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Midsagittal Jaw Movements Analysis for the

Scoring of Sleep Apneas and Hypopneas

Frédéric Senny, Jacques Destiné and Robert Poirrier

Abstract

Given the importance of the detection and classification of sleep apneas and hypopneas (SAHs) in

the diagnosis and the characterization of the SAH syndrome, there is a need for a reliable non-invasive

technique measuring respiratory effort. This paper proposes a new method for the scoring of SAHs based

on the recording of the midsagittal jaw motion (mouth opening) and on a dedicated automatic analysis

of this signal. Continuous wavelet transform is used to quantize respiratory effort from the jaw motion,

to detect salient mandibular movements related to SAHs and to delineate events which are likely to

contain the respiratory events. The classification of the delimited events is performed using multi-layer

perceptrons which were trained and tested on sleep data from 34 recordings. Compared with SAHs

scored manually by an expert, the sensitivity and specificity of the detection were 86.1% and 87.4%

respectively. Moreover, the overall classification agreement in the recognition of obstructive, central

and mixed respiratory events between the manual and automatic scorings was 73.1%. The midsagittal

jaw motion signal is hence a reliable marker of respiratory effort and allows an accurate detection and

classification of SAHs.

Index Terms

classification, esophageal pressure, jaw movement, respiratory effort, sleep apnea/hypopnea, wavelet.

Manuscript received November 29, 2006; revised February 19, 2007.
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I. INTRODUCTION

More than 4% of adult males and 2% of adult females of the Western countries suffer from obstructive

sleep apnea/hypopnea syndrome (OSAHS) [1]. Sleep apneas and hypopneas (SAHs) belong to a wider

family known as sleep-disordered breathing (SDB) [2]. They have essentially two origins: partial or total

occlusion of the upper airway causes obstructive apnea and hypopnea whereas lack of central moto-neural

respiration drive causes central apnea. The OSAHS has been associated with cardiovascular disorders

and severe damage to central nervous system [3]–[5].

A sleep apnea occurs when breathing stops while sleeping. The clinical definition of an apnea is a

decrease in magnitude of the respiration movements lower than 20% of the reference value for at least

10 s. An apnea is either obstructive (OA), central (CA) or mixed (MA) depending on whether respiratory

effort is completely present, absent or partially present during the apnea. During a hypopnea (H), the

respiration movements decrease below 70% of the reference value and are associated with a SpO2 fall

of at least 4% or an arousal [2], [6]. The severity of the OSAHS is measured by the apnea-hypopnea

index (AHI), the number of apneas and hypopneas per sleep hour.

SAHs induce changes in a number of physiological parameters, which can be used for the diagnosis

of the syndrome. The obstruction leads to variations of nasal airflow and to an increase in the esophageal

pressure (Pes) which is manifested as respiratory effort. Arterial blood oxygen saturation (SpO2) falls

because no gas is exchanged, heart rate and blood pressure increase leading to possible cardiovascular

damage. Lastly, arousals, whose intensity and latency depend on the type of sleep disorder, appear at the

end of more than 70% of apneas and fragment the sleep structure [7]–[10].

The signals commonly used to detect and classify apneas and hypopneas, both in full polysomnography

and ambulatory screening methods, are SpO2, plethypulse rate (both recorded by a pulse oxymeter), nasal

airflow and thoraco-abdominal movements [11]. The Pes gives an accurate determination of intrathoracic

pressure which becomes subatmospheric at inspiration and decreases further when the upper airway

is partially or totally occluded [12]. Consequently, Pes is considered as the gold standard measure of

respiratory effort to discriminate SDB. However, because the probe must be placed in the esophagus,

the technique is relatively invasive and may alter sleep. Consequently, non-invasive Pes surrogates are

preferred, such as nasal flow recorded by cannula (NAF), thoraco-abdominal movements (TAM), pulse

transit time (PTT), or forced oscillation technique (FOT).

The nasal flow is obviously dedicated to SAHs detection. Automatic algorithms based on NAF provides

good detection rate (see [13] for instance). Though the flattening of the inspiratory curve is a sensitive
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marker of respiratory effort [14]–[16], the classification of apnea using NAF is impossible if complete

cessation of airflow occurs. TAM, recorded using strain gauges belts, are usually used in addition to

NAF to classify SAH by the visual inspection of these movements [11], [17] or by an automated method

[18]. However, the signal quality is poor when belts are not held in position, as it is the case in obese

patients. The PTT is defined as the time between the R wave on the electrocardiogram (ECG) to the

pulse wave arrival at the finger [19]. The classification of SAH is feasible with PTT by visual inspection

[20]. FOT is a measure of the upper airway impedance. This method consists in the application of a low

amplitude pressure at a frequency of 5 to 20 Hz by a mask pressure. From the flow and the pressure

both recorded, the FOT signal is extracted and associated with the flow signal to score SAHs using a

breath-by-breath Despite a cumbersome apparatus, the obstructive and central nature of a respiratory event

is accurately found [21], [22]. Other automated methods for SAHs detection (without classification of

respiratory events) have been recently developed to diagnose OSAHS using ambulatory measurement and

the analysis of the pulse arterial tonometry (PAT) [23], [24] or ECG [25], [26]. Generally, the accuracy of

automatic methods varies from 80% to 90%. Misclassification errors come from the intrinsic limitations

in signal processing, in detection and also in classification methods, but also from the lack of agreement

between scorers due to their own interpretation of rules, especially those applying to hypopneas.

The topic of this paper is the automatic detection and classification of SAHs through the midsagittal jaw

motion (MJM), a novel Pes surrogate. The rationale is based on the principle that when the upper airway

collapses and when, in the meantime, the pressure in the lungs becomes more and more subatmospheric,

the jaw is passively lowered by thoracic attraction called thoracic tugs [27]. The consequent opening

of the mouth reflects, during sleep, a stronger effort to breath. In [28]–[30], oscillating jaw movements

(breathing frequency band [0.15-0.33] Hz) were observed in correlation with the Pes during obstructive

sleep events. This correlation confirmed that the jaw movements could reflect the effort to breath (cases

(a), (b), (c), (d) and (f) in Fig. 1). In addition to the breathing jaw movements, vertical mandibular

position is more open during sleep in patients with OSAHS than in healthy patients. Besides, significant

mandibular opening during an obstructive apnea in NREM sleep was observed, while in REM sleep, the

muscle atonia attenuates these movements [31]. The masseter (main muscle of the mandible) plays a

major role in stabilizing the jaw during a SAH and in the closing of the mandible which terminates an

obstructive sleep event [28], [30], [31]. In this paper, this closure of the mandible is referred to salient

jaw movement. It appears during the breathing recovery and can be either a smooth or a sharp closing

jaw movement. Fig. 1 depicts 8 patterns of the MJM signal in cases of (a) obstructive apnea, (b) central

apnea, (c) mixed apnea, (d) hypopnea, (e) healthy sleep, (f) snoring, (g) awake and (h) isolated artefacts
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(swallowing,. . . ). To sum up the previous findings [27]–[31], the three main features of the midsagittal

jaw motion signal to suspect and score sleep apneas and hypopneas are 1) a significant opening of the

mouth, 2) a salient jaw movement occurring after the sleep event (pointed out by an arrow in Fig. 1) and

3) the oscillating jaw movements related to respiratory effort which are expected to be present during

an obstructive apnea. This last feature is the core asset of this signal, which means that the jaw motion

sensor is an effort sensor and not a respiration sensor (like cannula). Recent studies presented a rule-based

approach to detect SAHs [32] that predicted OSAHS accurately [33], in which the jaw motion is recorded

at home with an easy-to-use ambulatory device [34]: the sensitivity and specificity of SAHs detection

were respectively 71.8% and 76.8% when considering the whole recording, awakenings included, while

OSAHS was diagnosed with a sensitivity and a specificity greater than 90%. The purpose of this paper is to

propose an off-line automatic analysis of the jaw motion to improve SAHs detection and to classify them.

The proposed method combines wavelet analysis to detect the salient mandibular movements (section

II-B1), to delineate events which are likely to contain the SAHs, to quantize respiratory effort (section

II-B2), and multi-layer perceptrons to classify these delimited events using local and contextual features

(sections II-B3 and II-B4). The perceptrons were trained and tested using only sleep data (data during

wake were discarded to simplify the task). The ability of jaw motion analysis to differentiate sleep from

wake is out of the scope of this paper and will be assessed in a further study.

II. MATERIALS AND METHODS

A. Subjects and recordings

Data from 34 recordings between 10pm and 3am were studied. For all of them, a standard polysomnog-

raphy (PSG) was recorded in a hospital setting. PSG is a multichannel recording composed of at least the

electroencephalogram, electrooculogram, electromyogram, electrocardiogram, nasal flow, arterial blood

oxygen saturation, thoraco-abdominal movements, snoring sounds and body position. Sleep stages, and

sleep apneas/hypopneas were visually screened according to standard rules [2], [35].

The mandibular opening was measured by the JAWSENS sensor supplied by NOMICS [36]. The sensor

(Fig. 2) is made up of two coupled resonant circuits, placed perpendicularly to the medium line of the

face on the forehead and below the lower lip. The output voltage is a cubic function of the distance [37].

The voltage is sampled at 10 Hz, digitally linearized and stored on the computer synchronously with the

other PSG channels in a EDF file [38].

The mandibular movements signal can be expressed either in absolute value (millimeter) or in normal-

ized value (percentage of mouth opening). Normalizing the signal is a two-steps process. Firstly, patient
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is asked to widely open then fully close his/her mouth just at the very beginning of the night recording.

Secondly, the user must choose the two values vo ”wide open mouth” and vc ”fully closed mouth”

through a graphical user interface displaying the first minutes of the signal. Data are then normalized

dn(%) = 100
d− vc

vo− vc
. (1)

100% corresponds to a wide open mouth and 0% to a fully closed mouth.

In this paper, the mandibular movements signal is displayed in percentage of mouth opening for

convenience, but analyzed in millimeter to avoid user’s measure errors occurring in the normalization

step.

B. Signal processing

The scoring of sleep apneas and hypopneas by the analysis of jaw motion relied on the detection of

salient jaw movements, which occur after the sleep events, and on the quantization of both the opening

of the mandible and the respiratory effort (Fig. 1). Each movement of the mandible was localized and

characterized by the continuous wavelet transform. High amplitude or discontinuous movements were

assumed to contain the salient jaw movements which allowed the delineation of time courses likely to

contain the sleep events (such assumption was confirmed by the results, see section III). The relative

temporal positions of movements were used to track the effort patterns. The multi-layer perceptrons,

trained with local and contextual features, rejected non-apneic events at first, and then classified the

detected apneic events into obstructive, central or mixed apneas or hypopneas. Wavelet transform and

features computation were performed under MATLAB, while the selection of features, their normalization

and the training of perceptrons were performed under LNKnet using a cross-entropy cost function, the

back-propagation training algorithm and the standard sigmoidal activation function [39] (a C code of

a trained perceptrons can be generated by LNKnet and included in a MATLAB routine). The signal

processing block diagram is sketched at Fig. 3 and each block will be detailed further.

1) Block 1 - Continuous Wavelet Transform (CWT): Wavelet transform [40] is a widely used tool for

the analysis of biosignals [41]. The wavelet coefficient W of the continuous wavelet transform is defined

as

W (u, s) = f(t) ∗ ψs(t) =

∫
∞

−∞

f(t) ψ(
t− u

s
)dt, (2)

with

ψ(t) = − 1√
2π

t exp(− t
2

2
), (3)
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the first derivative of a Gaussian window in our application, t the time and s the scale. Dilating ψs (big

s) tracks low frequency changes whereas compressing ψs (small s) tracks high frequency changes. The

CWT of the discretized signal f(n) was computed in the Fourier domain using the fast Fourier transform

(FFT) and its inverse (IFFT) on a N (= 1024) points sliding window (overlap=4
5 and border coefficients

were ignored), scales s covering 5 octaves from s1(= 1) to s2(= 25) with 20 points per octave, and the

following relations

W (n, s) = IFFT [f̂(w) ψ̂s(w)](n), (4)

f̂(w) = FFT [f(n)], (5)

ψ̂s(w) = jws e−
(ws)2

2 , (6)

w =
2πk

N
, k = 0, . . . , N − 1. (7)

Two properties of the first derivative of a Gaussian wavelet are to remove the average component and

to associate a curve in function of the scale with each edge in the signal (i.e. the closing or opening

jaw movements): the curve, noted |W (s)|, is a series (or a chain) of wavelet transform modulus maxima

(local maxima of the wavelet transform close in the time but at different scale) [40]. Finding such maxima

chains allowed the detection of jaw movements, while the area under the curves was used to characterize

the jaw movements, instead of a parametric study of |W (s)| as in [40], [42], [43]: if the area under four

curves related to four edges of a synthetic signal was compared (edges noted A, B, C and D in Fig. 4),

the area associated with sharp or high amplitude edges (edges A and B) was obviously bigger than the

area associated with smooth or low amplitude edges (edges C and D). Consequently, the measure of the

area contained information about amplitude and regularity such that the bigger the area was, the bigger

the amplitude was or the more irregular (or discontinuous) the edge was. Hence, the measure of the area

under the maxima chains was sufficient to detect salient jaw movements (SJMs) and relevant movements

related to respiratory effort (RE), because, in our application, the two important features of an edge were

its amplitude and its regularity (a discontinuous structure in a signal appears as an irregular edge).

Wavelet transform modulus maxima were chained and two sets of chains (S1 and S2) were computed

1) S1 contains chains Chi such that Ii ≥ ThRE ,

2) S2 contains chains Chj such that Ij ≥ ThSJM ,

where

Ik =

∫ log2(s2)

log2(s1)
|W | d(log2(s)) ≈

100∑
n=1

|W |h, (8)
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is the area under the curve formed by the maxima chain Chk (graph (c) in Fig. 4) and h is the constant

step in LOG2 of scales (h = 1
20 = 0.05). Thresholds ThRE and ThSJM were two fixed percentages

of all the integrals of the chains computed on the sliding window. Thus, the chains of sets S1 and S2

on a window were independent whether or not the signal had been normalized, and depended only on

the content of that window. Sleep events longer than the length of the sliding window ( 1024
10 Hz = 102.4

sec) could not be detected, but the sleep events of interest usually last less than 60 seconds. ThRE was

arbitrarily fixed at 0.005 so that almost all movements were tracked. Several values of ThSJM were tested

(see the results section) and the best value found maximized the sensitivity with a reasonable specificity.

Each chain Chk had thereby three features:

• Ik, the integral under the chain of maxima characterizing the edge;

• tChk
, the instant the edge occurred (time of the smallest scale of the chain);

• S1 or S2, the set it belonged to.

2) Block 2 - Respiratory effort and delimitation of time courses: In order to assess quantitatively

respiratory effort cycles, the temporal distribution of chains from set S1 had to meet the next criteria

derived from our normal breathing observations:

i. a cycle of effort was composed of inspiration and expiration,

ii. the frequency varied between 0.15 and 0.33 Hz,

iii. the inspiration time was usually less than the expiration time.

Time differences of successive chains of S1 were computed, rules were applied to these time differences.

A rule is a look-up table whose output O varies from 0 to 1. Finally, outputs of all rules were combined

using a combination fonction F (average, geometric distance or Dempster-Shafer’s rule for instance) to

quantify respiratory effort (RE) using

RE(tk) = IkF (O1, O2, ..., On), (9)

where Ik was weighted by the combination function of the n rules F (O1, O2, ..., On) ∈ [0 − 1] and

tk ∈ [
tChk−1

+tChk

2 ,
tChk+1

+tChk

2 [.

Salient jaw movements were tracked with the set of chains S2 which contained high amplitude or

discontinuous jaw movements. An apneic event was assumed to last more than 8 seconds (instead of 10

seconds, by definition), because its onset and offset could not be found as precisely with the jaw motion

as with nasal flow. Thus, successive chains from set S2 with time difference less than 8 seconds were

grouped, and each group was (or at least contained) the desired salient jaw movement. A time course, a

potential respiratory event, was defined between two successive salient jaw movements.
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3) Block 3 - Computation of features: The features were computed on each time course (TC), the

related salient jaw movement (SJM) and the neighborhood. The Table I lists these features and gives a

short description. These features were normalized (zero mean and unit variance) and selected using a

nearest-neighbor leave-one-out cross-validation technique under LNKnet to reduce the complexity of the

multi-layer perceptrons (a decision tree trained on the same data also selected most of these features). Most

features are self-explanatory, except the mean variations (µ1,∆µ21,∆µ31,∆µ41,∆µ51), the durations

without effort (d1/2(noRETC) and d2/2(noRETC)) and the index of periodicity (IOP ). The five features

from local means of the signal were computed as follows

• the time course was decomposed into 5 subregions of equal range;

• the mean of the signal on each subregion (µi, i = 1, . . . , 5) was computed ;

• µ1 was a feature as it is, the other four were the differences ∆µj1 = µj − µ1, j = 2, . . . , 5

The two durations d1(noRETC) and d2(noRETC) were defined as the number of samples in the first

(and the second) half of the time course for which no respiratory effort (RE) was present, that is the effort

was below the threshold ThnoRE . These two durations were computed for different values of ThnoRE ,

the features selection methods found 3h
10 (h is the constant step in LOG2 of scales) as the most relevant

value.

The index of periodicity IOP was a temporal and a local measure of periodicity in successive time

courses. It was computed from the durations of the salient jaw movement (dSJM) and of the time course

(dTC) as follows

• normalize ith sleep event dSJM and dTC using the durations from the whole night recording

dnX(i) =
dX(i) − µ(dX)

σ(dX)
, X = {SJM, TC};

• cumulate upon five successive sleep events and compute the local Euclidian distance

led(i) =

SJM,TC∑
X

−2,−1,1,2∑
j

(dnX(i+ j) − dnX(i))2;

• define a threshold Thled as the 75th percentile of led, and apply a rule such that

IOP (i) = 1 , if led(i) ≥ Thled,

IOP (i) = 0 , if led(i) < Thled,

to finally compute the feature IOP (i).
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TABLE I: List of features computed on each time course (TC) and on the related salient jaw movement

(SJM). The features marked with a d or c were dedicated respectively to SAHs detection or classification.

FEATURES DESCRIPTION

dSJM d duration of SJM (in samples)

µ(ISJM ) dc mean of Ik ∈ SJM

max(ISJM ) d max of Ik ∈ SJM

pRESJM
d percentage of RE in SJM

µ(ITC) d mean of Ik ∈ TC

σ(ITC) d standard deviation of Ik ∈ TC

dTC dc duration of TC (in samples)

µ(IT C)
max(ISJM )

d increase between TC and SJM

µ1
d mean of signal of 1st subregion

∆µ21
dc mean variation between 2nd and 1st subregions

= µ2 − µ1

∆µ31
dc mean variation between 3rd and 1st subregions

∆µ41
d mean variation between 4th and 1st subregions

∆µ51
d mean variation between 5th and 1st subregions

IOP d index of periodicity

p25(RETC) c 25th percentile of RE

d1(noRETC) c duration for which no effort were found

in the first half of the TC

d2(noRETC) c duration for which no effort were found

in the second half of the TC

4) Block 4 - Classification of time courses: The classification was performed in two steps to reduce

the complexity of the problem: rejection of non-SAH time courses was performed by two multi-layer

perceptrons (MLPs) and the classification of respiratory events by a third one. The first MLP was fed with

14 features computed on the time course, the related salient event and the neighborhood (features marked

with a d in Table I). The second MLP modelled the neighborhood of the time course to be classified by

adding to the 14 features the two outputs of the first MLP from n successive time courses where the

one to be classified was the cth (c ∈ 1, ..., n) (Fig. 5). The outputs of the first MLP were the estimated

posterior probabilities (EPPs) using the cross-entropy cost function during the training step. Depending
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on n and c, the added features (the EPPs) contained contextual information about past, future or both:

if n = 5 and c = 3, a time course was classified by the second MLP when the current, the previous two

and the next two time courses were classified by the first MLP. Results are shown for different references

in three and five successive time courses: the reference is the center one (n = 5 and c = 3) and the last

one (n = 3 and c = 3).

Once SAHs were detected, they were classified using the 7 features marked with a c in Table I. Two

approaches were studied for this purpose:

1) The first approach was the basic one: one classifier (7 inputs, 4 outputs and no hidden layer) to

classify a sleep event into one of the four classes: hypopnea, obstructive apnea, central apnea and

mixed apnea (Fig. 6 (a)).

2) The second approach used three MLPs (7 inputs, 2 outputs and no hidden layer), which had a

specific task and were applied in a priority order (Fig. 6 (b)). The task of the first MLP was to

find central apneas among all the detected SAHs. If the event was not central, the second MLP

had to recognize mixed apneas among totally or partially obstructive events. The last MLP tried to

distinguish obstructive apneas from hypopneas. The greatest priority was given to the detection of

central apneas, followed by the classification of mixed events and finally the separation between

obstructive apneas and hypopneas.

The second approach was motivated by the decomposition of this complex classification problem into

smaller and easier binary classification problems. Moreover, because the jaw movements signal is not

a respiration signal, the classification of obstructive apneic and hypopneic events was expected to be

difficult, thus of less priority than the recognition of central events.

III. RESULTS

Delimitation of time courses depended on the selection of significant edges, which depended on the

integral under the maxima chains and the threshold ThSJM . Table II shows that the use of the integral

according to the LOG2 of scales with ThSJM = 2 gives the best trade-off between good sensitivity and

a reduced false alarm rate. 3127 SAHs were manually scored in the 170 hours of recording (= 5 ∗ 34).

The method detected 2990
3127 = 95.6% of the SAHs.

For both local and contextual classification, several MLPs structures had been trained (3200 non-

SAHs and 1830 SAHs) and tested (2200 non-SAHs and 1160 SAHs). The sensitivity and specificity
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TABLE II: Number of delineated non-SAH and SAH time courses in function of ThSJM and the formula

used to compute Ik.

NON-SAH SAH % OF SAHS ThSJM COMPUTE Ik USING

5400 2990 95.6 2
R

|W | d(log2(s))

7111 3034 97.0 2
R

|W | ds

5949 2887 92.3 2.2
R

|W | ds

were computed

Sensitivity Se(%) = 100
TP

TP + FN
, (10)

Specificity Sp(%) = 100
TN

TN + FP
, (11)

where TP were the true positives, FN the false negatives, TN the true negatives and FP the false positives.

Table III sums up the most interesting experiments. The first MLP had 14 inputs listed in Table I. Three

structures are presented in Table III : one without any hidden layer, one with 6 nodes and another one

with 11 nodes in a single hidden layer. The first structure is the simplest model which leads to the

best sensitivity but the worst specificity. The performance of the two other ones was similar but the

complexity of the third model was obviously higher. Thus, the second model was chosen (Se = 86.0%

and Sp = 84.2%).

The number of inputs of the second MLP was equal to 14 + 2 ∗ n (the 14 features of the current

time course to be classified and the EPPs of neighboring time courses) and two outputs SAH or non-

SAH. Results of two cases are shown in Table III. The added features of the first case contained past,

present and future information (n = 5 and c = 3), while the second case contained only past and present

information (n = 3 and c = 3). The EPPs were computed by the MLP whose structure was 14-6-2.

Specificity was increased up to at least 87.4% in both cases, but the increase of sensitivity was higher

when more information about the neighborhood was added (90.1% versus 88.5%).

To sum up, when taking the first MLP with structure 14-6-2 and the second MLP with structure 24-2,

90.1% of the 95.6% of detected SAHs were correctly scored. Therefore, the global sensitivity for the

detection step was 86.1% with a specificity of 87.4%. In order to assess the capability of the detection

method in full night recording, it was applied to the whole sleep data (awakenings were discarded

and the total sleep time was given). The apnea-hypopnea indices (AHIs) from the 34 recordings were
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TABLE III: Sensitivity and specificity of the recognition of detected SAH computed on the test set.

Comparison of several structures of the first two MLPs.

MLPS STRUCTURE TP FN FP TN SE SP

14-2 1016 144 432 1768 87.6 80.4

14-6-2 998 162 347 1853 86.0 84.2

14-11-2 1007 153 345 1855 86.8 84.3

24-2∗ 1093 115 277 1923 90.1 87.4

20-2∗∗ 1027 133 275 1925 88.5 87.5

∗ n = 5 and c = 3, EPP computed by MLP 14-6-2.

∗∗ n = 3 and c = 3, EPP computed by MLP 14-6-2.

computed and compared with the AHIs from the polysomnography: no significant difference was found

between them (through T-student and Fischer-Snedecor tests, p < 0.01, the mean and standard deviation

of their difference were 0.62± 6.67 and the slope of the linear regression was 0.85 with a coefficient of

determination R2 of 0.89).

The database used for the classification problem was composed of 1715 respiratory events (149 Hs,

876 OAs, 157 CAs and 533 MAs) from the 8 recordings for which a mild or severe sleep apnea syndrome

was diagnosed through the polysomnography. Because the database did not contain many hypopneas or

central apneas, the training set was limited to 100 patterns per class, but it was large enough to train

the small MLPs (7 inputs, 2 or 4 outputs and no hidden layer). The remaining patterns formed the test

set (49 Hs, 776 OAs, 57 CAs and 433 MAs). The same training and test sets were used to assess the

two approaches (one MLP and three MLPs in cascade, Fig. 6). The comparison of the classes attributed

to each sleep event by the expert and by the automatic scoring allowed to construct the two confusion

matrices, which are illustrated in Tables IV and V. The diagonal elements of a confusion matrix are

well-classified patterns while the others are errors: in Table IV for instance, 238 MAs were correctly

classified by both the expert and the automatic method, while 58 events were classified as MA by the

expert but as CA by the automatic method (numbers in bold). The global agreement of the first approach

was 50.1% and, for the second one, 61.4% which was thereby better but barely enough. Despite the

small amount of CAs, 71.9% of the CAs were found. The CAs found as MAs were mainly due to one

oscillation of the jaw, considered as effort, included in the event delineated automatically. MAs were

classified satisfactorily (69.0% of agreement), while OAs were distributed into H, OA and MA events
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(57.7% of agreement). However, if Hs and OAs were grouped as obstructive respiratory events (that is

if the italic numbers in the confusion matrix were summed), 73.9% of obstructive events were correctly

classified. Moreover, in this case, 73.1% of respiratory events were correctly classified into obstructive,

central or mixed events using the classification approach in cascade. Fig. 7 (a) depicts good classification

of obstructive, mixed and central apneas. Fig. 7 (b) shows the difficulty to distinguish obstructive apneas

from hypopneas.

TABLE IV: Confusion matrix of the classification of SAHs into hypopnea (H), obstructive apnea (OA),

central apnea (CA) or mixed apnea (MA) by the first approach. The MLP structure was 7-4. The global

agreement was 50.1%, and increased up to 65.3% if obstructive events (H and OA) were grouped.

automatic scoring

H OA CA MA

H 20 13 6 10

visual OA 190 315 61 210

scoring CA 2 0 38 17

MA 36 56 58 238

TABLE V: Confusion matrix of the classification of SAHs into hypopnea (H), obstructive apnea (OA),

central apnea (CA) or mixed apnea (MA) by the second approach. The structure of the three MLPs was

7-2 each. The global agreement was 61.4%, and increased up to 73.1% if obstructive events (H and OA)

were grouped.

automatic scoring

H OA CA MA

H 20 20 4 5

visual OA 134 448 41 155

scoring CA 1 3 41 12

MA 12 91 32 299
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IV. DISCUSSION AND CONCLUSIONS

The esophageal pressure (Pes) should be the favorite signal for the screening of sleep-disordered

breathing (SDB) in hospital settings or in ambulatory methods, as the Pes signal is the best clinical

marker of respiratory effort. However, the sensor must be placed by an expert, it is invasive and alters

the patient’s sleep. Instead of using Pes to score sleep apneas and hypopneas (SAHs), non-invasive Pes

surrogates were studied or are still under study, such as pulse transit time (PTT) [20], forced oscillation

technique (FOT) [21], [22], nasal airflow (NAF) [13]–[16] and thoraco-abdominal movements (TAM)

[11], [17], [18]. This paper proposed a novel non-invasive easy-to-use Pes surrogate, the midsagittal jaw

movements, and a dedicated automatic method to score SAHs without the use of the nasal flow signal.

Continuous wavelet transform was used to delineate SAHs, through the detection and the characterization

of jaw movements using the measure of the area under the curve formed by wavelet transform modulus

maxima chain, and to quantize respiratory effort. Classification of SAHs was performed using MLPs

with local and contextual features. The proposed method reached 86.1% of sensitivity with a specificity

of 87.4% for SAHs detection when wake data were discarded. False negative patterns mainly came

from isolated SAHs which were difficult to detect with a contextual approach favoring the detection of

salvo of SAHs which are more relevant, while respiratory effort related arousal (RERA) and sleep events

close to hypopnea definition mainly contributed to false positive patterns. The classification of SAHs by

jaw motion analysis is quite accurate with an agreement of 73.1%. Such results were achieved 1) by

decomposing the four-classes problem into easier binary sub-problems, 2) by ordering their application in

descending priority (central apnea recognition is more important than the separation between hypopnea

and obstructive apnea, Fig. 6) and 3) by viewing obstructive hypopneic and apneic events as one kind of

obstructive respiratory events. This last condition is intelligible because of the inherent capacity of the

maxillo-mandibular movements to assess effort and not respiration (like the nasal airflow). Therefore, the

behaviour of the jaw movements are expected to be quite the same whether the decrease in amplitude of

airflow signal is 75% (defining a hypopnea) or 85% (defining an apnea) of the reference value (Fig. 7

(b)). In addition to this limitation about classification, two other origins of misclassification errors should

be pointed out: First, the computed features could not reflect the real content of the sleep event because

delineated sleep events with jaw motion did not correspond exactly to those delineated with the nasal

flow signal by a human expert. Second, scorer’s interpretation of the standard rules is known to play a

role in classification results, that is the boundaries between apneas and hypopneas or between obstructive

and mixed apneas are somewhat fuzzy. Nonetheless, sleep apneas and hypopneas were correctly detected
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and delimited. Besides, the obstructive or central nature of a respiratory event was found with a fairly

good accuracy.

Compared with other methods presented in the literature, the proposed method is competitive when

only sleep data are considered (data in wake state were excluded). In [18], the nasal flow was used

to delimit apneas, while wavelet coefficients, computed on the thoracic movements signal, were the

inputs of a feedforward neural network. 90.0% of apneas were detected with a 76.6% of specificity.

The classification agreement was 83.8% using a cross-validation technique and dropped to 74.0% on

a validation set composed of new data. The FOT signal could be used instead of thoracic movements

to classify apneas [22]. The global agreement of the dedicated algorithm was 73.5% on 12 recordings.

The results obtained with our method based on jaw movements analysis were better than the previous

one, since this latter was only able to detect apneas and hypopneas with a sensitivity of 71.8% and a

specificity of 76.8% [32], and were similar to the methods cited above. Moreover, an advantage of our

method is that the detection and the classification of respiratory events is feasible with only one signal,

while nasal flow, PAT or ECG based methods require another physiological parameter, which measures

respiratory effort (like TAM or FOT). This asset is valuable especially in ambulatory diagnosis methods.

The proposed method could be improved by refining the delimitation of suspected SAHs which the

features should better characterize. Moreover, time series classification tools, such hidden markov models,

should be tested and compared with the proposed one. A multi physiological signals analysis will certainly

improve the scoring of SAHs. For example, SpO2 is a simple and reliable indicator of SAHs in most

cases and its use would increase both sensitivity and specificity. The classification of SAHs may be

improved by making use of the respiratory events delimited by the nasal flow signal, especially in cases

of hypopneas and RERA. Nevertheless, the jaw motion is a reliable signal to score SAHs and may be a

very useful physiological signal to screen SDB (SAH, RERA or snoring). Further studies should focus

on the relationship between salient jaw movements and arousals, and on the discrimination between sleep

and wake. Consequently, the jaw motion, on its own, should be able to diagnose and characterize the

sleep apnea syndrome in a easy and convenient manner, well suited for home sleep studies.

In conclusion, the midsagittal jaw motion signal is a reliable marker of respiratory effort and its analysis

using wavelet transform and multi-layer perceptrons allows an accurate detection and classification of

sleep apneas and hypopneas.
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Fig. 4: .
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Fig. 7: .
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Fig. 1: Typical patterns of sleep apneas and hypopneas (SAHs): (a) obstructive, (b) central, (c) mixed

apneas and (d) hypopneas. A salient jaw movement (SJM, each arrow points at a SJM) appears

after the offset of a SAH. Respiratory effort, correlated with esophageal pressure, is manifested as

oscillations of the mandible. Typical non-SAH patterns: (e) healthy sleep, (f) snoring, (g) awake, (h)

artefact (a swallowing). The mandibular movements signal is expressed in percentage of maximal

mouth opening in function of time in seconds.

Fig. 2: (a) The midsagittal jaw movements sensor, the JawSensTM supplied by NOMICS, measures

the distance d between two resonant circuits placed on the forehead and on the chin. The interface

device allows to plug the sensor to any polysomnographic system. (b) The ambulatory recording

device BrizzyTM .

Fig. 3: Block diagram of the analysis of midsagittal jaw movements.

Fig. 4: (a) A synthetic signal, (b) its continuous wavelet transform (CWT) and (c) the chains of

the wavelet transform modulus maxima in function of scales of four edges noted A, B, C and D

are illustrated. The computation of the area under the curves drawn by maxima chains was used to

select and characterize relevant jaw movements related to salient jaw movements (edges A, B and

D) and respiratory effort (edge C).

Fig. 5: Detection of SAHs using two multi-layer perceptrons (MLPs). The 14 features are listed in

Table I and marked by a d, the others are the estimated posterior probabilities (EPPs) of n successive

time courses, c is the current time course to be classified.

Fig. 6: Classification of hypopnea (H), obstructive apnea (OA), central apnea (CA) or mixed apnea

(MA) using (a) one decision box or (b) three decision boxes in cascade. Each box is a multi-layer

perceptron that has 7 inputs (see Table I) and no hidden layer.

Fig. 7: Illustration of the signal processing of jaw motion. Jaw movements (upper trace), nasal

flow (lower trace), thoraco-abdominal movements, visual scoring (solid line) and automatic scoring

(dashed line) and the quantization of respiratory effort (RE) based on jaw movements analysis are

presented. (a) The three successive apneas labelled A, B, C (respectively a mixed, a central and an
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obstructive apnea) were correctly classified and fairly well delineated. (b) These three obstructive

events noted D, E and F (a hypopnea between two apneas) looked like each other when the jaw

movements were considered, because these movements reflect effort and not respiration. Despite the

difficulty to distinguish obstructive apneas from hypopneas, the obstructive feature was recognized.
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