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Abstract
We propose a new algorithm to derive the anisotropic conductivity of the cerebral white matter (WM)
from the diffusion tensor magnetic resonance imaging (DT-MRI) data. The transportation processes
for both water molecules and electrical charges are described through a common multi-compartment
model that consists of axons, glia or cerebrospinal fluid (CSF). The volume fraction (VF) of each
compartment varies from voxel to voxel and is estimated from the measured diffusion tensor. The
conductivity tensor at each voxel is then computed from the estimated VF values and the decomposed
eigenvectors of the diffusion tensor. The proposed VF algorithm was applied to the DT-MRI data
acquired from two healthy human subjects. The extracted anisotropic conductivity distribution was
compared with those obtained by using two existing algorithms, which were based upon a linear
conductivity-to-diffusivity relationship (Lin) and a volume constraint (VC), respectively. The present
results suggest that the VF algorithm is capable of incorporating the partial volume effects of the
CSF and the intravoxel fiber crossing structure, both of which are not addressed altogether by existing
algorithms. Therefore, it holds potential to provide a more accurate estimate of the WM anisotropic
conductivity, and may have important applications to neuroscience research or clinical applications
in neurology and neurophysiology.
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Introduction
In the electroencephalography (EEG) or magnetoencephalography (MEG) based source
localization or imaging, the cerebral electrical conductivity is often assumed to be isotropic
and piece-wise homogeneous. However, this assumption is not entirely accurate since the
conductivity is highly anisotropic within the white matter (WM), wherein the axon fibers
connecting neurons are often bundled and directional. Axon bundles form a complicated
network of neuronal wiring, and the bundle directions vary dramatically across the WM
volume.
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Diffusion tensor magnetic resonance imaging (DT-MRI) has been shown to provide a new
means of mapping the brain conductivity. A hypothesis is often assumed that the electrical
conductivity tensor shares the same eigenvectors as the diffusion tensor measurable with DT-
MRI [1]. This hypothesis has been further confirmed with a theoretical model [2] that relates
the electrical conductivity with the water self-diffusion process using the statistical correlation
of the microstructure in a two-phase (i.e. the intracellular and extracellular spaces) anisotropic
media [3].

Based on the self-consistent differential effective medium approach (EMA), Tuch et al.
deduced a fractional linear relationship between the eigenvalues of the conductivity and the
diffusion tensor [2], [4]. Replacing the single compartment diffusion model with a multi-
compartment model, Sekino et al. proposed another algebraic relationship from the Maxwell
equations [5], [6]. An approximate linear relationship was provided based on the experimental
data with three experiments conducted on the WM [2]. However, for various subjects, this
method resulted in inconsistence with the direct measurements of conductivity anisotropy in
the WM compartment [7], [8]. Moreover, the linear relationship did not incorporate the partial
volume effects of the CSF in the DT-MRI data which can significantly influence the accuracy
of diffusion tensor measurements for the voxels contaminated by the CSF [9], thus affecting
the conductivity distribution, since the conductivity of the CSF is isotropic and much larger
than the white matter. The adoption of the Wang’s or the Volume Constraint bridges the
conductivity distribution and the anatomical structures [10], which avoids the unreasonable
local conductivity anisotropy. However, its accuracy may probably be affected by neglecting
the intravoxel fiber crossing, especially for which is quite prevailing at the typical millimeter-
scale resolution of DTI [11], [12].

In the present study, we propose a new algorithm to extract the conductivity tensor from the
diffusion tensor measured by DT-MRI. Both the anisotropic conductivity and diffusivity are
accounted for by the same intravoxel microscopic structure. For the first approximation in
macroscopic scale, we model the intravoxel microscopic structure by a discrete multi-
compartment model. The model coefficients, referred to as the volume fractions of multiple
compartments, are first computed from the diffusion tensor and then are used to estimate the
conductivity tensor. We applied this algorithm to the DT-MRI data acquired from two healthy
subjects and extracted the anisotropic conductivity distribution. The results were compared
with those obtained by using two existing algorithms based upon a linear conductivity-to-
diffusivity relationship (Lin) [24] and a volume constraint (VC) [10], respectively.

Methods
Self-Diffusion Model

The effective diffusion tensor Deff within a voxel is symmetric and positive definite. The
eigenvalue decomposition of Deff can be written as

(1)

where SD=[vD1vD2vD3] (vDi, (i=1,2,3) are three orthogonal eigenvectors) and Di
eff, (i=1,2,3)

are three corresponding eigenvalues (D1
eff≥D2

eff≥D3
eff). The echo attenuation E(b) for each

voxel is given by

(2)
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where b characterizes the gradient pulses (timing, amplitude and shape) used in the DT-MRI
sequence, and “:” is the generalized dot product [1], [13], [14].

The cerebral WM is considered as axons and glia bathing in the interstitial fluid (ISF) [15].
The macroscopic diffusion tensor for any WM voxel (typically in a millimeter scale) depends
on the combination of individual diffusion processes associated with all the structures within
the voxel, including glial cells, ISF and axons. Since the geometry of glial cells is spherical by
approximation [18], the intrinsic diffusion with glial cell barriers can be assumed as isotropic
such that it can be described by a diffusion tensor with three equal eigenvalues denoted by
Dg. In contrast, the diffusion process restricted by axon bundles can be considered to be
rotationally symmetric [19]. Hence, it can be described by a diffusion tensor with the largest
eigenvalue DL for one direction and two equal eigenvalues DT for the other two orthogonal
directions [10].

The anisotropic diffusion in a WM voxel arises primarily from the local axon fibers, which
may align in a uniform direction or likely in multiple directions due to the intravoxel fiber
divergence, convergence or crossing. Instead of attempting to untangle the complicated fiber
configuration in the microscopic scale, we propose to model the intravoxel fiber distribution
using three discrete axon compartments aligning along the three orthogonal directions defined
by the eigenvectors of the local diffusion tensor. Moreover, by considering the distribution of
glial cells as another discrete compartment, the diffusion process within any WM voxel can be
modeled as a mixture of diffusion processes within all four compartments (3 for the axons and
1 for the glial cells). The concept is illustrated in Fig. 1.

Assuming the exchange across compartments is relatively slow during the diffusion
measurement time, the echo attenuations along the three local coordinates can be described as
(3) [9], [18], [20]–[23].

(3)

where fi, (i=1,2,3) denote the volume fractions (VF) of the three axon compartments. For each
WM voxel, the solutions of (3) (in terms of f1, f2 and f3) indicate the local histological structure
underlying the anisotropic transportation processes of both water molecules and electrical
charges. Dy is the diffusion coefficient of the fourth isotropic compartment. For most WM
voxels, Dy equals Dℊ to account for the contribution from glial cells. However, for many voxels
close to the WM boundary, the partial volume high-diffusivity CSF greatly affects the effective
diffusion tensor and dominates the effects of glial cells. We classify a voxel with the partial
volume CSF effect, if all the eigenvalues of the diffusion tensor are larger than the longitude
diffusivity within an axon bundle (i.e. DL). Accordingly, for all the CSF-contaminated voxels,
we assume the fourth isotropic compartment has the same diffusion coefficient, DC, as the CSF
does.

In addition, all axon bundles are bathed in the interstitial fluid (ISF), which decreases the level
of the diffusion anisotropy. In other words, a larger partial volume occupied by the ISF allows
for the higher diffusivity perpendicular to the fiber direction (i.e. an increasing DT). To account
for the partial volume effect of the ISF while retaining the maximal local anisotropy, we vary

DT in (3) from DT
min to DT

max until  is satisfied.
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For some voxels,  cannot be satisfied even if DT=DT
max, suggesting that the multi-

compartment diffusion model fails to fit the measured diffusion tensor data. We classified these
voxels as TYPE IV. It is also rarely possible that , which is most likely due
to the DT-MRI acquisition noise. We classified the corresponding voxels as TYPE VI. Table
I summarizes the criteria and interpretation for each voxel type.

Conductivity Model
Due to the similarity between the transportation processes of electrical charge carriers and
water molecules, the conductivity tensors share the eigenvectors with the measured diffusion
tensors [1]. Similar to (1), we can write the effective conductivity tensor as

(4)

where Sσ= SD.

The same multi-compartment model was used for the electrical conductivity. Since the
transportation process of electrical charges primarily takes place in the extracellular space
[4], the inter-compartment exchange is effectively much faster for the electrical conductivity
than for the water diffusion. Therefore, we compute the eigenvalues of the effective
conductivity as the weighted sums of the conductivity values associated with all compartments,
as expressed in (5).

(5)

The weighting coefficients are the volume fractions of all compartments determined in the
diffusion model by solving (3). σL and σT are defined as the longitude and transverse
conductivities in any axon compartment, respectively. σL is set to be a constant. σT is linearly
related to DT while it is confined to be between σT

min and σT
max, as expressed in (6),

(6)

For TYPE I~IV, f4=0. For TYPE V, σγ = σC where σC is the isotropic conductivity of the CSF
compartment.

Data Acquisition
The MRI data for two subjects (twice for the second subject to verify the consistence of the
algorithm) were obtained using a 3 Tesla Trio scanner (Siemens, Erlangen, Germany). A three-
plane localizer sequence was acquired to position subsequent scans. Scans with T1 and proton
density (PD) contrasts were collected for tissue registration. T1 images were acquired
coronally, using a 3D MPRAGE sequence (TR=2530ms, TE=3.65ms, TI=1100ms, 224 slices,
1×1×1mm voxel, flip angle=7 degrees, FOV=256×176mm). PD weighted images were
acquired axially using a hyper-echo turbo spin echo (TSE) sequence (TR=8550ms, TE=14ms,
80 slices, 1×1×2mm voxel, flip angle=120 degrees, FOV=256mm). DT-MRI data were
acquired axially, aligned with the TSE images, using a dual spin echo, single shot, pulsed
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gradient, echo planar imaging sequence (TR=10500ms, TE=98ms, 64 contiguous slices,
2×2×2mm voxel, FOV=256mm, 2 averages, b value=1000s/mm2). Thirteen unique volumes
were collected to compute the tensor: a b=0 s/mm2 image and 12 images with diffusion
gradients applied in 12 non-collinear directions: (Gx, Gy, Gz) = [1.0, 0.0, 0.5], [0.0, 0.5, 1.0],
[0.5, 1.0, 0.0], [1.0, 0.5, 0.0], [0.0, 1.0, 0.5], [0.5, 0.0, 1.0], [1.0, 0.0, −0.5], [0.0, −0.5, 1.0],
[−0.5, 1.0, 0.0], [1.0, −0.5, 0.0], [0.0, 1.0, −0.5], [−0.5, 0.0, 1.0]. A dual echo flash field map
sequence with voxel parameters common to the DT-MRI was acquired and used to correct the
DT-MRI data for geometric distortion caused by magnetic field inhomogeneity (TR=700ms,
TE=4.62ms/7.08ms, flip angle=90 degrees, magnitude and phase difference contrasts).

Image Processing
The image data were processed using software (BET, FLIRT, FUGUE and FDT) from the
FMRIB Software Library (http://www.fmrib.ox.ac.uk/). FDT was used to correct the diffusion-
weighted images for misalignment and distortion caused by the effects of eddy currents. The
geometric distortion caused by the magnetic field inhomogeneity was determined from the
field map image, and FUGUE was then used to correct each of the 13 eddy current corrected
diffusion images for this distortion. FDT was then used to compute the diffusion tensor from
the 13 eddy current and distortion corrected diffusion images.

The brain was extracted from the T1 and PD acquisitions using BET, then aligned to the
dewarped, b=0 s/mm2 image using FLIRT, allowing for translations and rotations but no
scaling or shear (6 Degrees of Freedom (DoF) fit).

Results
We evaluated the proposed volume fraction model by confirming the categorized voxels with
existing knowledge of the WM histology. The WM voxels were categorized into six TYPEs
(defined in Table I). The number and percentage of voxels in each TYPE are summarized as
Table II. In Fig. 2, the voxels are also color coded as red, orange, yellow, blue, white and green,
representing the TYPE I~VI, respectively. P1, P2a and P2b refer to the experimental data on
the first subject and twice for the second subject respectively. For both subjects, TYPE II and
III, altogether representing voxels with multidirectional fibers, account for over 85% of the
WM voxels, in accordance with the fact that the intravoxel orientational heterogeneity is
considerable under the typical voxel size of DT-MRI [15]–[17], [23]. The WM voxels with the
partial CSF volume were found on the rim of the ventricles filled with the CSF. And the
conductivity at the interior of the brain has a higher level of anisotropy than at the exterior,
e.g., the splenium of corpus callousum (CCS) and internal capsule (IC) parts show less fiber
crossing than other parts.

Fig. 3 shows the distribution of each eigenvalue of the effective conductivity tensors σeff

estimated by using all three algorithms (i.e. VC, Lin and VF). The VC algorithm resulted in
the homogeneous distribution for each eigenvalue. This is obviously undesirable as it ignores
the intravoxel orientational heterogeneity. Both the VF and Lin algorithms revealed similarly
inhomogeneous distributions for all three eigenvalues. However, relative to the Lin’s results,
we found in the VF’s results more voxels on the rim of the ventricles with a close-to-isotropic
conductivity. This difference suggests the superiority of the VF algorithm over the Lin
algorithm, in light of the fact that the partial volume effect of the CSF exists in those voxels
around the ventricles and effectively accounts for a more isotropic conductivity. In addition,
in the Lin’s results, the voxels at the rim of the ventricles also had very high values of σ1

eff

(over 2S/m), which is not reasonable since the CSF has the highest conductivity (1.79 S/m)
among all the tissues in the brain. For all these voxels, the effective conductivity tensors
extracted by using the VF algorithms all had eigenvalues no larger than the conductivity of
CSF (1.79S/m) (see Fig. 4).
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Discussion
Previous literatures suggested that the WM conductivity is 0.0585 S/m on average [25], and
that its component perpendicular to the fiber direction is 0.125 S/m but nine times larger along
the fiber direction [8]. These direct measurements also suggest that the conductivity of the
cerebral WM varies among the locations within the WM and it also depends on each individual
as well as the pathological or metabolizing condition of the brain. Therefore, mapping the WM
conductivity from the noninvasive DT-MRI data is highly desirable.

Some existing algebraic relationships have been formulated based upon the micro-mechanism
of relevant transport processes [2], [4], [5]. These algorithms often rely heavily on some
microcosmic parameters which are difficult to obtain in practice, such as the in vivo intra-/
extra-cellular conductivities. Some of these algorithms may also have to simplify the
complicated relations as in a linear way. Although recently proposed volume constraints may
help retain the histological structure to some degree [10], it often fails to consider the existence
of fiber crossing and its variability across the WM volume.

In the present study, we proposed a new algorithm to extract the electrical conductivity tensor
from the diffusion tensor measured through DT-MRI. By modeling the voxel-wise regional
histological structure as a multi-compartment model, the proposed algorithm promises to be
able to handle the intravoxel fiber crossing and the partial volume effects of the CSF. Our
preliminary results based on the data acquired from two human subjects are in general
agreement with our understanding about the WM histology and conductivity. The results also
suggest that the proposed VF algorithm out-performs the existing Lin and VC algorithms, in
face of the partial volume effect of the CSF and intravoxel orientation heterogeneity.

The diameter of an axon bundle is less than 10μm on average while the typical voxel size of
DT-MRI is about 1 to 5 mm. According to the postmortem anatomic atlas [16] and some
reported fiber tracking studies [11], [12], [17], [26], the axon fibers converge and diverge all
along their specific tracts without any definite boundary. For example, the inferior longitudinal
and fronto-occipital fasciculi share most of their projections at the occipital lobe and begin to
diverge at the posterior temporal lobe as the former stretches to the temporal lobe while the
latter stretches to the frontal lobe. Also, the widely scattering cortical U fibers, which are hard
to tract for its irregular passages, greatly increase the possibility of the fiber-crossing.
Therefore, out finding that about 85% of voxels have various crossing fiber structures appears
to be reasonable, although it is certainly desirable to further validate or confirm this finding.

As shown in Fig. 3, the proposed VF algorithm provides more reasonable WM conductivity
estimates than the VC algorithm, since the latter ignores the intravoxel orientational
discrepancies among different voxels by assuming a homogeneous distribution for each
eigenvalue of the conductivity tensor. The conductivity distributions estimated by the VF
algorithm and the Lin algorithm appear to be mostly similar. However, the Lin algorithm
produces more errors for the voxels on the border of the WM and the CSF, as seen in Fig. 4.

In summary, we have proposed a new algorithm for estimating anisotropic electrical
conductivity based on the DT-MRI data. The pilot experimental study in two healthy human
subjects suggests that the proposed VF algorithm provides a good estimate of the WM
anisotropic conductivity, and merits further investigation.
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Fig. 1.
The multi-compartment model for the diffusion process. The three colored bundles (red, green,
and blue) represent the axons in three orthogonal directions and the gray spherical balls
represent the glial cells.
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Fig. 2.
Distribution of the six types of voxels within WM for three groups of DT-MRI data. The slice
is about 66mm below the vertex. P1, P2a and P2b refer to the experimental data on the first
subject and twice for the second subject respectively.
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Fig. 3.
The distribution of the effective conductivity for the first group of experiment generated by
the three algorithms: VC, Lin, and VF. This slice is about 66mm below the vertex. Three rows
refer to the three algorithms. Three columns refer to the maps of the three sorted eigenvalues
of the effective conductivity tensor.
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Fig. 4.
The distribution of the effective conductivity for the first group of experiment generated by
the Lin and the VF. This slice is about 66mm below the vertex. Two rows refer to the two
algorithms. And three columns refer to the maps of the three sorted eigenvalues of the effective
conductivity tensor. The color bar scaled from 0 to the maximum eigenvalue of the conductivity
tensor.
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