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Abstract
Frequency-derived identification of the propagation of information between brain regions has quickly
become a popular area in the neurosciences. Of the various techniques used to study the propagation
of activation within the central nervous system, the directed transfer function (DTF) has been well
used to explore the functional connectivity during a variety of brain states and pathological
conditions. However, the DTF method assumes the stationarity of the neural electrical signals and
the time invariance of the connectivity among different channels over the investigated time window.
Such assumptions may not be valid in the abnormal brain signals such as seizures and interictal spikes
in epilepsy patients. In the present study, we have developed an adaptive DTF method (ADTF)
through the use of a multivariate adaptive autoregressive model to study the time-variant propagation
of seizures and interictal spikes in simulated electroencephalogram (ECoG) networks. The time-
variant connectivity reconstruction is achieved by the Kalman filter algorithm which can incorporate
time-varying state equations. We study the performance of the proposed method through simulations
with various propagation models using either sample seizures or interictal spikes as the source
waveform. The present results suggest that the new ADTF method correctly captures the temporal
dynamics of the propagation models while the DTF method cannot, and even returns erroneous results
in some cases. The present ADTF method was tested in real epileptiform electroencephalogram data
from an epilepsy patient and the ADTF results are consistent with the clinical assessments performed
by neurologists.
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I. Introduction
Frequency-based analysis techniques of electrical signals recorded from the brain are popular
among the neuroscience community due to the inherent spectral encoding of brain activities.
Such techniques are often utilized in the identification and characterization of the propagation
of information between brain regions during different brain states or in a variety of pathological
conditions [1]. Before the advent of most functional imaging modalities, knowledge of
communication between areas of the brain was limited to knowledge of the anatomical
connections between them. Nowadays, neuroscientists utilize advanced imaging and signal
processing techniques to better understand the intricacies of the functional connectivity of the
brain [2–4].
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Much of the work performed in the study of interactions between brain regions has used
bivariate measures, such as the analysis of coherence between recordings from different brain
areas [5,6]. The limitation, however, of coherence analysis is that there exists no information
regarding the direction of the functional coupling. Furthermore, bivariate measures could be
potentially misleading when applied to multivariate systems [7]. To overcome this
shortcoming, Kaminski and Blinowska proposed the directed transfer function (DTF) as a
method to extract the directional information flow between brain structures [8]. Derived from
the coefficients of a multivariate autoregressive (MVAR) model fit to the data, the DTF can
be used to handle multi-channel signals and can be thought of as a type of multivariate Granger
causality [9].

In previous studies, investigators have shown that the DTF can be used to localized
epileptogenic foci in patients with partial epilepsy [10–12]. In some of these studies, the DTF
method was applied to intracranial recordings of seizures in patients undergoing surgical
evaluation for the treatment of intractable epilepsy. The investigators found that electrodes
identified by the DTF as primary sources were highly correlated with the areas of cortex
identified by physicians as the seizure onset zones. However, a drawback of the DTF method,
as well as other connectivity estimators which use MVAR coefficients, requires the assumption
that the signals are stationary and the connectivity pattern among them is unchanged over the
analyzed time period [8]. In some early studies, the stationarity of the data was judged by visual
analysis [10]. Given the dynamic nature of neural activity, such an assumption might not always
be valid, especially for events which are temporally short, as in the case of interictal spikes.
Thus, the DTF method may not catch time-variant connectivity, and violation of such an
assumption may lead to a possible erroneous reconstruction of connectivity patterns and create
a misinterpretation of the propagation of interictal and seizure activity. In such a situation, a
method which could identify the temporal dynamics of the connectivity pattern is greatly
needed and could serve to provide a useful analytical tool.

In the present study, we have developed a new adaptive DTF (ADTF) method to reconstruct
the time-variant connectivity pattern by analyzing time-varying coefficients obtained from a
multivariate adaptive autoregressive (MVAAR) model. We first examine the performance of
the ADTF method in extracting the time-variant propagation of activity in various simulated
models with both seizure and interictal spike data as inputs. We also calculate the DTF-derived
connectivity patterns and compare them to the ADTF results. Finally, we apply the ADTF
method to electroencephalogram (ECoG) recordings of interictal spikes in a patient undergoing
surgical evaluation for intractable epilepsy and compare the results with those from the clinical
assessment.

II. Methods
A. Multivariate Adaptive Autoregressive (MVAAR) Modeling

For each time series, a MVAAR model was constructed and used to describe the dataset as
follows:

(1)

Where X(t) is the data vector over time, Λ(i,t) are the matrices of time-varying model
coefficients, E(t) is multivariate independent white noise and p is the model order. We
established the time-varying coefficient matrices by the Kalman filter algorithm [13] which
describes the behavior of the multivariate signals by the observations equation, i.e. Eq. (1), and
the following state equation:

(2)
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The observation and state equations of this algorithm can be solved by the recursive least
squares (RLS) algorithm with forgetting factor [14]. The optimum order for the model was
chosen by the Schwarz Bayesian Criterion (SBC) [15] which has previously been shown to
possess a high degree of accuracy [16].

B. Adaptive Directed Transfer Function (ADTF)
The DTF function, H(f), can be obtained from the MVAR model and is described by
transforming Eq. (1), where Λ is a function of t, into the frequency domain. The DTF is
computed by:

(3)

(4)

where Λk=0 = I. Since we are able to characterize the time-varying model coefficients, Λ(i,t),
the function H(f,t) can thus be obtained from the time-varying transfer matrix. Its elements,
Hij, represent the connection between the jth and ith elements of the system for each time point
t. Similarly to the DTF function in Eq. (4) [8], the normalized ADTF is defined by the elements
of the transfer matrix in the spectral domain, which describes the directional causal interaction
from the jth to the ith element as:

(5)

In order to evaluate the total information flow from a single node, we define the so-called
integrated ADTF by summing the ADTF values over the frequency bands of interest. These
bands are selected as corresponding to the seizure or interictal spike frequencies. The integrated
ADTF over the frequency bands is normalized to be between (0,1).

(6)

The total information outflow from each node is further given by summing across subscript i
for each jth node and is normalized by dividing by the number of outflow nodes:

(7)

The total information outflow corresponds to the degree in which activity propagates from a
particular node to the rest of the network. A total outflow value of one indicates a high degree
of source activity while an outflow value around zero indicates that the particular node has
little to no source activity for a given time series.

C. Surrogate Data Testing
The DTF and ADTF functions have a highly nonlinear relationship to the time series from
which they are derived. As such, the distribution of their estimators under the null hypothesis
of no connectivity is not well established and parametric statistical analysis cannot be used.
To overcome this problem, a nonparametric statistical test using surrogate data [17,18] was
utilized in the present study. In this method, the phases of the Fourier coefficients were
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randomly and independently shuffled to produce a new surrogate time series. This procedure
of shuffling the phases of the Fourier coefficients preserves the spectral structure of the time
series which is a critical aspect since the DTF and ADTF are measures of frequency-specific
causal interactions. The shuffling procedure was repeated 1000 times for each model-derived
time series in order to create an empirical distribution of DTF or ADTF values under the null
hypothesis of no causal interactions. Using this distribution, the statistical significance of the
DTF and ADTF values from the original time series was evaluated [12].

D. Model Construction for Simulation
Three time-varying causal models were created to test the performance of the ADTF method
and their results are compared with those obtained from the conventional DTF approach. Each
model simulated cortical potential signals recorded by ECoG electrodes, where a sample
recording of a seizure or interictal spike was input into a channel and then propagated to the
other channels based upon the simulated connectivity pattern.

The first model consisted of two nodes in which a sample seizure recording was input to the
first node and was then propagated to the second node based upon one of three propagation
patterns. The general form of the first model was as follows:

(8)

where ϕ(t) was the sample seizure waveform, ε(t) was independently distributed Gaussian
white noise and α, β, and γ were the weighting coefficients with values chosen between (−1,1).
The sample seizure waveform was obtained from an intracranial recording in an epilepsy
patient, and consisted of a three second time series taken from a representative channel and
sampled at 400 Hz.

For the first connectivity pattern, there was initially no propagation between node 1 and node
2 (i.e. α = 0). That is, for the initial segment of the time series, node 1 consisted of the seizure
signal and noise while node 2 contained only noise. Midway through the sample recording (t
= 1.5 s), the connectivity pattern was changed such that there was a propagation from node 1
to node 2 (i.e. α > 0). In the second connectivity pattern, the interaction between node 1 and
node 2 was modeled as a Gaussian distribution where the weighting factor, α, took the form
of a normal distribution centered at the 1.5 s time mark and a standard deviation of 0.5 s. This
pattern was used to simulate the transient flow of information during a short time segment.
Finally, for the third connectivity pattern, the model was constructed as an oscillatory system
in which the seizure signal alternated as propagating from node 1 to node 2 to subsequently
propagating from node 2 to node 1 at a frequency of 1 Hz. Bivariate time series were constructed
for the three connectivity patterns with a signal to noise ratio (SNR) of 20, 15, 10 and 5 dB for
each pattern.

The second model which was examined consisted of a 3×3 grid in which a sample interictal
spike was input into the center node (node 5) and then propagated in an outward manner (Fig.
1). This model was designed to simulate the spread of an interictal spike across ECoG grid
electrodes under two different connectivity patterns. In the first connectivity pattern, the
interactions among the nodes were assumed to be static over the length of the time series. In
the second connectivity pattern, interaction among the nodes was assumed to be transient. We
hypothesized that the information flow only occurred during the interictal spike and was
proportional to the strength of the signal. For this purpose we used a Gaussian distribution with
a standard deviation matched to approximate the duration of the interictal spike in order to
create the connectivity weighting coefficients. This pattern was similar to that of the second
connectivity pattern of the first model.
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The third model consisted of a 2×2 grid designed to simulate the movement of a primary seizure
focus to a secondary generator. The sample seizure recording used in the first model was input
into the third node and propagated to the remaining nodes (Fig. 2(a)). Midway through the
recording, the location of this seizure “focus” was switched and the second node became the
primary source (Fig. 2(b)).

Since the model orders were predefined in the simulations, the SBC was used as a validation
check of the chosen order of the MVAR/MVAAR models. A model order of 3 was used in the
construction of the first model, while the second and third models both used second order
MVAR/MVAAR models. Significance testing using the surrogate data method was performed
for the calculated DTF and ADTF values.

E. Experimental Data Acquisition and Analysis Protocol
In addition to the models previously described, the ADTF was applied to several interictal
spikes obtained from an epileptic patient. Recordings were obtained from an 8×8 subdural grid
covering portions of the frontal, parietal and temporal lobes. The ECoG data was sampled at
400 Hz and band-pass filtered from 1–100 Hz. Channels were visually inspected and those
which contained artifact were discarded from the analysis. The optimal model order was
selected by the SBC and ranged from 3 to 6. An example of the SBC result for a representative
spike is shown in Fig. 3(a). The frequency band of interest was chosen by visual inspection of
a time-frequency construction of the time series and was typically around 6–9 Hz for ictal data
and consisted of a slightly larger band for spike data (Fig. 3(b)). Total information outflow, as
described in Eq. (7), was calculated for the ECoG grid electrodes. Nodes exhibiting the most
outflow were regarded as the primary source(s) and compared to the epileptogenic foci
determined clinically.

III. Results
A. Simulated Models

The DTF and ADTF values were calculated from the three models described previously. The
significant DTF/ADTF values as determined by surrogate data testing were integrated in order
to obtained the total information outflow, Φ, for each node. The outflow from each of the two
nodes in the first model for the first connectivity pattern of the first model is shown in Fig. 4.
Here it can be seen that both the DTF and ADTF methods identify node 1 as the primary source
of the seizure activity since it has the most significant information outflow over the entire time
window. Note that since the DTF is time-invariant, the total information outflow calculated
using this method is constant over the length of the time series. It can further be seen from Fig.
4 that while both the DTF and ADTF methods identify the first node as the primary source,
only the time-variant ADTF captures the dynamics of the system. The results for both the DTF
and ADTF for the time series with SNRs of 15, 10 and 5 dB (waveforms not shown) were
similar to those shown in Fig. 4.

Similar to the first connectivity pattern, the outflow calculated using both the DTF and ADTF
methods (at 20 dB) for the second connectivity pattern identified the first node as the primary
source of the seizure activity (Fig. 5). The ADTF was correctly able to identify the dynamic
nature of the propagation, which is a Gaussian shape centered at 1.5 s. The results obtained
from the time series with SNRs of 15, 10 and 5 dB (waveforms not shown) are analogous to
those shown in Fig. 5.

The results obtained from the third connectivity pattern with a SNR of 20 dB are shown in Fig.
6. The DTF method shows significant outflow from both nodes 1 and 2. The ADTF method
also depicts information outflow from node 1 and node 2 and, furthermore, captures the
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oscillating dynamics of the connectivity pattern as the outflow alternates between the two
nodes. While similar results were obtained with a SNR of 15 dB, the DTF returned significant
outflow from only the first node with SNRs of 10 and 5 dB. The ADTF results were similar
under all four SNR levels.

The total outflow was also calculated for the two connectivity patterns used in the second model
(Fig. 7–Fig. 8). In the first pattern (Fig. 7), since the connectivity coefficients are constant, the
total outflow from both the DTF and ADTF methods identified node 5 as the primary source
of propagation of the interictal spike activity. This relationship was also true for the time series
calculated with SNRs of 15, 10 and 5 dB. In the second pattern (Fig. 8), the connectivity
coefficients were weighted according to a Gaussian distribution similar to that performed in
the second causal pattern in the first model. The peak of the connectivity strength was set at
the time point of the peak of the interictal spike. It can be seen that the majority of the significant
information outflow calculated using the ADTF method occurs from channel 5 which is in
agreement with the model (Fig. 8(a)). The significant outflow calculated using the DTF,
however, identifies node 2 as having the greatest amount of outflow. For the other SNR values,
node 5 always had the highest amount of outflow when calculated using the ADTF method.
Use of the time-invariant DTF, however, identified several other nodes in addition to the fifth
node which displayed the maximum significant outflow at the three other SNR levels (Table
1). These errors in outflow as calculated by the DTF are likely due to the fact that the
conventional DTF method is time-invariant and cannot incorporate the dynamic connectivity
information of the model. Thus, from the results in Fig. 7 as well as Table 1, it can be seen that
when the connectivity pattern is static, both the ADTF and DTF methods function equivalently
(ie. they both correctly identify the source node). However, when the connectivity pattern is
time-variant, the ADTF method correctly identifies the source node as having the highest
amount of outflow whereas the DTF method identifies “false sources” with significant outflow
greater than the true source of propagation (see Fig. 8 and Table 1).

The total outflow from each node in the third model using both the DTF and ADTF methods
is shown in Fig. 9. In the third model, the “foci” from which the seizure signal propagates,
switches from node 3 to node 2 midway through the time series. It can be observed that the
total information outflow calculated using the ADTF method shows information propagating
from node 3 during the first half of the time series which then switches to node 2 during the
later portion of the time series. For the total information outflow calculated using the DTF
method, both nodes 2 and 3 exhibit significant outflow. The results for both the ADTF and
DTF methods were similar for all four investigated SNR levels.

B. ECoG Data of Interictal Spikes from an Epilepsy Patient
The ADTF method was also applied to four interictal spikes recorded from a patient undergoing
long-term monitoring for surgical evaluation of intractable epilepsy. The results for one spike
are shown in Fig. 10. Here, the brain regions identified by the epileptologist during the
presurgical evaluation as belonging to the epileptogenic zone are marked in red (Fig. 10(a)).
In this patient, there were two clinically-identified zones: one in the superior temporal/inferior
parietal region and the other in the frontal lobe. Of the four spikes investigated, however, the
waveforms were not observed in the area of the frontal focus. Representative waveforms for
the two regions are shown in Fig. 10(a). In this figure, the electrodes identified by the ADTF
method as having the greatest amount of information outflow during the interictal spike are
highlighted. The temporal time courses of the ADTF values from these electrodes are shown
in Fig. 10(b). As can be seen from this figure, the information outflow from those electrodes
correlates well with the time course of the interictal spike. The locations of the ADTF-identified
sources for the remaining three interictal spikes are shown in Fig. 11. All of the identified
sources lie within or adjacent to the temporal focus and have ADTF time courses similar to
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that shown in Fig. 10(b). Conventional DTF analysis was also performed on the interictal spike
data (data not shown). However, the nodes identified through this analysis as the sources of
information outflow were not consistent in location among the spikes nor were they co-
localized with the seizure onset zone determined by the clinicians.

IV. Discussion
In this paper, we have examined an adaptive directed transfer function method based upon the
MVAAR model in the context of seizure and interictal spike propagation. We have tested the
performance of the algorithm in various conditions simulating seizure and interictal spike
propagation with predefined patterns and have compared its performance to the conventional
(time-invariant) directed transfer function. We have also examined the ability of the ADTF
method to localize the sources of interictal spikes in a patient with epilepsy. As would be
expected by using the MVAAR model with time-varying coefficients, the present results
demonstrate that the ADTF method reveals dynamic information about the connectivity pattern
that is missed when the conventional DTF and time-invariant MVAR model were used.
Furthermore, due to this insufficiency in the consideration of the time-varying nature of
information flow by the DTF, it sometimes provided erroneous results concerning the source
of the propagated activity (Tables 1). This was also identified when the DTF method was
applied to the patient interictal spike data (data not shown). The ADTF method, as indicated
by our simulation results, is able to characterize various connectivity patterns, such as step
functions (Fig. 4(a) and Fig. 9(a)), Gaussian functions (Fig. 5(a) and Fig. 8(a)), and oscillating
function (Fig. 6(a)) and is tolerant to different SNR levels (Tables 1), which are within the
typical range of ECoG measurement noise. Although it also indicates some biases (Fig. 8(a)
and Table 1), they are extremely minor compared with the major dynamic connectivity patterns.

The ADTF method could potentially provide a useful tool in the analysis of the propagation
of seizure and interictal activity since such propagation is obviously changing sharply over a
short observation time window. In our present real ECoG data analysis, it shows promising
results in localizing the primary sources of interictal spikes from an epilepsy patient (Fig. 10–
Fig. 11). Note that the present ADTF results from interictal spikes did not identify the frontal
focus, which was identified from ECoG recordings of seizure initiation (Fig. 10– Fig. 11).
Thus, the present results should only be interpreted as a cross-examination of the ADTF method
(in agreement with one ictal onset zone), and not judged upon clinical assessments based on
ECoG seizure data. Further research will be needed in order to address the consistency of
sources between interictal spikes and seizures, which is beyond the scope of the present study.

By analyzing the time-variant connectivity, it is also possible to identify the primary sources
which initiate the seizure and to characterize the dynamics of propagations. More thorough
understanding of seizure propagations could lead to improved clinical intervention, such as
resecting certain propagation pathways instead of the entire epileptogenic zones close to the
eloquent cortex which makes traditional resection risky or even impossible. Additionally,
identification of the areas of cortex which drive seizure propagation and propagation pathways
could potentially result in more favorable surgical outcome.

While we have focused on the DTF-based method, it is one of several connectivity estimators
which is derived from the MVAR coefficients fit to a multivariate time series [19]. Such
estimators could be easily adapted to take advantage of the time-varying model coefficients
supplied by the MVAAR model. Development of techniques capable of estimating the rapid
changes in connectivity networks could provide neuroscientists a useful tool in the study of
dynamic cortical networks.
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In summary, we have developed an adaptive directed transfer function method to study time-
variant propagation of brain activity. The time-variant connectivity reconstruction is enabled
by incorporating the Kalman filter algorithm into the multivariate auto-regression modeling.
The simulation study and real ECoG data analysis indicate its efficacy in reconstructing various
time-variant connectivity patterns associated with epileptiform activity. Additionally, this
proposed method may also be applicable to other applications.
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Figure 1.
Graphical illustration of the second connectivity model. In this model, node 5 is the primary
source of the activity (here an interictal spike) which propagates outward in a radial fashion.
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Figure 2.
Graphical illustration of the third connectivity model. In this model, node 3 is the primary
source of the sample seizure activity which then spreads to nodes 1, 2 and 4. Midway through
the time series, the source of activity switches to the second node.
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Figure 3.
(a) A plot of the SBC vs. model order for one of the interictal spikes from the patient data. Here
it can be observed that the minimum SBC, and thus optimal model order is 6. (b) A time-series
representation of an interictal spike from the patient data. The frequency band in which the
ADTF/DTF values were integrated over was chosen by visual analysis of the spectral
frequencies corresponding to the interictal spike.
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Figure 4.
The significant total outflow from the first propagation pattern of the first model at a SNR of
20 dB. (a) Time-variant (Heaviside function) connectivity reconstruction achieved by the
ADTF method. Each bar corresponds to the average ADTF values over a 100 ms window; (b)
Time-invariant connectivity reconstruction by the DTF method.

Wilke et al. Page 13

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2009 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
The significant total outflow from the second propagation pattern of the first model at a SNR
of 20 dB. (a) Time-variant (Gaussian function centered at 1.5 s) connectivity reconstruction
achieved by the ADTF method; (b) Time-invariant connectivity reconstruction by the DTF
method.
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Figure 6.
The significant total outflow from the third propagation pattern of the first model at a SNR of
20 dB. (a) Time-variant (oscillating function with a 1 s period) connectivity reconstruction
achieved by the ADTF method; (b) Time-invariant connectivity reconstruction by the DTF
method.
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Figure 7.
The significant total outflow from the first propagation pattern of the second model at a SNR
of 20 dB. Time-invariant connectivity reconstruction achieved by the ADTF method (a) and
the DTF method (b). Each bar of (a) corresponds to the average ADTF value over a 50 ms
window.
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Figure 8.
The significant total outflow from the second propagation pattern of the second model at a
SNR of 20 dB. Time-variant connectivity reconstruction achieved by the ADTF method (a)
and the DTF method (b).
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Figure 9.
The significant total outflow from the third model at a SNR of 20 dB. The ADTF (a) correctly
distinguishes the third node as the initial primary source which then moves to the second node
at the 1.5 s time mark. Each bar represents the average ADTF value over a 100 ms window.
The DTF method (b), identifies both the second and third nodes as source of propagation.
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Figure 10.
(a) The maximum significant total outflow from a representative interictal spike recorded from
a subdural ECoG grid in an epilepsy patient. (a) The ictal onset zones which were identified
by the epileptologists based on ictal ECoGs are shown in red. Representative time series for
each of the two focal areas are shown. While the interictal spike waveform was present over
the posterior two-thirds of the ECoG grid, the frontal focus displayed little to no spiking
activity. The nodes identified by the ADTF method as sources are highlighted. (b) The time
course of the ADTF values for the interictal spike. The waveform indicated by the *
corresponds to the identified source electrode within the seizure onset zone.
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Figure 11.
The sources of outflow during three other interictal spikes (in the same patient) identified by
the ADTF method.
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Table 1
Computer simulation results obtained by the ADTF and DTF methods in the second model. Nodes were labeled as
significant if they had >50% of the maximum outflow (both ADTF and DTF) and occurred during the interictal spike
(ADTF only). When the connectivity pattern is static, both methods are equivalent in identifying only the fifth node
as the source of activity. In the dynamic case, the ADTF correctly identified the fifth node as the source of activity. In
the DTF method, multiple other nodes were identified as the primary source of the propagated activity.

Causality Function SNR Level (dB) Nodes with Significant Outflow

ADTF DTF

Static causality 20 5 5
15 5 5
10 5 5
5 5 5

Dynamic causality 20 1,5 2,4,5
(Gaussian Function) 15 5,7 1,5,6

10 5 1,5,6,8
5 5 1,5
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