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Quasi-Periodic Signals With Time-Varying Period
Thato Tsalaile∗, Member, IEEE, Reza Sameni, Student Member, IEEE, Saeid Sanei, Senior Member, IEEE,

Christian Jutten, Fellow, IEEE, and Jonathon Chambers, Senior Member, IEEE

Abstract—A novel second-order-statistics-based sequential
blind extraction algorithm for blind extraction of quasi-periodic
signals, with time-varying period, is introduced in this paper.
Source extraction is performed by sequentially converging to a
solution that effectively diagonalizes autocorrelation matrices at
lags corresponding to the time-varying period, which thereby ex-
plicitly exploits a key statistical nonstationary characteristic of the
desired source. The algorithm is shown to have fast convergence
and yields significant improvement in signal-to-interference ratio
as compared to when the algorithm assumes a fixed period. The
algorithm is further evaluated on the problem of separation of a
heart sound signal from real-world lung sound recordings. Sepa-
ration results confirm the utility of the introduced approach, and
listening tests are employed to further corroborate the results.

Index Terms—Blind source extraction (BSE), quasi-periodic,
second-order statistics, statistical nonstationarity, time-varying
period.

I. INTRODUCTION

B LIND SOURCE extraction (BSE) has received much re-
search attention because of its potential utility in a wide

range of applications including many in biomedical signal pro-
cessing. The problem arises when linear, instantaneous mix-
tures or observations, generated as a set of signals are mixed by
traversing an unknown medium, essentially without delay, need
to be processed to estimate or recover a number or all of the
original sources. One of the important and challenging issues in
BSE is how to extract specific sources of interest. This requires
the proper use of prior information about the sources or the mix-
ing operation in forcing the algorithm to extract the sources of
interest rather than any arbitrary sources. The objective of blind
source separation (BSS), on the other hand, is to simultaneously
recover or estimate all the original sources from their mixtures.
Compared with BSS, BSE provides more flexibility and has
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some potential advantages over BSS, in terms of computational
complexity and extraction of only the sources of interest.

Over the last decade or so, several approaches have been de-
veloped for the solution of both BSS and BSE problems, which
are based on either second-order or higher order statistics of the
data. Typically, the higher order techniques consist of two steps:
a whitening step for exploiting the second-order statistics and a
rotation step for exploiting the higher order statistics. They re-
quire few assumptions apart from the statistical independence of
the sources, and therefore, have generally been the preferred ap-
proach to the solution of BSE and BSS. Higher-order-statistics-
based solutions include [1]–[4]. Second-order statistics meth-
ods, on the other hand, have the advantage of requiring shorter
data records due to their reduced sensitivity to small sample es-
timation errors, and do not limit the number of Gaussian sources
that can be separated to one (see, for instance, [5]–[8]). As op-
posed to higher-order methods, second-order methods operate
in a semiblind context, since their derivation usually requires
that certain additional assumptions are made on the nature of
the original signals, such as statistical nonstationarity of the
sources, presence of temporal structure in stationary signals, or
cyclostationarity [5]–[8]. Such information is usually available
in certain biomedical applications, for instance, in physiological
signals such as the ECG, and should be exploited.

Several algebraic-block-based methods exist that exploit the
temporal correlations of the source signals, and perhaps the
best known is the second-order blind identification (SOBI) al-
gorithm [9]. Consistent with the operation of batch algorithms,
the original SOBI algorithm entails prewhitening the data, fol-
lowed by the (approximate) joint diagonalization of a set of
covariance matrices at different time lags, thus potentially al-
lowing separation of sources based on their temporal structure.
However, in the SOBI algorithm, the time lags at which the co-
variance matrices are jointly diagonalized are fixed and are not
matched to the extraction of a quasi-periodic signal with time-
varying period. Furthermore, computational complexity of this
algorithm is generally substantially greater than sequential al-
gorithms due to the need to diagonalize a number of sample
covariance matrices, and therefore, will not be considered fur-
ther in this paper. Related algorithms that are essentially based
on a similar principle can be found in [10] and [11].

Recently, a sequential algorithm was developed for a class
of periodic signals in [12]. In that work, however, the signals,
although periodic, have a constant or fixed period. In this paper,
we exploit the combination of the sequential blind source ex-
traction (BSE) algorithm using second-order statistics based on
the approximate joint diagonalization (AJD) of autocorrelation
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matrices [13] and the time-varying lag (period) calculation pro-
cedure recently proposed in [20], and thus, introduce a novel
sequential blind source extraction algorithm for the extraction
of quasi-periodic signals with time-varying period. This paper is
motivated by the observation that the majority of physiological
signal measurements (for example, ECG) exhibit some degree
of periodicity and statistical nonstationarity. The nonstationar-
ity manifests itself as variations in period as a function of time.
This makes the assumption of a fixed period (as in [12]) invalid
for the ECG signal, and perhaps many other biomedical signals.
To the best of our knowledge, a sequential BSE algorithm that is
matched to such variations in the signal period has not been dis-
cussed previously. Moreover, using a time-varying period can
help with the extraction of a specific desired source.

To this end, a time-varying period τt , which is estimated for
each new cycle-to-cycle interval of the quasi-periodic source
to be extracted, is incorporated in the sequential blind extrac-
tion algorithm. Source extraction is performed by sequentially
converging to a solution that effectively diagonalizes the au-
tocorrelation matrices at lags τt corresponding to the different
periods.

The rest of the paper is organized as follows. Problem for-
mulation, in the context of BSE using second-order statistics
is presented in Section II. In Section III, we present and in-
corporate the concept of time-varying period in the problem
formulated in Section II. We present the simulation results in
Section IV. In Section V, we present results of applying the
new algorithm to extraction of a heart sound signal (HSS) from
real-world lung sound recordings. A summary and concluding
remarks are given in Section VI.

II. PROBLEM FORMULATION

We consider the real-valued signal generating model

x(t) = As(t) + n(t) (1)

where s(t) = [s1(t), s2(t), . . . , sN (t)]T is a column vector of
N mutually uncorrelated zero-mean unknown source signals,
A = [a1 ,a2 , . . . ,aN ] is an N × N invertible unknown mixing
matrix, x(t) = [x1(t), x2(t), . . . , xN (t)]T is a column vector of
N observed sensor signals, n(t) = [n1(t), n2(t), . . . , nN (t)]T

denotes a column vector of additive white Gaussian zero-mean
measurement noise, ai is the ith column of A, and [·]T and t,
respectively, denote the vector transpose and the discrete time
index. In the discussion that follows, we proceed with the noise-
less model of (1) by dropping the noise term n(t), but we show
the effect of the noise on the algorithm in the simulation section
(Section IV).

Based on the assumption that the sources are spatially uncor-
related and wide sense stationary, the time-lagged autocorrela-
tion matrix Rk can be defined as

Rk = E[x(t)xT (t − τk )], k = 1, 2, 3, . . . ,K (2)

where K is the index of the maximum time lag, i.e., τK and E[·]
denotes the statistical expectation operator.

The vector x(t) in (1) (ignoring the noise term) is a linear
combination of the columns of matrix A, i.e., ais. Therefore, the

most intuitive way to extract the ith source is to project x(t) onto
the space in R

N orthogonal to, denoted by ⊥, all of the columns
of A except ai , i.e., {a1 , . . . ,ai−1 ,ai+1 , . . . ,aN }. Henceforth,
by defining a vector q⊥{a1 , . . . ,ai−1 ,ai+1 , . . . ,aN } and set-
ting t ≡ ai , together with adopting oblique projector nota-
tion [14], gives

y(t)t = Et|q⊥x(t) (3)

where y(t) is an estimate of one source, q⊥ is a sub-
space in R

N orthogonal to q, i.e., the space spanned by
{a1 , . . . ,ai−1 ,ai+1 , . . . ,aN }, and Et|q⊥ = (tqT )/(qT t) is the
oblique projection of t onto the space q⊥. By omitting the scalar
1/(qT t) and dropping t from both sides of (3) results in

y(t) = qT x(t). (4)

In BSE based on second-order statistics, both vectors t and q
are unknown. In order to extract one source, we adopt the same
approach and assumptions as in [13, Sec. III], i.e., the following
cost function is exploited to find these vectors

[t̂, q̂, d̂] = arg min
t,q,d

J(t,q,d) (5)

where J(t,q,d)=
∑K

k=1‖Rkq−dkt‖2 ,d=[d1 , d2 , . . . , dK ]T

is the column vector of unknown scalars, and ‖ · ‖ denotes the
Euclidean norm. The cost function in (5) utilizes the fact that
for BSE, Rkq should be collinear with t, incorporating the
coefficients dk that provide t with proper scaling. The trivial
answer for (5) is its immediate global minimum point when
t = q = d = 0. This solution has been avoided by imposing
the condition ‖t‖ = ‖d‖ = 1. Minimization of the cost function
(5) with respect to q̂ leads to the identification of vector q in
(4) that can therefore be used to extract one of the sources. It
is, however, worth noting that the actual extracting vector is
given by q/(qT t) due to earlier omission of the scaling factor
1/(qT t) in order to arrive at (4). The convergence of (5) is
rather difficult to prove analytically in the time domain due to
the product term dkt in (5). The formal analytical proof of the
convergence is a subject of future research.

A. Signal Extraction Algorithm

By employing the sequential approximate digitalization algo-
rithm (SDA) proposed in [13], the cost function (5) is minimized
by adjusting its parameters alternatively as follows.

Stage 1: Freeze both t and d and adjust q. Taking the gradient
of J with respect to q leads to analytical solution
for q as ∂J/∂q = 2

∑K
k=1 Rk (Rkq − dkt) = 0 to

yield a new value of q:

q ← H

(
K∑

k=1

dkRk

)
t (6)

where H = [
∑K

k=1 R2
k ]−1 and e ← f denotes re-

placing e by f .
Stage 2: Freeze both t and q and adjust d. Utilizing the prop-

erty that ‖d‖ = 1 and considering the Lagrangian
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function

Jλd
= J + λd

(
K∑

k=1

d2
k − 1

)
(7)

where λd is the Lagrange multiplier, to obtain a new
value of d

d ← u
‖u‖ , u =

[
rT

1 t, rT
2 t, . . . , rT

K t
]T

(8)

where rk = Rkq.
Stage 3: Freeze both q and d and adjust t. Using ‖t‖ = 1 and

exploiting the Lagrangian function

Jλt
= J + λt(tT t − 1) (9)

to obtain the adjustment for t

t ← v
‖v‖ , v =

K∑
k=1

dkrk . (10)

These three stages are repeated until the cost function (5)
converges, and one source can be extracted according to (4).
For the later presented results on ECG signals, five iterations
are typically sufficient and no problem with ill-convergence has
been experienced. This, however, depends on the dimensions of
the subspace that is being extracted [18]. After extracting one
source, a deflation procedure is employed to remove it from the
mixture as follows [15]:

xi+1(t) = ZT xi(t), x1(t) = x(t) (11)

where x(t) is the original observation signal defined in (1), and

Z = I −
R0(i)wwT

σ2
y

(12)

where R0(i) = E[xi(t)xT
i (t)], I is the N × N identity matrix,

and σ2
y = E[y2 ].

The autocorrelation matrix is then updated as

R0(i+1) = ZT R0(i)Z (13)

before another source can be extracted following the same pro-
cedure, using (6)–(13). An alternative way to obtain a defla-
tion matrix is to design a matrix Z = [z1 , z2 , . . . , zN −1 ] whose
columns zi span the subspace orthogonal to the estimated source
direction t, i.e., zi⊥t for 1 ≤ i ≤ N − 1. This latter approach
can speed up the algorithm in the case of slow convergence.

This extraction algorithm is computationally simple when
compared with one stage of other algorithms, such as those pro-
posed in [16] that extract the sources one by one using fourth-
order cumulants. It is, however, worth noting that the iterative
extraction algorithm for estimating one source at a time in our
study, in fact, replaces the joint diagonalization procedure in
the SOBI algorithm [9], whereby the computation is simplified
since full eigen-decomposition is not required. Nonetheless, per-
forming the iterative procedure in our method is very similar to
the procedure that is carried out within techniques that calculate
the first (or the first few) eigenvalues [21]. In the next section,
we extend this algorithm to the extraction of periodic signals
with time-varying period.

Fig. 1. Demonstration of phase allocation procedure first proposed in [20] for
computing τt . The sawtooth signal depicts the phase signature θ(t) ranging
from −π to π . The peaks positions are assigned to θ(t) = 0. For each period of
the signal, half of the signal samples are assigned to θ(t), ranging from −π to 0,
and the other half is assigned to θ(t), ranging from 0 to π . Typically, a sample
at time instant t is compared with the sample at t + τt . τt is recalculated on a
cycle-by-cycle basis.

III. SEQUENTIAL EXTRACTION ALGORITHM FOR

QUASI-PERIODIC SIGNALS WITH TIME-VARYING PERIOD

Successful minimization of the cost function (5) in concert
with (4) leads to the extraction of any one source. It is not possi-
ble to extract the source of interest (SoI) unless some additional
information is known a priori. The SoI in our case is a quasi-
periodic signal of varying period duration. If the fundamental
period, or its approximation, of the SoI is fixed and known, then
the algorithm can be made to focus only on this specific source.
This is based on the fact that if the fundamental period is, say, τ
samples, then its autocorrelation matrix will have the same value
at time lags corresponding to integer multiples of τ . Hence, the
autocorrelation matrices Rk s, as computed in (2), can jointly be
diagonalized at time lags τ, . . . , Kτ along with the constraint
d1 = d2 = · · · = dK .

However, if the SoI has a period that varies from period to
period (see, for instance, Fig. 5), then to jointly diagonalize the
Rk s at time lags τ, . . . , Kτ and applying the extraction algo-
rithm would invariably result in erroneous results. Therefore, a
method has to be developed that effectively matches the varia-
tions in the period of the SoI.

A. Proposed Method

The method, recently proposed in [20] for multichannel ECG
decomposition, entails detecting the peaks of the quasi-periodic
signal that are assumed to define the period of the SoI, as is
the case in ECG signals, and allowing a linear phase signature
θ(t), to span the range from −π to π, between the peaks. The
phase signature is then allocated to each sample of the signal,
with the positions of the R-peaks being fixed at θ(t) = 0, as
shown in Fig. 1. It follows that the samples corresponding to a
certain specific phase angle are compared along the signal. For
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Fig. 2. SIR(dB) versus the number of iterations for both fixed and time-varying extraction algorithms for the case of noise-free BSE, averaged over 250
independent runs when extracting the first source signal. N represents the number of signals while K represents the number of autocorrelation matrices used. SIR
performance improves as the number of matrices increases. The SIR performance of the time-varying period algorithm almost doubles that of the fixed period
algorithm. (a) SIR(dB) for extraction algorithm using fixed period algorithm. (b) SIR(dB) for extraction algorithm using time-varying period, notice the range on
the SIR axis.

Fig. 3. J (t, q, d)/N (K + 1) (dB) versus number of iterations for both fixed and time-varying extraction algorithms for the case of noise-free BSE, averaged
over 250 independent runs when extracting the first source signal. N represents the number of signals while K represents the number of autocorrelation matrices
used. The proposed algorithm converges faster than the fixed-period algorithm. (a) J (t, q, d)/N (K + 1) (dB) for extraction algorithm using the fixed period
algorithm. (b) J (t, q, d)/N (K + 1) (dB) for extraction algorithm using the time-varying period algorithm.

example, in Fig. 1, for the phase angle of 2 rad, the samples at
time instant t and t + τt are compared accordingly. Therefore, in
the sequential algorithm explained in Section II, we can redefine
the following key equations.

1) The autocorrelation matrix in (2)

R̃τt
= Et [x(t)xT (t − τt)] (14)

where Et [·] denotes averaging over t, and

τt = min{τ |θ(t + τ) = θ(t), τ > 0}. (15)

2) The cost function in (5) is again exploited

[t̂, q̂, d̂] = arg min
t,q,d

J(t,q,d) (16)

where J(t,q,d) =
∑K

p=1 ‖R̃pτt
q − dpt‖2 , where the

R̃pτt
terms are also calculated as time averages.

Therefore, the autocorrelation matrix and the cost function
now take into account the variable period τt , which is calculated
from θ(t) from cycle-to-cycle of the signal. This leads to a new
algorithm for extracting SoI with a variable period duration.
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Fig. 4. J (t, q, d)/N (K + 1) (dB) and SIR(dB) versus number of iterations using time-varying extraction algorithm for the case of noisy BSE, averaged over
250 independent runs when extracting the first source signal. N represents the number of signals while K represents the number of autocorrelation matrices used.
(a) SIR(dB) for the extraction algorithm using time-varying period algorithm for different SNRs on observations. Note the degradation in SIR(dB) performance as
a function of SNR(dB). (b) J (t, q, d)/N (K + 1) (dB) for the extraction algorithm using the time-varying period algorithm for different SNRs on observations,
note that the degradation in convergence performance as a function of reduction in SNR(dB).

Fig. 5. Synthetic periodic signal designed to have considerable period varia-
tions. This signal acts as an SoI after mixing it with WGN.

The main difference in the algorithm of Section II and the one
proposed in this paper is the way in which the time-lagged
autocorrelation matrix R̃ is computed, which, in turn, leads to
the redefinition of the cost function (5).

In this algorithm, the autocorrelation matrices are calculated
at varying time lags τt rather than at fixed time lags. Thus, af-
ter performing peak detection, and calculating the θ(t) and the
time-varying τt , each autocorrelation matrix is calculated by
computing correlations between sample points t and their dual
samples t + τt across the entire signal length, and then, averag-
ing over the number of correlation and phase angle points. The

resulting R̃s are used in the sequential algorithm of Section II
to extract the SoI from multichannel mixtures.

IV. SIMULATION RESULTS

Computer simulations were carried out to illustrate the per-
formance of the proposed method, and were compared to the
one proposed recently in [17], which is based on a fixed period
of the SoI.

A. Signal-to-Interference Ratio and the Cost Function

The performance of the algorithm was evaluated by the
following.

1) The peak signal-to-interference ratio (SIR) in decibels is
given by

SIR(dB) = 10 log10
max(|vi |2)∑N

i=1 |vi |2 − max(|vi |2)
(17)

where [v1 , v2 , . . . , vN ] = qT A is the global transform
vector, and (17) is evaluated by first calculating the av-
erage of SIR in a linear scale, and then, converting to
decibels. For completeness, we note that from (1) and (4)

y(t) = qT As(t) = v1s1(t) + v2s2(t) + · · · + vN sN (t)
(18)

2) The cost function in decibels given by J(t,q,d)/N(K +
1).

In the simulation, blind extraction of the ECG
signal obtained from DaISY database (available at:
http://homes.esat.kuleuven.be/smc/daisy/) was considered. The
2500-sample-long clean ECG signal, sampled at 500 Hz, was
concatenated to form a 7500-sample-long signal. It is worth
noting that no discontinuity problems were experienced when
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Fig. 6. Mixtures of synthetic periodic signal with time-varying period and WGN, generated by a mixing matrix A with elements drawn from a standardized
Gaussian distribution. The synthetic periodic signal is designed to have significant period variations. The aim is to extract the synthetic periodic signal (Fig. 5).
(a) Mixture 1 of synthetic signal with time-varying period and WGN. (b) Mixture 2 of synthetic signal with time-varying period and WGN.

Fig. 7. Extracted synthetic signals using algorithms with the fixed and time-varying period. Clearly, the algorithm employing time-varying period much better
reconstructs the synthetic signal and we can see the variations in the signal period. The algorithm using the fixed period locks onto the noise component and results
in a poorly reconstructed signal. (a) Extracted synthetic signal using the algorithm with fixed period. (b) Extracted signal using the algorithm with time-varying
period.

concatenating the signal. The ECG signal was mixed with white
Gaussian noise (WGN) by a mixing matrix A with elements
drawn from a standardized Gaussian distribution. Fig. 2(a) and
(b) shows the SIR(dB) versus the number of iterations averaged
over 250 independent runs when extracting the SoI, assuming
a fixed and time-varying period, respectively. Fig. 3(a) and (b)
represents the corresponding cost function performance in deci-
bels for both cases. N and K, shown in the figures, represent
the number of original signals and the number of autocorrelation
matrices used, respectively. Thus, the performance criteria were
evaluated for N = 2 and K set to 5, 10, 15, and 20 accordingly.

It is seen from Fig. 3(a) and (b) that the proposed algorithm con-
verges faster than the fixed-period algorithm, with convergence
improving with the number of matrices used. The SIR perfor-
mance also improves as the number of matrices is increased. As
seen from Fig. 2(b), there is a marked increase in the SIR perfor-
mance for the proposed algorithm. In fact, the SIR performance
of the proposed algorithm almost doubles that of the algorithm
using a fixed period. For instance, from Fig. 2(a) and (b), the
maximum SIR when assuming fixed and time-varying period,
and using 20 matrices is 33 and 65 dB, respectively. This un-
derlines the motivation for our study, since by exploiting the
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Fig. 8. ECG and a zoomed-in portion of a synthetic pure periodic signal whose repetition frequency is not a multiple of that of the ECG. These signals are
combined by a mixing matrix A with elements drawn from standardized Gaussian distribution. The aim was to extract the ECG signal that has a time-variant
period. (a) ECG signal that is to be extracted after mixing it with a synthetic pure periodic signal. The signal has slight variations in period durations. (b) Synthetic
pure periodic signal that is mixed with the ECG signal. It is designed to be nonharmonically related to the ECG signal.

Fig. 9. Extracted ECG signals using algorithms with fixed and time-varying period. The algorithm employing time-varying period reconstructs the ECG signal
perfectly.Although the algorithm using the fixed period reconstructs the ECG, it is also affected by the noise component. (a) Extracted ECG using the algorithm
employing fixed period. (b) Extracted ECG using the algorithm employing time-varying period.

nonstationarity of the source, captured in the varying period,
we are achieving improved SIR performance for the same fast
convergence performance.

The performance of our algorithm was also investigated us-
ing different SNRs on mixture signals for the case of the noisy
model given by (1). Fig. 4(a) and (b) shows SIR(dB) and con-
vergence performance as a function of SNR(dB), respectively. It
is seen from the figures that the performance degrades as more
independent noise is added to the mixtures, i.e., as SNR(dB)
reduces. It is however seen from Figs. 2(a) and 4(a) that our
algorithm, when applied to the noisy BSE, still outperforms (at

least at SNR of 10 dB) the one using a fixed period in terms of
SIR(dB), when applied to noise-free BSE.

B. Extraction of Synthetic Variable Period Signal

This simulation considers the extraction of a synthetic, de-
terministic signal, with time-varying period (Fig. 5). The signal
is mixed with WGN in the same manner as before. Both algo-
rithms are run to extract the periodic signal. Fig. 6(a) and (b)
shows the mixtures while Fig. 7(a) and (b) shows the extracted
periodic signal using algorithms employing the fixed and the
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time-varying periods, respectively. As seen from the latter fig-
ures, when a fixed period is used in the algorithm, the algorithm
not only recovers the signal, but also heavily locks onto the
noise component, by running the proposed algorithm, which
incorporates the time-varying period, accurate reconstruction is
achieved, as confirmed by Fig. 7(b).

C. Separation of Two Periodic Signals

Another investigation was performed considering the sep-
aration of two nonharmonically related periodic signals, i.e.,
the ECG signal having varying period duration [see Fig. 8(a)],
mixed with a synthetic purely periodic signal shown in
Fig. 8(b). The SoI in this case is the ECG signal. The recovered
ECG signals are shown in Fig. 9(a) and (b) for algorithms
employing fixed and time-varying periods, respectively. As
seen in Fig. 9(b), the proposed algorithm recovers the ECG
completely. This shows that the algorithm works, not only
for a periodic signal contaminated with WGN, but also for
separating periodic signals. This can be likened to biomedical
applications, such as the extraction of the HSS from lung sound
recordings, where both the HSS and lung sound signal (LSS)
have distinct periodicity but are generally not harmonically
related. Another example is the extraction of fetal ECG signals
from maternal abdominal sensors that are highly contaminated
with the maternal ECG [20].

V. APPLICATION OF THE PROPOSED ALGORITHM TO

SEPARATION OF THE HEART BEAT SOUND SIGNAL

FROM REAL LUNG SOUND RECORDINGS

In this section, we demonstrate the applicability of the pro-
posed algorithm to the extraction of the HSS from real recorded
lung sound recordings. The dataset comprises two synchronized
recordings obtained from channel (1), front left chest (heart lo-
cation), and channel (2), front right chest, by digital stethoscopes
sampled at 44100 Hz with 16-bit resolution. It is worth noting
that, in order to use the algorithm, a clean reference signal with
clear distinct peaks is required such that the peaks could auto-
matically be detected using the readily available peak detection
algorithm. The clean reference signal in our case would be the
ECG signal that is synchronized with the two channel record-
ings. However, since this ECG was not available, we reverted to
using “manual” peak detection where data from channel (1) was
prefiltered prior to using our judgement about the occurrence of
the peaks in the data. Using the resulting peak locations, we cal-
culated both the θ(t) and the τt , which are necessary to compute
the R̃s for two channel data. The algorithm was run with the
two raw recordings as mixture signals. The two recordings are
shown in Fig. 10(a) and (b). The recovered HSSs for when both
the fixed and time-varying algorithms are used are shown in
Fig. 10(c) and (d), respectively. The HSS recovered from using
the time-varying algorithm has clear distinct peaks depicting a
better estimate of the actual HSS. Using the fixed-period algo-
rithm results in a noisy reconstructed HSS. These results have
been further corroborated by listening tests. In the listening tests,
five subjects of normal hearing ability were asked to listen to
both the recovered HSSs and to comment on their intelligibil-

Fig. 10. Extraction of HSS from lung sound recordings. (a) and (b) Lung
sound recordings (also called mixtures since each contain both heart and lung
sound signals). The aim is to extract the HSS from the recordings. (c) and
(d) Resulting extracted HSS for algorithms employing fixed and time-varying
period, respectively,the definition of the signal in (d) is much improved.

ity. All subjects observed that although it was evident that the
recovered signals were HSSs, the one recovered when using the
fixed period was less intelligible due to the presence of noise.

VI. SUMMARY AND CONCLUSION

The performance of the BSE algorithm depends on a priori
knowledge of the source signal. Knowledge of the period of the
SoI helps to extract the source signal of interest from the mix-
tures. In this paper, a novel sequential algorithm using second-
order statistics for the BSE of quasi-periodic source signals,
which exploits the temporal, time-varying, quasi-periodicity of
the source signals, was introduced. The algorithm was based on
partial approximate joint diagonalization of autocorrelation ma-
trices at time-varying lag τt , which is recalculated on a cycle-by-
cycle basis. The algorithm is suitable for multichannel decompo-
sition of periodic signals with or without a time-varying period.
Simulation results suggest that if the SoI has a time-varying pe-
riod, then using an algorithm employing a fixed period results
in erroneous results. Results from other investigations show that
the algorithm is suitable for removing a HSS from lung sound
recordings where the periodic variation in the heart beat has been
extracted manually. However, with the availability of a suitably
clean ECG signal, which would be synchronous with the under-
lying heart sound within the phonocardiogram signals, signifi-
cant improvements might be possible and the heart beat period
extraction could then be automated. Furthermore, due to the
multidimensional nature of the ECG, the results for multichan-
nel recordings may be improved by using more ECG reference
signals [19] which could thereby better exploit the subcompo-
nents of the ECG recording, i.e., the P, QRS, and the T-waves.

The cost function in (5), proposed in [13], has some limi-
tations. First, its convergence is rather difficult to prove ana-
lytically in the time domain. Second, there are some questions
regarding its exact formulation and constraints imposed on the
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associated vector norms. This, together with increasing the num-
ber of channels for lung sound recordings and exploring other
algorithms based on cost functions that do not exhibit the afore-
mentioned shortcomings, forms part of our future work. In con-
clusion, this paper is nonetheless a step forward in overcoming
the time-varying periodic characteristic of many nonstationary
biomedical measurements such as the HSSs, thereby allowing
separation using information about a signal’s periodicity.
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