% were also obtained using circular contours with diameters equal to
8 (c), 16 (not shown), 32 (not shown), and 64 (d), respectively. Note that the CFM algorithm
required approximately the same computation time for all experiments (13–14 s). The
overall performance measures are summarized in Table II.
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Fig. 10.
Sensitivity analysis of parameter β in segmenting the ventricle with blurred boundaries in
T1-weighted MR images. (a) Contour leaked through weak boundaries when using a lower
value of β = 12.0. (b) Leakage stopped when using β = 13.0 (kc = 91.65%). (c) Segmentation
result with kc = 92.21% using β = 19.0. (d) Result (kc = 81.55%) started to deteriorate when
using a slightly higher value of β = 20.0. The computation time was approximately 1 s.
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Fig. 11.
Noise analysis for the segmentation of slice 95 from the BrainWeb simulator with different
noise levels using the same β = 0.8. (a) Ground truth. (b) Result with kc = 98.87% for 1%
noise. (c) Result with kc = 98.78% for 3% noise. (d) Result with kc = 98.75% for 5% noise.
(e) Result with kc = 98.41% for 7% noise. (f) Result with kc = 98.76% for 9% noise.
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Fig. 12.
Comparison of the GDCIG and CFM methods in segmenting the brain in T2-weighted MR
images of subjects 1 (upper row) and 3 (lower row). (a) and (e) Initial contour. (b) and (f)
Results using the GDCIG with kc = 81.53% and kc = 65.99%. (c) and (g) Contour of the
GDCIG leaked through the boundaries using a weaker stopping force. (d) and (h)
Segmentation results of the CFM using the same β = 0.6 with kc = 98.66% and kc = 98.89%.
The processing time was approximately 16 s.
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Fig. 13.
Comparison of the brain tumor segmentation results in T2-weighted MR images of subjects
3 (upper row) and 4 (lower row) using the GDCIG and CFM methods. (a) and (d) Initial
contour. (b) and (e) Results of using the GDCIG with kc = 82.87% and kc = 49.09%. (c) and
(f) Segmentation results of the CFM using the same β = 6.0 with kc = 87.42% and kc =
75.09%. The processing times were approximately (c) 4 s and (f) 1 s.
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Fig. 14.
Comparison of the GDCIG and CFM methods for the segmentation of tumor 536 from the
IBSR. Top row: the GDCIG results with (a) kc = 54.48%, (b) kc = 22.13%, and (c) kc =
25.17%. Middle row: the manual segmentation masks with (d) 536_47_26, (e) 536_68_24,
and (f) 536_88_28. Bottom row: the CFM results with (g) kc = 84.39% (β = 6.0), (h) kc =
86.03% (β = 6.0), and (i) kc = 85.54% (β = 8.0). The processing time was approximately 1 s.
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Fig. 15.
Segmentation of difficult structures in brain MR images using two initial contours of the
CFM with β = 8.0. Upper row: segmentation of the brain tumors and surrounding tissue in a
T2-weighted MR image of subject 4 with kc = 81.62%. Lower row: segmentation of the
irregularly shaped tumor 536_88_26 from the IBSR with kc = 70.52%. The processing times
were approximately (b) 8 s and (d) 1 s.
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Fig. 16.
Comparison of the Jaccard kj (the blue solid curve) and Dice kd (the red dashed curve)
coefficients with respect to conformity kc in the domain between 0% and 100%. Conformity
kc, which provides a wider range of index scores, is always smaller than the other two
coefficients kj and kd (except at 100%). For reference, kc = 0% corresponds to kj = 50% and
kd = 66.67%, respectively.
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TABLE I

Unique Characteristics of Charged Conductors in Electrostatic Equilibrium [38]. Electrostatic Equilibrium
Means That There Is No Net Flow of Electric Charge or No Electric Current

Characteristics of charged conductors in equilibrium

1 The electric field anywhere inside a conductor is zero in electrostatic equilibrium.

2 Any net charge on an isolated conductor resides entirely on its surface.

3
The electric field just outside the surface of an isolated conductor is perpendicular to the surface and has a magnitude equal to , where σ
is the local surface charge density at that point.

4 On an irregularly shaped conductor, the surface charge density σ and hence the electric field just outside is greatest where the curvature is
largest.

5 Every point on the surface of a conductor in equilibrium is at the same potential (the surface is an equipotential).
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TABLE II

Statistical Analyses of the Performance Measures for the Experiments in Fig. 9 Using Three Different Values
of β

Parameter β kc ks kp

0.5 98.95 ± 0.02% 99.38 ± 0.01% 99.58 ± 0.01%

1.0 98.73 ± 0.04% 98.98 ± 0.04% 99.76 ± 0.02%

1.5 98.48 ± 0.03% 98.68 ± 0.03% 99.81 ± 0.00%

kc = Conformity, ks = Sensitivity, kp = Particularity.
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TABLE III

Statistical Analyses of the Performance Measures in Segmenting the Brain on Different Types and Subjects
Using the CFM

Image and Subject kc ks kp

8 PD-weighted MR images, Subject 1 98.78 ± 0.19% 99.14 ± 0.22% 99.64 ± 0.08%

8 PD-weighted MR images, Subject 3 98.69 ± 0.21% 99.09 ± 0.22% 99.62 ± 0.06%

8 T2-weighted MR images, Subject 1 98.47 ± 0.15% 99.27 ± 0.17% 99.22 ± 0.11%

8 T2-weighted MR images, Subject 3 98.61 ± 0.19% 99.15 ± 0.25% 99.47 ± 0.14%

8 1%-noise T2 MR images, Subject 5 98.55 ± 0.34% 99.63 ± 0.06% 98.92 ± 0.31%

8 3%-noise T2 MR images, Subject 5 98.28 ± 0.29% 99.43 ± 0.38% 98.86 ± 0.33%

8 5%-noise T2 MR images, Subject 5 98.35 ± 0.17% 99.41 ± 0.27% 98.94 ± 0.25%

8 7%-noise T2 MR images, Subject 5 98.50 ± 0.22% 99.58 ± 0.12% 98.92 ± 0.23%

8 9%-noise T2 MR images, Subject 5 98.34 ± 0.40% 99.39 ± 0.47% 98.96 ± 0.18%

kc = Conformity, ks = Sensitivity, kp = Particularity.
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Algorithm 1

Charged fluid

1 parameter setting of in (11)

2 image potential computation using (11)

3 repeat(i)

a. uniform charge distribution over fluid elements

b. repeat(j)

Algorithm 2

c. until(j) electrostatic equilibrium is achieved by setting γ = 3% in (10)

d. 1–pixel-wide front construction using the boundary element detection method

e. Algorithm 3

f. mean potential computation and charge normalization using (5)

4 until(i) no deformation in the charged fluid shape

5 ROI extraction

6 subpixel precision calculation, if desired
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Algorithm 2

Charge distribution procedure

1 forward FFT computation of the charge array based upon (16)

2 inverse FFT computation of the potential array based upon (17)

3 electric field computation using (7)

4 advance distance computation using (9)

5 charge density computation using the SUDS based upon (15) and Fig. 3
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Algorithm 3

Front deformation procedure

1 mean electric field compensation using (18)

2 effective field computation using (12)

3 2–pixel-wide interface localization based upon Fig. 6
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