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Abstract—Heart Rate Turbulence (HRT) is the transient ac-
celeration and subsequent deceleration of the heart rate after a
premature ventricular complex (PVC), and it has been shown to
be a strong risk stratification criterion in patients with cardiac
disease. In order to reduce the noise level of the HRT signal, con-
ventional measurements of HRT use a patient-averaged template
of post-PVC tachograms (PPT), hence providing with long-term
HRT indices. We hypothesize that the reduction of the noise
level at each isolated PPT, using signal processing techniques,
will allow to estimate short-term HRT indices. Accordingly, its
application could be extended to patients with reduced number of
available PPT. In this paper, several HRT denoising procedures
are proposed and tested, with special attention to Support Vector
Machine (SVM) estimation, as this is a robust algorithm that
allows us to deal with few available time samples in the PPT. Pac-
ing stimulated HRT during electrophysiological study are used
as a low noise gold-standard. Measurements in a 24 hour-Holter
patient database reveal a significant reduction in the the bias and
in the variance of HRT measurements. We conclude that SVM
denoising yields short-term HRT measurements and improves
the signal to noise level of long-term HRT measurements.

Index Terms—Heart Rate Turbulence, Denoising, Short-Term,
Support Vector Machine, Bootstrap Resampling, ε-Huber cost,
Turbulence Slope.

I. INTRODUCTION

Heart Rate Turbulence (HRT) has been defined as the
behavior of the Heart Rate (HR) after a Premature Ventricular
Complex (PVC). Under normal and healthy conditions, HRT
consists of a brief increase in HR after the PVC, that is
immediately followed by a slower decrease in HR. Measure-
ments on HRT characteristics in long-term (24 hour) Holter
recordings have shown a high predictive power for identifying
patients with high-risk of cardiac disease [1], [2]. The two
parameters that have been mostly used for measuring HRT
are the Turbulence Onset (TO) and the Turbulence Slope (TS),
though other parameters have been also proposed [2], [3]. The
TO measures the amount of sinus acceleration that follows
immediately a PVC, and it is defined as the shortening of the
interval average for the two sinus beats (normal-to-normal,
NN) after the compensatory pause. The TO is calculated as the
percentage of the two NN interval average preceding the PVC.
The TS is an indicator of the amount of sinus deceleration
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following the PVC, and it is usually calculated by first fitting
the linear regression for each 5 consecutive NN intervals in the
post-PVC tachogram (PPT) during 15 beats, and then selecting
the maximum slope among all the regression lines fitted along
the PPT. An important requirement for obtaining reliable HRT
measurements is the adequate selection of the PPT that are
useful, and a set of conditions for inclusion in the analysis
have been clearly established in the literature [2]. Aiming to
reduce the strongly present physiological noise of different
kinds in each PPT, a PPT template is first build in each patient
by averaging the set of available single PPT, and then, TS
is calculated on this template. Given that the PPT template
is usually averaged for 24-hour Holter recordings, indices
obtained from this template are a long-term measurement of
the global state of the patient during a day, and this processing
has been shown to be a powerful risk stratifier not only for
acute myocardial infarction [1], but also for other diseases
such as Chagas [4] or heart failure [5].

Nevertheless, relevant information could be masked by the
long-term averaging in this calculation procedure, both from
a clinical and from a signal analysis points of view. First,
relevant short-time fluctuations in the TS along the day [6]
could be hidden by the 24-hour template averaging. Second,
several influences of the physiological state can affect the
HRT, such as the described effect of HR level that precedes
to the PVC on the HRT oscillation amplitude [3], [7]. More
specifically, the vegetative tone is probably controlling both the
HR level and the HRT oscillation amplitude, but nevertheless,
averaging along the different states during the day could result
in a reduction of the true magnitude of the HRT fluctuation
and in a smoothing not only in noise level, but also in signal
level [6], [8]. And third, averaging precludes the comparison
of HRT in a given moment to other fluctuating physiological
variables. For instance, comparison of long-term Heart Rate
Variability (HRV) to long term HRT has been reported [9], but
the short-term regulation of the autonomous nervous system
on HR can not be studied jointly with the HRT.

Therefore, our hypothesis is that efficient cancelation of
physiological noise from each isolated PPT will allow the
short-term quantification of TS. This would allow us also to
measure the HRT in a higher number of patients, beyond the
current limits given by the exclusion criteria for TS averaging
with a minimum number of available PPT. Accordingly, a
signal processing method capable of canceling the noise in
a single PPT will be a valuable tool to evaluate the short-term
HRT, and the development of such method is the purpose of
this paper. Two main technical issues appear when addressing
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the signal denoising of a single PPT. First, the PPT has a very
short duration (current recommendation is 15 NN samples),
and hence, a very robust signal processing method will be
required. Second, the HRT is usually measured from 24-hour
Holter recordings, which are surely influenced by a variety of
noise sources, including the daily activity and the changes in
the physiological state of the patient. But a clear gold-standard
for HRT behavior and measurement will be needed if we want
to benchmark and compare the performance of any proposed
denoising algorithm.

To overcome the first issue, we propose the use of Support
Vector Machines (SVM), in particular, the SVM regressor [10].
The SVM framework has been shown specially advantageous
in problems with few samples available, due to their excellent
generalization performance. We will show that the SVM
regression based on a robust cost function (the ε-Huber cost),
together with the use of bootstrap resampling techniques for
tuning the free parameters of the algorithm [11], [12], can
provide us with an efficient HRT denoising technique.

We also propose to study the performance of the denoising
procedure in a gold standard given by HRT induced with car-
diac electrical stimulation (pacing) during electrophysiological
study (EPS), which can be considered an almost noise-free
environment, because the patient is maintained at rest. Pacing-
induced HRT has started to receive increasing interest, and
conditions for its measurement have been established [13],
[14], [15], [16], [17]. This gold standard will allow us to
quantify the HRT shape in the temporal and spectral domain
in an almost noise-free environment, an then to compare the
performance of the signal processing algorithms used for HRT
denoising in Holter recordings.

The scheme of the paper is as follows. In the next section,
the SVM approach to HRT denoising is presented, and other
algorithms used for comparison are also described. Then, the
algorithms are benchmarked in two scenarios: (1) analysis of
induced HRT in a patient database during EPS; and (2) anal-
ysis of 24-hour Holter HRT recordings. Finally, conclusions
are drawn and future research is suggested.

II. HRT DENOISING

A. HRT and PVC Signals
HRT represents a biphasic chronotropic response of sinus

rhythm to a single VPC [3], [18], and it is given by an early HR
acceleration followed by a deceleration. Its pathophysiological
background has been investigated, aiming to understand the
underlying mechanisms in order to give an explanation of HRT
power as independent postinfarction risk stratifier. It has been
hypothesized that HRT could be triggered by a transient vagal
inhibition in response to the missed baroreflex afferent input
due to hemodynamically inefficient PVC induced ventricular
contraction. Late deceleration of HR also increases systolic
blood pressure due to vagal recruitment, and hence, this should
be consistent with the baroreflex mechanism involved. Phys-
iological mechanisms of HRT and of systolic blood pressure
dynamics in the late HRT phase have been studied [18]. HRT
could also be influenced by the underlying HR, as far as it
defines the hemodynamic setting and the autonomic milieu in
which the PVC happens [3].

From a digital signal point of view, HRT signal is a
short-length sequence of beat-to-beat time intervals (or R-R
intervals), comprising three periods: First, previous 4 or 5 RR
intervals represent the basal state in which the PVC occurs;
Second, the PVC yields a much shorter interval, followed
by a much longer interval due to the compensatory pause;
And Third, the turbulence signal consists of the fast initial
acceleration, followed by an oscillation in R-R intervals, which
usually lasts no longer than about 15-20 beats. Therefore,
this is an extremely short signal duration for conventional
denoising or filtering techniques.

B. SVM Denoising Algorithm

According to the preceding description of HRT signal, the
signal model considered here uses the NN intervals from an
ECG or EGM recording. A PVC has happened at discrete time
instant n = −1, which is then followed by a compensatory
pause at n = 0, so that the following NN intervals (from n = 1
to n = 20) represent the PPT under study. Assume that the
observed PPT is given by {yn, n = 1, . . . , 20} contains two
contributions: one is the actual HRT as the metabolic response
to the PVC perturbation, given by {xn, n = 1, . . . , 20}, and
the other one consists of noise contributions from different
sources, and is given by {en, n = 1, . . . , 20}. The HRT model
is then:

yn = xn + en (1)

for n = 1, . . . , 20. A first approach for denoising {yn} and
obtaining an estimate of HRT, denoted by {x̂n}, is to use linear
filtering. For instance, a Qth order moving-average filter can
be used, which will be given by the following signal model:

x̂n =
Q∑

q=1

bqyn−q+1 (2)

where bq are fixed as the coefficients for an adequate filter in
the frequency domain. Independently of the kind of filter used,
this denoising scheme relies on the assumption of HRT being
a band-limited process. Alternatively, a Qth median filter can
be used, given by

x̂n = median{yn−bQ
2 c, . . . , yn+dQ

2 e} (3)

where b·c and d·e denote the rounding up and down to zero,
respectively. This denoising scheme is known to be more
appropriated whenever impulse noise can be present.

Note that these basic filtering schemes rely on the distri-
bution of noise being known to some extent, which is an a
priori information that we do not have yet. According to this
fact, we propose to use a SVM modeling approach. The SVM
regressor can be seen as a nonparametric procedure, in the
sense that it does not rely on any specified form of the HRT.
Also, we propose to consider the ε-Huber cost [19], which
represents a cost function that can adapt itself to the noise
distribution. Finally, given that we can not split the extremely
short PPT signal into a training and a validation subset, we
propose to use nonparametric bootstrap resampling, which has
been previously used in SVM classifiers for the same purpose
of previously tuning of the SVM free parameters [12].
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The SVM model for HRT denoising can be described as
follows. The nonlinear regression model is given by

yn = xn + en = 〈w, φ(n)〉+ b + en (4)

where φ(n) is a nonlinear application of n to a possibly high-
dimensional (say P -dimensional) feature space F, where a
linear approximation is built by the dot product with vector
w ∈ F. This model can be seen as a nonlinear interpolation.
Following the conventional SVM methodology, a regularized
cost function of the residuals is to be minimized. In [19], the
following robust cost function of the residuals was proposed,

L(en) =





0, |en| ≤ ε
1
2δ (|en| − ε)2, ε ≤ |en| ≤ eC

C(|en| − ε)− 1
2δC2, |en| ≥ eC

(5)

where eC = ε + δC; ε is the insensitive parameter, and δ
and C control the trade-off between the regularization and
the losses. The ε-insensitive zone ignores errors lower than
ε; the quadratic cost zone uses the L2-norm of errors, which
is appropriate for Gaussian noise; and the linear cost zone
controls the effect of outliers. The SVM coefficients are
estimated by minimizing the previous loss function regularized
with the squared norm of model coefficients,

1
2

P∑
p=1

w2
p +

1
2δ

∑

n∈I1

(ξ2
n + ξ?2

n ) + C
∑

n∈I2

(ξn + ξ?
n)−

∑

n∈I2

δC2

2
(6)

with respect to wp, {ξ(?)
n } (notation for both {ξn} and {ξ?

n}),
and b, and constrained to

yn − 〈w, φ(n)〉 − b ≤ ε + ξn (7)
−yn + 〈w, φ(n)〉+ b ≤ ε + ξ?

n (8)
ξn, ξ?

n ≥ 0 (9)

for n = 1, · · · , 20; {ξ(?)
n } are slack variables or losses, which

are introduced to handle the residuals according to the robust
cost function; and I1, I2 are the sets of samples for which
losses have a quadratic or a linear cost, respectively.

Similar derivations of the dual functional can be found in
the literature [19], [20]. In brief, by including linear constraints
(7)-(9) into (6), the primal-dual functional (or Lagrange func-
tional) is obtained:

LPD =
1
2

P∑
p=1

w2
p +

1
2δ

∑

n∈I1

(ξ2
n + ξ?2

n ) + C
∑

n∈I2

(ξn + ξ?
n)−

−
∑

n∈I2

δC2

2
−

20∑
n=1

(βnξn + β?
nξ?

n)− ε

20∑
n=1

(αn + α?
n)+

+
20∑

n=1

(αn − α?
n) (yn − 〈w, φ(n)〉 − b− ξn)

(10)

constrained to α
(?)
n , β

(?)
n , ξ

(?)
n ≥ 0. By making zero the gradi-

ent of LPD with respect to the primal variables [19], we obtain
α

(?)
n = 1

δ ξ
(?)
n (n ∈ I1), α

(?)
n = C−β

(?)
n (n ∈ I2), to be fulfilled,

and if these constrains are included into (10), primal variables
can be removed. The correlation matrix of input space vectors

can be identified, and denoted as R(s, t) ≡ 〈φ(s), φ(t)〉. The
dual problem can now be obtained and expressed in matrix
form, and it corresponds to the maximization of

−1
2
(α−α?)T [R + δI] (α−α?)+(α−α?)T y−ε1T (α+α?)

(11)
constrained to C ≥ α

(?)
n ≥ 0, where α(?) = [α(?)

1 , · · · , α
(?)
20 ]T ;

y = [y1, y2, . . . , y20]
T ; and 1 denotes a column vector of ones.

After obtaining Lagrange multipliers α(?), the time series
model for a sample at time instant m is:

x̂m =
20∑

n=1

(αn − α?
n) 〈φ(n), φ(m)〉+ b (12)

which is a weighted function of the nonlinearly observed times
in the feature space. Note that only a reduced subset of the
Lagrange multipliers is nonzero, which are called the support
vectors, and the HRT solution is built in terms of them.

A Mercer’s kernel is a bivariate function that is equivalent
to calculate a dot product in a possibly infinite dimensional
feature space [10]. Examples of valid Mercer’s kernels are the
linear kernel, given by K(s, t) = 〈s, t〉, and the (nonlinear)
Gaussian kernel, given by

KG(s, t) = exp
(
− (s− t)2

2σ2

)
(13)

where σ is the width of the Gaussian kernel, and it must
be properly chosen. For a fixed value of σ, it is fulfilled
that KG(s, t) = 〈φ(s), φ(t)〉 in some unknown feature space.
However, we do not need to know explicitly neither the feature
space nor the nonlinear application, but still the dot products
in the feature space can be readily calculated by means of the
kernel. Thus, the final solution of SVM for HRT denoising
can be expressed simply as

x̂m =
20∑

n=1

(αn − α?
n) KG(n,m) + b (14)

which is just a linear combination of shifted Gaussian kernels
of a given width.

C. Bootstrap Tuning of the Free Parameters

Note that several free parameters need to be previously
tuned in the described SVM denoising algorithm, namely,
width σ of the Gaussian kernel, and the free parameters of
the cost function (ε, δ, C). Cross-validation techniques are
often used for this purpose in SVM approaches, but in our
case only 20 observations are available, and splitting them
involves dramatically reducing the amount of information
in the training set. We propose to search using bootstrap
resampling techniques for finding the bootstrap bias-corrected
error as a function of each free parameter, and then fixing
the free parameters and training a machine with the whole
20-samples set of the PPT.

Bootstrap resampling techniques are useful for nonpara-
metric estimation of the pdf of statistical magnitudes, even
when the observation set is small. A detailed description and
discussion on bootstrap resampling can be found in [21]. The
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procedure used here is described in [12] for SVM classifica-
tion, its extension to the regression case being straightforward.
In brief, be θ = {ε, δ, C} is the set of free parameters of
the SVM for time series yn. The estimated SVM coefficients
are α̂ = [α̂1 − α̂∗1, . . . , α̂20 − α̂∗20] = s({yn}, θ), where
s(, ) denotes the SVM estimation operator. Empirical risk
R̂emp = t(α̂, {yn}), where t() is the estimation operator,
can be defined as the averaged cost in the training set of
samples. A bootstrap resample is a data subset drawn from
the training set by following its empirical distribution, and
accordingly, it consists of sampling with replacement the time
samples of yn, this is, {y∗n(b)} = {y∗1 , y∗2 , . . . , y∗20}, and
the resampling process is repeated for b = 1, ..., B times.
Note that, for each resample, {y∗n(b)} contains samples of
{yn} appearing none, one, or several times. A partition of
{yn} set of samples can be done in terms of resample y∗n(b),
given by {yn} = {y∗n,in(b)} ∪ {y∗n,out(b)}, according to the
time samples included (in) and excluded (out) in resample b.
The SVM coefficients from each resample will be given by
α̂(b) = s({y1, . . . , y

∗
n(b)in}, θ).

An acceptable approximation to the actual risk (i.e., not
only empirical, but total risk) can be obtained if we use
R̂act = t(α̂(b), {y∗n,out(b)}). A bias-corrected estimate of the
actual risk is obtained by simply taking the replication average.
Furthermore, this average estimate can be achieved for a grid
of values of the SVM free parameters, hence allowing us to
determine their suitable values to train the SVM with the
whole training set. A good range for B is typically 200 to
500 resamples. SVM free parameters are not usually mutually
independent, however, a good heuristic approach is to start
with an intermediate value of C, γ, set ε = 0, then giving
an initial guess of the kernel parameter, and then re-estimate
again each the other parameters, continuing until a stable set
of parameters is obtained.

III. EXPERIMENTS

Practical issues for the application of the proposed HRT
denoising techniques were studied and are next presented. We
start by analyzing the suitability of bootstrap resampling for
tuning the free parameters in SVM interpolation algorithm.
Then, the clinical EPS database that was used as gold standard
for HRT measurements is described, and application examples
of denoising are used in order to show the following points:
(1) pacing-induced HRT during EPS can be considered as
almost noise-free recordings; (2) The cycle length previous
to the HRT onset can be physiologically related to the HRT
oscillation amplitude, which should be taken into account
when measuring TS parameter; And (3) the spectral domain
representation of HRT can yield the shape of the denoised
gold standard HRT. Next, measurements on TS parameter
are studied in the gold standard EPS patient database. After
summarizing the clinical data of Holter database, denoising
examples are considered both in the time and in the frequency
domains, and poblational measurements of TS are studied
in this setting. Finally, denoising methods are statistically
compared in terms of a new parameter, the Turbulence Length,
which allows us to quantitatively determine the effectiveness
of the denoising procedures in the time domain.

A. SVM Free Parameter Selection

One of the key issues when using SVM algorithms is setting
appropriate values for the free parameters. In this problem,
where only 20 discrete-time samples are available, bootstrap
resampling was used for this purpose. For each PPT, the
Mean Squared Error (MSE) was estimated with Bootstrap
resampling on the time series for each tested combination of
SVM free parameters (C, γ, ε, and σ). Bootstrapped MSE (200
resamplings) was obtained for values of each free parameter in
its search interval, while freezing the other parameters, using
a sequential search and with two rounds. Figure 1(a) shows
an example of the bootstrapped MSE for searching the free
parameters in a PPT of a patient, and panel (b) depicts the
histograms of the free parameters obtained for all the PPT in
the same patient. An appropriate rank of searched values was
set by reviewing the histograms in a subset of the EPS and
Holter database, which was found to be γ ∈ (10−3, 0.32),
C ∈ (1, 600) and σ ∈ (1.5, 6) (on a logarithmic scale),
and ε between 0 and the standard deviation of the signal
divided by 10 (on a linear scale). These ranks were found to
be appropriate for individually tuning in each PPT the SVM
interpolator throughout the study.

B. EPS Patient Data Set

PPTs were induced by pacing in 10 patients with structurally
normal heart during EPS under mild sedation at rest and were
used as the HRT gold standard by assuming that under these
conditions the electrophysiological noise would be minimized.
The PVCs were induced by cyclic pacing from the right
ventricular apex, after every twenty one spontaneous beats
during sinus rhythm, according to the procedure suggested
in [16]. The intracardiac EGM and the surface ECG were
simultaneously recorded on a conventional digital polygraph
and the beat-to-beat intervals were extracted from the ECG.

Figure 2 shows an example of denoising a PPT in a patient
from EPS database. A clear smoothing effect can be observed,
and the turbulence oscillation pattern (this is, initial accelera-
tion followed by a deceleration) is clearly recovered with the
three methods, i.e., SVM, linear (FIR), and median (MED)
filtering. According to its proposal as gold standard, low noise
level is expected in these signals, and hence, they hardly
differ from the denoised version with any of the proposed
algorithms. This can be also checked in the frequency domain
representation of the HRT. We obtained the spectrum using
a Fast Fourier Transform (FFT) of 512 samples for the PPT
recording. Note the extremely low length of the HRT time
series (20 samples), which makes a strong windowing effect to
be present. Figure 2 also shows the power spectral density for
denoised PPTs. It can be seen that the power in low frequency
(about < 0.18 Hz) is maintained in all cases, whereas the high
frequency components are filtered and smoothed, aiming to
cancel the high frequency noise. The SVM denoised signal
has a slightly lower level in the high frequency band (about
> 0.18 Hz) and a less distorted low frequency band, when
compared to the spectrum of the other denoising methods.

The relationship with previous cycle length was observed
in the gold standard HRT. Figure 3 shows an example of the
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Fig. 1. Example of free parameters selection for the SVM denoising algorithm. (a) Bootstrap estimated MSE in a single PPT example. Each free parameter
is subsequently explored in a rank of possible values while fixing the other ones. (b) Histograms of the obtained values of the free parameters for a set of
PPT in a single patient. Note the trend of γ and ε towards lower values, and of C and σ towards higher values.
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Fig. 2. EPS database: Examples of HRT denoising, in time (left) and frequency (right) domains. (a,d) SVM filtered. (b,e) FIR filtered. (c,f) Median filtered.

effect of the preceding cycle in a patient with three different
conditions: basal, low, and high doses of isoproterenol, yield-
ing different levels of HR acceleration preceding the HRT. In
order to clearly observe the relationship between the HR and
the HRT, a number between 9 and 11 PVC were stimulated
for each of these states. Figure 3(a) shows the relationship
between preceding HR and HRT oscillation amplitude in the
time domain. According to previously reported results in the
literature [3], the increase in HR is related to a decrease in
the turbulence oscillation amplitude. Figure 3(b) shows the
same effect in the frequency domain, in which the spectral
envelope clearly decreases with cycle length. Note also that
there is a slight, yet visible, shift in the power towards lower
bands. Figure 3(c) shows the normalized spectra, in which the
shift is still more patent. Accordingly, filtering the averaged
PPT, while being adequate for noise reduction, may mask

the potential changes of the PPT response over time, thus
precluding to assess oscillations of the autonomic balance in
an individual patient. Figure 3(d) shows the averaged spectrum
and 95% confidence intervals for normalized spectrum in a
patient of EPS database, for raw and denoised signals. Spectra
of each PPT have been separately normalized, and average and
standard deviation have been subsequently calculated.

Note that filtering does not change significantly the spectral
content of the turbulence in physiological rest with any of
the denoising methods, which allows us to consider pacing
induced HRT during EPS as a gold standard for comparison
with the denoising algorithms in the Holter database.

C. Results on the EPS Patient Data Set
Table I shows the number of PVC (PPT) obtained for

each patient in the EPS database, together with the mean and
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Fig. 3. EPS database: Relationship with preceding cycle length. (a) PPTs for basal and for low and high isoproterenol dosis controling the heart rate. (b)
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Fig. 4. Examples in Holter database, in time (up) and frequency (down) domains: (a,d) SVM denoised; (b,e) FIR denoised; (c,f) Median denoised.

standard deviation of the TS parameter in each PPT (TSPPT ),
both for unfiltered and for filtered conditions. Right columns
in the table present the values of the TS parameter for each
patient, and for each denoising algorithm (SVM TS, FIR TS,
Median TS), as well as for the raw signal. Parameter TS was
here obtained according to the conventional procedure, i.e.,
by calculating the TS for the averaged PPT signals. It can
be seen that parameter TS has lower values when obtained
from the averaged template than when averaged in each PPT.
Nevertheless, in both cases the TS has similar values (yet
slightly lower for the denoised PPTs) for all the denoising
methods.

D. Holter Data Set

PPTs were also obtained in 61 post-myocardial infarction
patients included in a prospective study at a tertiary Univer-
sity Hospital [22]. A 24-hour ambulatory electrocardiographic

monitoring was performed in patients with stable sinus rhythm
between 2 and 6 weeks after infarction and 61 with at least
1 PVC during the monitoring period were included in the
analysis (age 64.3 +/- 9.0 years, 26 men). The average number
of PPTs per patient was 50.7 (median 12, rank 1-474).

Figure 4 shows a denoising example in one of these patients.
It can be seen that SVM obtains a denoised signal with a
clearer turbulence pattern in the time domain in comparison
with the other two filtering methods. With respect to the
frequency domain, SVM is better than the other denoising
methods at canceling the noisy components in high frequency,
while preserving an spectral shape that is quite similar to the
previously observed in the gold standard. Averaged normalized
spectra and 95% confidence intervals with all the methods are
shown in Figure 5, in two patients with moderate and low
(24 and 8) number of PPTs in the 24-hour recording. The
unfiltered spectra show an extremely high noise level that is
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# Pat # PVC TSP P T SVM TSP P T FIR TSP P T Median TSP P T TS SVM TS FIR TS Median TS

Pat1 9 34.7± 10.9 33.2± 11.9 28.6± 9.7 30.3± 12.8 30.2 29.5 25.3 28.1
Pat2 11 24.6± 7.8 22.7± 7.1 21.9± 7.3 23.6± 7.9 19.7 18.4 18.6 20.1
Pat3 10 61.1± 27.9 51.2± 26.7 46.4± 22.3 48.7± 26.8 52.7 41.7 40.2 40.0
Pat4 9 38.7± 27.7 30.8± 24.2 30.3± 22.4 29.4± 21.2 17.6 15.0 14.0 15.5
Pat5 11 47.0± 13.3 33.5± 10.6 36.5± 9.4 37.3± 10.6 41.6 30.9 35.2 35.2
Pat6 8 13.0± 4.2 10.2± 5.1 9.9± 3.5 10.9± 4.8 7.8 6.6 6.6 6.6
Pat7 11 24.6± 10.1 19.0± 7.2 20.7± 8.0 22.0± 9.0 20.6 16.8 18.9 19.8
Pat8 12 24.1± 15.5 18.5± 14.1 19.5± 14.2 21.3± 16.7 14.3 11.0 12.2 13.9
Pat9 14 33.8± 15.2 28.8± 11.3 28.8± 12.3 31.0± 13.1 28.0 24.4 24.4 25.6
Pat10 19 8.6± 2.9 7.6± 3.0 7.4± 2.7 7.9± 3.1 6.3 5.9 5.7 6.0

TABLE I
EPS DATABASE RESULTS: NUMBER OF PVC PER PATIENT, TS PARAMETER FOR EACH PATIENT AND EACH PPT (MEAN ± STANDARD DEVIATION), AND

TS PARAMETER FROM AVERAGED PPT (TSPPT ) AFTER DENOISING.
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Fig. 5. Examples from Holter database in the frequency domain. Averaged normalized spectra and 95% confidence intervals for two patients with 24 PPT
(a) and 8 PPT (b) in their 24-hours Holter recordings.

partially reduced by the median and FIR algorithms. However,
the narrower confidence interval and shape coherence with the
gold standard spectra is obtained with the SVM denoising.

E. Results on the Holter Data Set
Table II shows the number of PPTs in the Holter database.

Also, the values of TS parameter when obtained from conven-
tional processing for both raw and denoised signals were com-
pared with its calculation from each isolated PPT (TSPPT )
in all cases. As expected, higher TS values were obtained
for isolated and denoised PPT, and in both procedures, SVM
denoised values yielded the lowest standard deviation.

An additional parameter was calculated, aiming to quantify
the similarity in the time domain between the (raw or de-
noised) actual PPT and the expected according to the physio-
logical definition of HRT. Therefore, for each PPT we obtained
the following sequence: first minimum, first maximum, and
second minimum, for the raw and for the filtered PPT. This
sequence gives a measurement of the similarity between the
turbulence waveform and the postulated mechanism in the
HRT definition (deceleration, acceleration, and oscillation).
The Turbulence Length parameter was calculated as the differ-
ence between the discrete times corresponding to the second
and to the first minimum, and hence it has units of number of
beats.

Mean±Std Median [Max,Min]
# PPT 50.7± 104.8 12 [474, 1]

TS 7.8± 6.0 6.1 [29.1, 0.4]
SVM TS 6.9± 4.4 6.1 [20.3, 0.4]
FIR TS 6.8± 6.3 5.2 [37.3, 0.2]
Median TS 6.8± 6.3 5.2 [37.3, 0.2]

TSPPT 14.7± 9.8 12.1 [174.0, 0]
SVM TSPPT 11.3± 6.0 10.6 [145.4, 0.02]
FIR TSPPT 11.9± 8.3 9.6 [146.1, 0.002]
Median TSPPT 13.2± 10.0 10.7 [171.5, 0]

TABLE II
HOLTER DATABASE: NUMBER OF PPT PER PATIENT AND VALUES FOR THE
TS PARAMETER (RAW AND DENOISED). CONVENTIONALLY CALCULATED

AND AVERAGED VALUES FOR INDIVIDUAL TS FROM DENOISED HRT
(TSPPT ) ARE REPORTED.

Tach. SVM FIR Med.
EPS 5.2±1.7 10.9±3.0* 9.7±2.5* 7.2±2.4*
Holter 3.0±0.7 11.2±2.6* 7.6±2.7* 5.3±1.6*

TABLE III
EPS AND HOLTER DATABASES: TURBULENCE LENGTHS FOR THE
PATIENTS IN THE STUDY AND FOR THE DENOISING ALGORITHMS.

Figure 6 shows an example in a patient with a high number
of PPT, and it can be observed therein that the Turbulence
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Fig. 6. Holter Database: Examples of Turbulence Length calculation. (a) When Turbulence Length is measured in a single PPT, larger values correspond to
a clearer correspondence with the oscillation expected by the HRT mechanism, whereas shorter values are in general due to noise still present in the signal.
(b) Example of Turbulence Lengths in a patient with high number of PPT, and effect of the denoising algorithms.

Length is extremely short in raw PPT, because the first and
second relative minima usually correspond to the noise present
in the signal. An increase in the turbulence length can be
obtained for denoising PPT, which is more visible with the
SVM denoising. Table III shows the values of the Turbulence
Length both in the gold standard and in the Holter databases, in
which a significant increase can be observed (*p<0.001 when
compared with unfiltered tachograms, paired t-Student test).

IV. CONCLUSIONS

A new signal processing method, the SVM interpolation,
has been proposed for denoising PPT signals in HRT. The use
of a gold standard database with pacing induced PPT during
EPS has been used for comparison of the HRT behavior both in
the time and in the spectral domains. In low-noise conditions,
the SVM algorithm yielded results that were similar to other
conventional filtering methods, and in all cases the results
were according to the expected mechanism of the HRT. For
PPTs in this EPS database, denoising algorithms also were
shown to yield similar spectral profiles of HRT. In the presence
of noise, i.e., in the Holter database, the tested algorithms
yielded denoised PPT signals containing lower noise level.
However, SVM algorithm obtained a higher performance when
compared to the median and to the FIR filters. As seen in the
examples, the oscillations that are expected in the HRT were
better preserved, the spectral profile of the denoised PPT was
more similar to the observed in the gold standard, standard
deviation was lower, and the significantly higher values of
Turbulence Length suggest that the noise was more efficiently
removed from the turbulence.

The proposed SVM algorithm allows to perform the HRT
analysis even when a low number of PVCs are available. This
characteristic has clinical implications, because one of the
current requirements for suitability of a patient to be studied in
terms of TS is a sufficient number of PVCs being available.
Thus, HRT denoising will help to extend the HRT analysis
to a higher number of patients. The SVM algorithm gives a
better description of the dependence with the HR previous

to the PPT, and allows the analysis of the changes of HRT
with time. These possibilities should be explored in additional
studies with other databases of patients with different cardiac
diseases.

We can conclude that it is possible to obtain time-local HRT
measurements without averaging, by using robust digital signal
processing, as shown by the analysis on the EPS database.
The SVM denoising allows us to measure the HRT in noisy
conditions, such as in patients with Holter, which is a usual
situation in the clinical practice. Finally, this denoising can
give new approaches to HRT analysis, such as evaluation of the
changes of HRT with time, or the evaluation of patients with a
low number of PVC. Hence, the application of SVM denoising
in series with clinical events could improve the predictive
value of the classical HRT methods for risk stratification.
Finally, other similar problems can be found in Electroen-
cephalography literature, like event-related potentials [23],
[24], which could be addressed by following the approach
used here to HRT denoising.
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