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Applications of Static and Dynamic Iterated Rippled
Noise to Evaluate Pitch Encoding in the Human
Auditory Brainstem
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Abstract—This paper presents a new application of the dynamic
iterated rippled noise (IRN) algorithm by generating dynamic
pitch contours representative of those that occur in natural speech
in the context of EEG and the frequency following response (FFR).
Besides IRN steady state and linear rising stimuli, curvilinear
rising stimuli were modeled after pitch contours of natural pro-
ductions of Mandarin Tone 2. Electrophysiological data on pitch
representation at the level of the brainstem, as reflected in FFR,
were evaluated for all stimuli, static or dynamic. Autocorrelation
peaks were observed corresponding to the fundamental period
(7) as well as spectral bands at the fundamental and its harmonics
for both a low and a high iteration step. At the higher iteration
step, both spectral and temporal FFR representations were more
robust, indicating that both acoustic properties may be utilized
for pitch extraction at the level of the brainstem. By applying
curvilinear IRN stimuli to elicit FFRs, we can evaluate the ef-
fects of temporal degradation on 1) the neural representation of
linguistically-relevant pitch features in a target population (e.g.,
cochlear implant) and 2) the efficacy of signal processing schemes
in conventional hearing aids and cochlear implants to recover
these features.

Index Terms—Auditory brainstem, cochlear implant, experience
dependent plasticity, frequency following response, iterated rip-
pled noise, pitch, signal processing.

I. INTRODUCTION

ITCH is one of the most important information-bearing
Pparameters of species-specific vocal signals [1]. Most
periodic complex sounds including speech evoke a sensation
of low pitch associated with their fundamental frequency (fy)
[2]. There is abundant evidence to suggest that pitch extraction
is accomplished by an autocorrelation analysis on the neural
spike trains elicited from complex auditory stimuli [3]-[6].
These neural responses are phase-locked to the dominant in-
terval corresponding to the f,. Using a wide variety of periodic
complex sounds, the most frequent interspike interval in the
auditory nerve has been shown to correspond closely to the
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perceived low pitch [3], [4]. Thus, we may conclude that neural
phase-locked activity related to fy plays a dominant role in the
encoding of pitch associated with complex sounds.

The scalp-recorded human frequency following response
(FFR) reflects sustained phase-locked activity in a population
of neural elements withins the rostral brainstem [7]-[9]. Its
generator site is presumed to be the inferior colliculus. Based
on what we know about neuronal responses in the auditory
nerve to periodic stimuli [3], [4], any periodicities observed in
the FFR are also likely to be present in single units and local
ensembles. Thus, the FFR provides a noninvasive window to
view neural processing of pitch at the level of the auditory
brainstem.

Indeed, pitch information has been shown to be preserved in
the phase-locked neural activity generating the FFR not only
for steady-state complex tones [10] but also for time-varying
pitch contours of Mandarin Chinese lexical tones [11]. A sub-
sequent crosslanguage FFR study of Mandarin speech stimuli
further shows that Mandarin tones elicit stronger pitch repre-
sentation and smoother pitch tracking by Chinese listeners as
compared to English listeners [12]. This experience-dependent
effect, however, appears to occur only when the speech stimuli
reflect prototypical, curvilinear dynamic contours representa-
tive of Mandarin tones as opposed to linear dynamic approx-
imations [13]. These findings together lead us to the question
of how fine-grained is this specificity for pitch encoding within
the brainstem. To eliminate any potential lexical bias for na-
tive listeners, however, we need to be able to generate auditory
stimuli that preserve the perception of pitch, but do not have
waveform periodicity or highly modulated stimulus envelopes
that are characteristic of speech stimuli.

Such auditory stimuli exist in the form of iterated rippled
noise (IRN), which preserves the temporal regularity of the
stimulus without having to repeat the waveform in a periodic
manner. An IRN stimulus is generated using a broadband
noise which is delayed and added to itself repeatedly, and
therefore does not have a prominent modulated envelope [14],
[15]. However, by introducing temporal regularity into the fine
structure of the noise, the delay-and-add process does change
the envelope structure producing a ‘ripple’ in the long-term
power spectrum of the waveform. There are also autocorrelation
peaks in IRN envelopes that parallel those found in the entire
waveform. The perceived pitch corresponds to the reciprocal of
the delay, and the pitch salience increases with the number of
iterations of the delay-and-add process. IRN stimuli have been
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used in auditory neurophysiological [16]-[18] and psychophys-
ical [19] studies with animals. With humans, they have been
employed in psychophysical studies, showing that the pitch
and pitch strength of IRN stimuli can be accounted for using
temporal processing models based on autocorrelation analysis
[14], [15], [20], [21]. In brain imaging studies (PET, positron
emission tomography; fMRI, functional magnetic resonance
imaging), IRN stimuli have been exploited to show that the
processing of temporal pitch begins as early as the cochlear
nucleus and continues up to auditory cortex [22]-[24]. By
employing sequences of IRN steady-state stimuli, it is possible
to investigate the processing of temporal pitch and melody
information in the musical domain [24]. However, because of
inherent limitations of the IRN algorithm, studies have yet to
be conducted on the processing of temporal pitch and melody
information in the language domain.

All of the aforementioned IRN studies have been limited to
fixed delays that produce a constant pitch or sequences thereof
[24]. However, stimuli with dynamic spectral and temporal
ripples, similar to IRN, have been employed to characterize
the spectral and dynamic properties of auditory receptive fields
[25]-[27], and to evaluate the auditory system’s ability to
extract perceptual information from a complex spectral profile
[28]. The IRN algorithm was recently generalized to allow
multiple time dependent delays [29] over a range of iteration
steps, making it possible to detect pitch in dynamic iterated
ripple noise by humans. However, if we are to replicate human
speech perception in a language context, it is imperative that
the IRN algorithm be modified to handle pitch contours that are
ecologically representative of what occurs in natural speech.
From the perspective of auditory neuroethology [30], [31], this
adjustment of the IRN algorithm would enable us to investigate
neural mechanisms underlying the processing of pitch contours
that are of linguistic relevance comparable to those underlying
the processing of behaviorally relevant sounds in other non-pri-
mate and non-human primate animals.

With regard to human perception and communication, peri-
odic sounds produce strong pitch sensations, and the controlled
variation of the period of the sound is the basis of melody in
music and prosody in speech. Since communication almost al-
ways occurs against a noisy background, it is important that
neural mechanisms that extract relevant features of the speech
signal are relatively less susceptible to degradation. IRN stimuli
can provide a noninvasive window on those neural mechanisms
that detect and extract the temporal regularity of periodic and
quasi-periodic sounds from a noisy background. Importantly,
we can evaluate the susceptibility of these neural mechanisms
to temporal degradation by systematically varying the temporal
regularity of IRN stimuli.

Accordingly, the primary objective of this paper is to present
preliminary investigations of three stimulus sets (steady-state,
linear rising, curvilinear) using a generalized form of the IRN al-
gorithm that can generate multiple nonlinear time varying tem-
poral correlations. The curvilinear stimuli most closely approx-
imate the time varying characteristics of speech sounds. Besides
descriptions of the stimuli, we also present electrophysiological
data on pitch representation at the level of the brainstem, as re-
flected in the FFR, in response to the static and dynamic IRN

stimuli. In so doing, we are able to observe fine-grain timing
information in physiological responses extracted from a noisy
background that underlie the encoding of pitch at the level of
the human brainstem.

II. METHODS

A. Subjects

Three young, adult native speakers of English (M =
28.0,SD = 3.6) participated in the IRN steady state and IRN
linear rising experiments. None of them had any significant
exposure to Chinese or any other tone language. We chose
native English speakers in order to replicate earlier work by
Yost [15] and Denham [29]. Three young, adult native speakers
of Mandarin Chinese (M = 31.7,SD = 3.2) participated in
the IRN curvilinear rising experiment. Chinese subjects were
born and raised in mainland China; classified as late-onset,
medium proficiency Mandarin/English bilinguals, not having
received formal instruction in English until the age of 11; and
resided in the USA for at least 1 year but not more than 4 years.
We chose native Chinese speakers because pitch contours are
linguistically significant at the syllable level in Mandarin. Our
own work has been directed most recently to electrophysiolog-
ical responses elicited by Mandarin tones in speech contexts
at the level of the brainstem [11], [12]. All subjects were
musically naive, as determined by a questionnaire about formal
training and experience, including self-rating on a musical
ability scale. Their hearing sensitivity was better than 15 dB
HL for octave frequencies from 500 to 8000 Hz. Subjects were
enrolled at Purdue University at the time of testing. They gave
informed consent in compliance with a protocol approved by
the Institutional Review Board of Purdue University.

B. Stimuli

The duration of the IRN steady state, linear rising, and curvi-
linear rising stimuli was fixed at 250ms with 10ms rise/fall time.

1) IRN Steady State: The steady state IRN stimuli were gen-
erated using the “add same network™ algorithm where the de-
layed and added noise is added to the original waveform at each
iteration or stage of the process [15]. This is represented math-
ematically in (1):

yi(t) = yic1(t) + gy 1 (t—7); for i=1,2,...n
yo(t) = x(t), theinputsignal (1

where 7 is the delay (in ms), n is the number of iteration steps
and g is the gain (—1 < g < 1).

Steady state IRN stimuli were generated to produce a flat f
at 250 Hz using a delay of 4 ms at 5 different iteration steps
(n =4,8,16,32,64) (Fig. 1). The gain was set to 1.

2) IRN Linear Rising: The IRN algorithm has been gener-
alized to allow time dependent delays [29]. Instead of adding a
copy of the original noise back at some fixed delay, a mapping
function is created so that each point can be delayed by a dif-
ferent amount (2):

Yi(t) = yi—1(t) + 9y, 1 (t — 7(8)); fori =1,2,...n
yo(t) = x(t), theinputsignal 2)
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Fig. 1. Time-invariant (flat) and time-variant (linear rising, curvilinear rising)
Fy contours created by means of a generalized IRN algorithm. The curvilinear
rising contour represents a close approximation of the citation form of Mandarin
Chinese Tone 2 from natural speech. IRN = iterated ripple noise.

Time varying IRN stimuli were generated to produce a linear
rising F ramp at increasing iteration steps (n = 4, 8, 16, 32, 64)
(Fig. 1). The gain was set to 1. Fy onset and offset were set at
101 Hz and 132 Hz, respectively. The rate of change of Fy was
0.1233 Hz/ms. Fy offset and slope were set to equal f offset and
average slope of Mandarin Tone 2. These values of Fy param-
eters yielded the closest linear approximation to the curvilinear
rising f contour (Fig. 1). In a categorical perception experiment
[32], it has been demonstrated that this linear rising ramp can be
identified as Mandarin Tone 2 with a high level of accuracy.

3) IRN Curvilinear Rising: Equation (3) gives the general-
ized IRN algorithm to generate multiple nonlinear time varying
correlations:

yl(t) = yi—l(t) + gyi—l(t - l/f(t))’ for i = 17 27 ceey
yo(t) = x(t), the input signal 3)

where f(t) represents a polynomial equation of any degree
modeling a nonlinear f, contour.

Time varying IRN stimuli were generated to produce a curvi-
linear rising fp contour at increasing iteration steps (4, 8, 16, 32,
64) (Fig. 1). The gain was set to 1. Fy onset and offset were set
at 103 Hz and 132 Hz, respectively. These stimuli were mod-
eled after natural speech productions of Mandarin Tone 2 [33]
using a fourth-order polynomial equation [34]:

f(t) = 103.85 — (8.45/d)t — (76.32/d*)t*
+(297.91/d*)t® — (185.34/d*)t*  (4)

where d is the duration of the stimuli.

C. Data Acquisition

Subjects reclined comfortably in an acoustically and electri-
cally shielded booth. They were instructed to relax and refrain
from extraneous body movements to minimize movement
artifacts. The order of presentation of stimuli, i.e., iteration
steps 4, 8, 16, 32, and 64, was randomized within subjects.
All stimuli were controlled by a signal generation and data
acquisition system (Tucker-Davis Technologies, System II).
The stimulus files were routed through a digital to analog
module and presented binaurally to each ear at 60 dB nHL at
a repetition rate of 3.33/s through magnetically shielded insert
earphones (Biologic, TIP-300).

For all three stimulus conditions (IRN steady state, IRN linear
rising, IRN curvilinear rising), FFRs were recorded from each
subject from both the right ear and the left ear. These evoked re-
sponses were recorded differentially between scalp electrodes
placed on the midline of the forehead at the hairline and the
linked mastoid. Another electrode placed on the mid-forehead
(Fpz) served as the common ground. The inter-electrode imped-
ances were maintained below 3000 2. The EEG inputs were am-
plified by 200 000 and band-pass filtered from 150 to 3000 Hz
(6 dB/octave roll-off, RC response characteristics) for the IRN
steady state stimuli and from 60 to 3000 Hz for the IRN linear
rising and curvilinear rising stimuli. Each FFR response wave-
form represents an average of 2000 stimulus presentations over
a 300-ms analysis window using a sampling rate of 25 kHz.

D. Data Analysis

The ability of the FFR to follow the pitch trajectory in all three
stimuli was evaluated by extracting the Fy contour from the
grand-average FFRs using a periodicity detection short-term au-
tocorrelation algorithm [35]. This algorithm enabled us to per-
form a short-term autocorrelation analysis on a number of small
segments or frames extracted from the IRN and FFR signals,
yielding estimates of pitch periodicity (time lag associated with
the autocorrelation maximum) and pitch strength (magnitude of
the normalized autocorrelation peak). Average autocorrelation
magnitude (pitch strength) was derived from all the time frames
in each FFR waveform.

Short-term autocorrelation functions and running autocorrel-
ograms were computed for all three stimuli. The grand aver-
aged FFRs were used to index variation in FFR periodicities
over the duration of the response at a low (n = 4) and high
(n = 32) iteration step. The autocorrelogram is an expansion of
the signal that plots post-stimulus onset time vs. time lag, i.e.,
ACG(T,t) = X(t) x X(t — 7) for each time ¢ and time lag 7.
Thus, it represents the running distribution of all-order intervals
present in the population response [3], [11].

The stimulus waveform, recorded FFRs, and spectrogram
were plotted for all three stimulus conditions and FFRs at a low
(n = 4) and high (n = 32) iteration step.

III. RESULTS

A. IRN Steady State

Temporal and spectral properties of the time-invariant (flat)
tone stimulus (left panels) and electrophysiological response at
the brainstem (right panels) at selected iteration steps are shown
in Fig. 2. The spectrogram has darker bands corresponding to
250 Hz (1/7) and its harmonics for the high iteration step in both
the stimulus and FFR response (2nd row). In the short term au-
tocorrelation functions, peaks at the fundamental period 1/F
(4 ms) and two other multiples of the fundamental (8, 12 ms)
are observed in both the stimulus and FFR data for the low it-
eration step (3rd row). At the high iteration step, peaks corre-
sponding to higher multiples of the fundamental are also present
(16, 20, 24, 28 ms) in both the stimulus and FFR response. The
magnitude of the autocorrelation peak reaches its maximum at
4 ms and decreases at higher multiples of the fundamental peri-
odicity. The autocorrelograms show clearer bands of temporal
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Fig. 2. Waveform, spectrogram, short term autocorrelation function, autocor-
relogram, and the averaged autocorrelation slice computed from the correlogram
at four different time segments (#1: 50-100 ms; #2: 100-150 ms; #3: 150-200
ms; #4: 200-250 ms), in order from top to bottom, of the time-invariant, flat
tone stimulus (left panels) and electrophysiological response at the brainstem
(right panels) at iteration steps 4 (LI) and 32 (HI). Waveform periodicity (1st
row) and resolution of spectral bands at 250 Hz and its higher harmonics are
markedly improved at the high iteration step in both stimulus and FFR response
(2nd row). The short term autocorrelation function displays a sharper peak at
the high iteration step in both stimulus and FFR response (3rd row). Normalized
peak autocorrelation values are displayed for both stimulus and response for a 4
ms period. At the high iteration step, there are sharp peaks in the FFR data corre-
sponding to the higher periodicities of the stimuli that are not evident at the low
iteration step. The autocorrelograms show clearer bands (black) of temporal reg-
ularity in the stimulus and phase-locked activity in the FFR response at the high
iteration step (4th row). White dots are superimposed on the bands at every 50
ms to enhance their visualization. The correlogram slice from all four time seg-
ments displays a sharper peak at the high iteration step in both stimulus and FFR
data (5th row). Note that the centers of the correlation peak align perfectly along
the y-axis at 4 ms and its multiple periodicities in the FFR data at the high iter-
ation step. FFR = fundamental frequency — following response; LI =
low iteration step; HI = high iteration step.

regularity corresponding to delays of 4, 8 and 12 ms in the stim-
ulus and phase-locked activity in the FFR response at the high
iteration step (4th row). Row 5 shows averaged autocorrelations
computed from the correlogram at four different time segments.
The stimulus autocorrelation peaks align along a straight line at
delays of 7 and 2 7 for the low iteration step and 7 and higher
multiples of 7 for the high iteration step. Note that there is little
alignment of autocorrelation peaks at any particular lag in the
FFR for the low iteration step in contrast to close alignment of
peaks at lags of 7 and multiples of 7 for the high iteration step.

B. IRN Linear Rising

Temporal and spectral properties of the time-variant linear
rising tone stimulus (left panels) and electrophysiological re-
sponse at the brainstem (right panels) at selected iteration steps
are shown in Fig. 3. The FFR response shows greater phase
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Fig. 3. Waveform, spectrogram, short term autocorrelation function, autocor-
relogram, and the averaged autocorrelation slice computed from the correlogram
at four different time segments (#1: 50-100 ms; #2: 100-150 ms; #3: 150-200
ms; #4: 200-250 ms), in order from top to bottom, of the linear rising tone
stimulus (left panels) and electrophysiological response at the brainstem (right
panels) at iteration steps 4 (LI) and 32 (HI). Waveform periodicity (1st row)
and resolution of linear rising spectral bands (2nd row) are markedly improved
at the high iteration step in both stimulus and FFR response. The autocorrel-
ograms show clearer bands (black) of temporal regularity in the stimulus and
phase-locked activity in the FFR response at the high iteration step (3rd row).
The correlogram slice from all four time segments shows a sharper peak at the
high iteration step in both stimulus and FFR data (4th row). Note that the cen-
ters of the correlation peak align in a straight line with a slope along the y-axis
in both the stimulus and FFR data at the high iteration step. See also caption to
Fig. 2.

locked activity at the high iteration step (1st row). The spectro-
gram shows darker rising band in the FFR data corresponding
to the high iteration step (2nd row). The average fy value of
the linear rising tone over the entire duration of the stimulus
is 116 Hz, which corresponds to a delay of 8.5 ms. In the auto-
correlogram of the FFR response at the high iteration step (3rd
row), a time-varying band of phase locked activity (dark band
descending from a time lag of about 10 to 6 ms) is observed to
closely follow the decreasing fundamental period, which corre-
sponds to increasing fj in the linear rising tone. Note that the
correlogram slice of the FFR response has better alignment and
higher magnitude peaks at the high iteration step (4th row).

C. IRN Curvilinear Rising

Temporal and spectral properties of the time-variant curvi-
linear rising tone stimulus (left panels) and electrophysiolog-
ical response at the brainstem (right panels) at selected itera-
tion steps are shown in Fig. 4. The FFR response shows greater
phase locked activity at the high iteration step (1st row). The
spectrogram shows darker bands in the FFR data at the high iter-
ation step (2nd row). The onset Fy value of the curvilinear rising
tone is 103 Hz, which corresponds to a delay of approximately
10 ms. In the autocorrelogram of the FFR response at the high
iteration step (3rd row), a time-varying band of phase locked
activity (dark band descending from a time lag of about 10 to
7 ms) closely follows the duration of the fundamental period,
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Fig. 4. Waveform, spectrogram, short term autocorrelation function, autocor-
relogram, and the averaged autocorrelation slice computed from the correlogram
at four different time segments (#1: 50-100 ms; #2: 100-150 ms; #3: 150-200
ms; #4: 200-250 ms), in order from top to bottom, of the curvilinear rising tone
stimulus (left panels) and electrophysiological response at the brainstem (right
panels) at iteration steps 4 (LI) and 32 (HI). Waveform periodicity (1st row)
and resolution of curvilinear spectral bands are markedly improved at the high
iteration step in both stimulus and FFR response (2nd row). The autocorrelo-
grams show clearer bands (black) of temporal regularity in the stimulus and
phase-locked activity in the FFR response at the high iteration step (3rd row).
Correlogram slices show sharper peaks at the high iteration step in both stim-
ulus (segments 1 and 4) and FFR response (segments 1, 2 and 3) (4th row). See
also caption to Fig. 2.

which corresponds to falling/rising fy movement in the curvi-
linear rising tone. Correlogram slices show sharper peaks at the
high iteration step in both stimulus (segments 1 and 4) and FFR
response (segments 1, 2 and 3) (4th row). Note that the peaks
are not sharper in segments 2 and 3 of the stimulus, i.e., those
segments in which we observe the larger changes in slope.

IV. DISCUSSION

This novel generalization of the IRN algorithm makes it pos-
sible to generate time-variant, dynamic curvilinear pitch con-
tours that are representative of those that occur in natural speech.
Herein we applied fy polynomial modeling of Mandarin Tone 2
to demonstrate that our modification of the IRN algorithm can
generate nonlinear pitch contours that are representative of those
that occur in languages of the world. Listed below are the key
mathematical steps that can be extended to create n iterations of
dynamic IRN stimuli in general.

Let 2[n] = [z1, z2, 23 . . . x,] denote the vector of wideband
noise.

Let f[n] = [f1, f2, f3 ... fa] denote the vector of fy pitch
contour [e.g., Mandarin Tone 2, (4)].

Let 7[n] = [r1,72,73...7s] denote the delays at different
time instances computed as

(1/f1,1/f2,1/f3 ... 1/ ful.

The delayed vector of wideband noise is represented as
x’[n] = [.’171 —T1,L2 —T2,L3 —T3...Tpn — Tn].

One iteration of dynamic IRN is created as y[n] = z[n| +
x[n].

In contrast, almost all previous applications of IRN stimuli
in psychoacoustic [15], [19]-[21], physiological [16]-[18] and
cortical imaging [22], [24] experiments have used fixed delays
that produce a constant pitch. Such steady-state stimuli are of
limited value when investigating pitch contours that are linguis-
tically relevant. Denham’s modification of the IRN algorithm
[29] enable us to generate time variant delays that yield falling
and rising fp contours. Linear dynamic pitch trajectories have
been demonstrated to evoke different perceptual responses de-
pending on the language background of the listener [36]. But
electrophysiological responses at the level of the brainstem re-
veal that language experience influences the processing of dy-
namic curvilinear [12], but not linear [13], pitch contours. Thus,
only if we evaluate the neural encoding of both static and dy-
namic (linear, curvilinear) pitch cues at different subcortical and
cortical levels along the auditory pathway are we able to develop
a comprehensive profile of pitch processing from the cochlea to
the cortex.

Our electrophysiological data, as reflected in the FFR, show
that both static and dynamic IRN stimuli can elicit fine-grained
measures of pitch representation at the level of the brainstem. In
so doing, we are able to observe fine-grain timing information in
physiological responses extracted from a noisy background that
underlie the encoding of pitch at the level of the human brain-
stem. Our preliminary results from all three stimulus sets show
autocorrelation peaks corresponding to 7 for both a low and high
iteration. FFR responses at the higher iteration are more robust
and temporally more accurate not only at 7 but also at multiples
of 7. In agreement with earlier perceptual [[15], [19]-[21]] and
physiological [16]-[18] data, our FFR responses correspond to a
delay equal to 7. Thus, it appears that the ensemble phase locked
neural activity reflected in the FFR is able to preserve not only
information about pitch and pitch tracking accuracy, but also in-
formation about the improvement of pitch salience as temporal
regularity is increased from lower to higher iteration steps.

In addition to temporal properties in the FFR responses, we
observe robust spectral bands in the lower harmonics at higher
iteration steps. These spectral bands correspond to the presence
of spectral ripples in the IRN stimuli, which leads us to infer that
spectral properties of the response must also play an important
role in the extraction of pitch relevant information at the level of
the rostral brainstem. Indeed, the FFR spectrograms in our data
appear similar to the computed midbrain output to a spectro-
temporally modulated noise [25].

In this experiment, however, we are unable to tease apart the
temporal and spectral contributions to the pitch representation
reflected in our FFR data because spectral components were not
restricted to the unresolved spectral region. The absolute band-
width of auditory filters increases with center frequency. When
an input stimulus comprising of a tone complex undergoes a
cochlear frequency analysis, lower harmonics are separated out
in the cochlea and are said to be “resolved”, whereas the higher
harmonics (above about the 8th harmonic) are not separated out
by the cochlea and are said to be “unresolved”. Consequently,
demonstration of a clear pitch percept for IRN stimuli with only
unresolved spectral components would counter spectral argu-
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ments for pitch processing and favor a temporal basis for pitch
encoding. In the case of high-pass filtered IRN stimuli, it is un-
likely that spectral ripples are resolved in the spectral region
above the eighth harmonic of the reciprocal of the delay, yet
IRN stimuli restricted to this spectral region produce a strong
pitch percept suggesting the operation of a temporal pitch en-
coding scheme [[14], and references therein].

The scalp recorded FFR can provide a noninvasive neural
index of representation of segmental and suprasegmental fea-
tures of speech sounds at the brainstem level. The use of dy-
namic IRN stimuli described here to elicit FFRs allows us to
systematically vary the temporal regularity of these acoustic fea-
tures thereby enabling us to evaluate the effects of acoustic fea-
ture degradation on (i) the neural representation of these fea-
tures in a target population; (ii) retraining protocols to improve
neural representation; and (iii) signal processing schemes uti-
lized in conventional hearing aids and/or cochlear implants to
recover degraded representation of these features. Such dynamic
stimuli enable us to evaluate the sensitivity of FFR responses to
speech-like pitch contours in a parametrically controllable way
without lexical-semantic confounds. They should also prove to
be a useful tool for assessing the efficacy of different signal
processing strategies for cochlear implants. Indeed, FFRs have
already been used to assess the integrity of neural representa-
tion of certain acoustic features of consonant-vowel syllables
and to evaluate the effectiveness of a retraining program for
learning-disabled children [37]. With respect to cochlear im-
plants, current speech processing algorithms extract only en-
velop information of narrow band signals and omit fine spectral
information thereby limiting pitch encoding. This limitation is
particularly detrimental for native speakers of a tonal language
like Mandarin which exploits variations in pitch to signal dif-
ferences in meaning at the level of the syllable [38]. Dynamic
IRN stimuli representing native-like pitch contours can be used
to evaluate the role of temporal and spectral cues in speech per-
ception by cochlear implant users [39].

Although it is possible to perceive pitch changes in time-
varying IRN stimuli, the ability for human subjects to discrimi-
nate dynamic changes from a non-changing stimulus is limited
to rates slower than 5—-10 Hz [40]. In both linear and curvilinear
IRN stimuli, the time-varying correlations vary in accordance
with the polynomial equations (Fig. 1). However, at the level of
the brainstem, as reflected in our FFR data, pitch relevant in-
formation about the direction of pitch changes are clearly pre-
served (Figs. 3 and 4). Similarly, pitch sweeps are reported to be
audible if the dynamic IRN is generated from sorted delays as
opposed to random delays [29] In view of the ‘sluggishness’ of
the auditory system, further research is warranted to determine
precisely what the constraints are for using such stimuli in the
study of auditory perception.

As a potential window on experience-dependent neural plas-
ticity at the level of the brainstem, a large-scale crosslanguage
(Chinese, English, Thai) study is already underway in our labo-
ratory to determine if pitch representations in Chinese listeners
are more robust in the presence of changing temporal regularity
in IRN stimuli than in Thai (tone language) or English (non-tone
language) listeners. Using IRN curvilinear f, contours repre-
sentative of the four Mandarin tones, we hypothesize that FFR

responses to the Mandarin tones presented at varying degrees of
temporal regularity will emerge at earlier iteration steps and dis-
play larger magnitudes in Chinese listeners as compared to non-
native listeners (Thai, English). Although crosslanguage differ-
ences in FFR responses may emerge from linguistic experience,
the effects of such experience are not specific to speech percep-
tion. Our expectations are that FFR responses to IRN stimuli that
contain linguistically-relevant speech parameters will show that
neural mechanisms are targeting particular features of speech
rather than speech per se.
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