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Effect of Head Shape Variations Among Individuals
on the EEG/MEG Forward and Inverse Problems
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Abstract—We study the effect of the head shape variations on
the EEG/magnetoencephalography (MEG) forward and inverse
problems. We build a random head model such that each sam-
ple represents the head shape of a different individual and solve
the forward problem assuming this random head model, using a
polynomial chaos expansion. The random solution of the forward
problem is then used to quantify the effect of the geometry when
the inverse problem is solved with a standard head model. The re-
sults derived with this approach are valid for a continuous family
of head models, rather than just for a set of cases. The random
model consists of three random surfaces that define layers of dif-
ferent electric conductivity, and we built an example based on a set
of 30 deterministic models from adults. Our results show that for
a dipolar source model, the effect of the head shape variations on
the EEG/MEG inverse problem due to the random head model is
slightly larger than the effect of the electronic noise present in the
sensors. The variations in the EEG inverse problem solutions are
due to the variations in the shape of the volume conductor, while
the variations in the MEG inverse problem solutions, larger than
the EEG ones, are caused mainly by the variations of the absolute
position of the sources in a coordinate system based on anatomical
landmarks, in which the magnetometers have a fixed position.

Index Terms—EEG/magnetoencephalography (MEG) average
head model, polynomial chaos expansion (PCE), sparse grids,
stochastic modeling.

I. INTRODUCTION

THE EEG/magnetoencephalography (MEG) inverse prob-
lem corresponds to estimating the parameters of sources

of electromagnetic activity in the brain from measurements of
the electric potential on the scalp and the magnetic field near the
head. One of the factors that affects the inverse problem solution
is the shape of the head model. We are interested in determining
the quality of inverse problem solutions when the shape of the
head is not known.
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The effect of the head model geometry on the EEG/MEG
forward and inverse problems has been considered in several
studies. The difference in the EEG inverse problem solution
when using spherical or realistically shaped models was stud-
ied by many authors [1]–[5]. The effect of variations in the
skull thickness was studied in [6]–[8]. The effect of random
variations in the head shape on the EEG forward and inverse
problems was studied in [9], but the analysis was restricted to
variations of a few millimeters. The localization error when
solving the inverse problem with head models from several dif-
ferent individuals was studied in [10] and [11]. These studies
analyzed the effect of the model geometry presenting the results
for particular cases of head models. In this paper, we seek more
general results by adopting a random head model to represent
a whole family of models, and solving the EEG/MEG forward
and inverse problems with it.

To study the effect of head shape variations among individu-
als, first we build a random head model such that each sample
represents a possible shape of the head. The model is derived
from a set of observed head shapes from different individuals.
In this paper, we build a random head model based on 30 de-
terministic head models from adult individuals, and solve the
EEG/MEG forward problem with this model. In addition, we
define an average or standard head model as the expectation
of the random one and use it in the solution of the EEG/MEG
inverse problem.

With the random head model, the forward problem solution is
also of random nature. We find the coefficients of a polynomial
chaos expansion (PCE) [12], [13] of the forward problem solu-
tion. Such an expansion allows for an easy computation of the
statistical moments of the solution, and hence of the variations
induced in the forward problem solution by the randomness of
the head model. A similar analysis could also be accomplished
with Monte Carlo simulations (MCSs). However, given the high
dimensionality of the problem, it would be computationally ex-
pensive. In fact, we compare the results of our method with an
MCS for a reduced-size problem. The method we describe in
this paper yields results similar to MCS, with a lower computa-
tional load.

To determine the effect of the random geometry on the
EEG/MEG inverse problem, we assume that only the average
head model is known, and compute the error in the estimation
of position parameters of a dipolar source. The idea is to find
the source parameters that, when used for solving the forward
problem with the average head shape, minimize the difference
with the forward problem solution obtained with samples of the
random head model. In this way, through MCSs, we obtain a
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statistical characterization of the localization error due to the
randomness of the head model.

II. HEAD MODEL

In this section, we propose a random model for the head
shape such that each sample of the model corresponds to a head
shape from a different individual. We adopt a head model with
three nested layers of constant electric conductivity representing
the brain, skull, and scalp tissues. The model is then defined by
the three interfaces between the layers. We describe these sur-
faces by their radius (distance to the origin) as a function of
the azimuth and elevation, with respect to a suitable coordinate
system. The random head model then consists of three ran-
dom surfaces S1 ,S2 , and S3 , describing the interfaces between
tissues.

In this section, we present a procedure to obtain the random
surfaces Sq as a Karhunen–Loeve series expansion truncated to
a finite number Nc of terms

Sq = Sq
0 +

NcX
i=1

χiS
q
i , q = 1, 2, 3 (1)

where Sq
0 is a mean or standard surface and χi are uncorrelated

random variables with zero mean and unit variance. Note that
since the Karhunen–Loeve series expansion is assumed con-
vergent, the surface components Sq

i will tend to be smaller for
higher order terms. The size of these surface components will
determine the appropriate number of terms Nc .

The procedure used to build the random head model is based
on the study in [10], modified to obtain an average head model
and combine the individual models into an unique random one.
We start from a set of observed head models corresponding to NI

different individuals. First, we align the models; the y-direction
is given by the line joining the left and right preauricular points,
defining segment ab. The z-direction is normal to the plane
defined by segment ab and the nasion, with positive values
toward the top of the head. The origin of the coordinate system
is roughly in the center of the brain, at a point 50 mm above
the intersection between segment ab and a line normal to this
segment passing through the nasion.

The observed head models used to build the random model
may differ in their lower sections, e.g., if the neck was included
in the model. These differences are not related to the anatomical
variations we want to study. Hence, we replaced the lower part
of the models, i.e., elevations under −45◦, by the average of the
NI models. A linear transition of the actual head to the average
shape between −25◦ and −45◦ was adopted.

Let Rq
j , j = 1, . . . , NI , be the the interfaces between tissues

of different electric conductivities of the observed head models,
and let us assume that only a set of points of these surfaces is
known, e.g., from a segmentation of an MRI. Next, a description
is found of each brain–skull interface R1

j based on spherical
harmonics

R1
j =

(
x(ϕ, θ, r) : r =

NAX
l=0

lX
m=−l

aj
lm Ylm (ϕ, θ)

)
(2)

where (ϕ, θ, r) are the azimuth, elevation, and distance to the
origin. The functions Ylm are the spherical harmonics [14]. NA

is the order of the decomposition and determines the number of
terms that equal (NA+1)2 . The coefficients aj

lm are chosen to
minimize the functional

J(aj
lm ) =

N1 jX
n=1

Ã
rj
n −

NAX
l=0

lX
m=−l

aj
lm Ylm (ϕj

n , θj
n )

!2

(3)

where the points xj
n = (ϕj

n , θj
n , rj

n ), n = 1, . . . , N1j , are the
sets of known points of the surfaces R1

j , j = 1, . . . , NI .

Repeating this procedure, we find the coefficients bj
lm

and cj
lm of the spherical harmonics decomposition of the

skull–scalp R2
j and scalp–air R3

j interfaces. Then, for each
observed model, we form a vector with the coefficients
of the different interfaces, dj = [aj

00 , . . . , aj
NA NA

, bj
00 , . . . ,

bj
NA NA

, cj
00 , . . . , c

j
NA NA

]T . Next, we compute the mean value
d̄ of the coefficients among the different individuals to obtain
the standard surfaces Sq

0 , q = 1, 2, 3. We arrange the variations
of the coefficients dj−d̄ in a matrix A of size 3(NA+1)2×NI .
Each column j of the matrix A contains the coefficients of the
spherical harmonics decomposition of the surfaces Rq

j . A sin-
gular value decomposition of matrix A yields

A = UDV T (4)

where D is a diagonal matrix formed by the singular values of
matrix A. Note that there are NI−1 nonzero singular values
since the rows of A have zero mean value. We then define the
matrices B = UD−/

√
NI , W =

√
NI V

−T so that A = BW ,
where D− and V − are formed by the NI−1 columns of D and
V associated with nonzero singular values. The size of matrix
B is then 3(NA + 1)2 × (NI−1), and the size of matrix W
is (NI−1) × NI . The jth column of B can be interpreted as
the spherical harmonics decomposition coefficients of surfaces
Sq

i , q = 1, 2, 3, that can be combined to represent the original
surfaces. The surfaces Sq

i are then obtained by replacing the
aj

lm coefficients in (2) by the elements in the corresponding
column of B. Matrix W is a weight matrix that indicates how
to combine the surfaces Sq

i to get the original surfaces Rq
j . The

columns of B corresponding to the largest singular values have
more importance in the description of the surfaces, and it is
possible to obtain good reconstructions of the surfaces Rq

j with
a reduced number Nc of surfaces components Sq

i , as will be
seen later. We have then

Rq
j ≈ Sq

0 +
NcX
i=1

Sq
i wij , q = 1, 2, 3 (5)

where wij are the elements of W . By assuming that these co-
efficients are samples of uncorrelated random variables χi , we
get the proposed expansion (1) of the the random surfaces Sq .
This algorithm produces coefficients wij that could come from
uncorrelated random variables χi with zero mean and unit vari-
ance, which we will group in a random vector χ. Assuming that
the samples also come from a normal distribution χ∼N (0, I),
the procedure yields a decomposition of the random surface Sq

as a combination of deterministic surfaces Sq
i and independent
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random coefficients. The choice of a normal distribution (or any
other distribution with probability density function with infinite
support) is questionable because it will lead to a nonzero pos-
sibility of models in which the interfaces intersect each other,
which is physically impossible. We expect that this probability
will be small since the surface components are derived from real
head models. If an intersection between surfaces is found, an ad
hoc local modification of the surfaces would be applied to avoid
it.

The surfaces Sq
0 , q = 1, 2, 3, represent the average of all the

subjects under consideration. These surfaces define what we
will refer to as a standard head model, and we will use it later
for solving the inverse problem when the true shape of the head
is unknown. The electrode positions in this average model are
obtained by projecting the average position of the electrodes on
the outer surface.

We also built the random head model using local expansions
for defining the surface components, i.e., with spline interpo-
lation, e.g., [15], instead of spherical harmonics. The resulting
shape of the surface components was essentially the same, es-
pecially for the first and most important surface components.

A. Example of a Random Head Model

With the described procedure, we obtained a random model
for the shape of the head based on NI = 30 different adult indi-
viduals. The Curry software (Compumedics Neuroscan, Char-
lotte, NC) was used to load each individual’s 3-D T1-weighted
structural MRI scan and automatically segment the shape of
the outer skin, outer skull, and inner skull surfaces [16]. Each
surface was then represented by Np ≈ 2000 equally distributed
points [17]. The spherical harmonics expansion was of order
NA = 19, giving a total of 400 coefficients for each surface.
Extreme care should be taken while working with high-order
spherical harmonics due to numerical instabilities [18]. If the
order of the expansion is too high, overfitting to the points xj

n

could occur, increasing the overall error of the approximation.
With our choice of NA = 19, the difference between the true
surfaces and their expansions has an rms value under half a
millimeter, with

RMS =

vuut 1
Np

NpX
n=1

(rn − r̂n )2 (6)

where rn is the distance to the origin of the points xn and r̂n the
distance to the origin of the point in the approximated surfaces
with the same azimuth and elevation angles as xn .

An average surface and NI−1 = 29 surface components
were obtained for each head model surface. To test the nor-
mal distribution of the random coefficients χi , we performed
a Kolmogorov–Smirnov test on the coefficients wij in (5). We
performed the test for each of the 29 coefficients (i = 1, . . . , 29)
with sample size 30 (j = 1, . . . 30) at 5% significance level, and
found no evidence (p > 0.35) for rejecting a normal distribu-
tion, except for the smallest surface component χ29 (p = 0.005).
Since this last coefficient is associated to a surface component

Fig. 1. rms contribution of the surface components of the brain–skull, skull–
scalp, and scalp–air interfaces.

Fig. 2. rms error and maximum error in the representation of the head surfaces
as a function of the number of surface components. The error was computed
on the upper hemisphere of each of the 30 head models when represented by
the surface components derived from the remaining 29. The mean error of the
30 cases is shown for the brain–skull interface. The dotted lines show the mean
rms and maximum errors in the representation of head models used in the
construction of the surface components.

with a maximum radius smaller than 1 mm, we regard this non-
Gaussian behavior as negligible.

In Fig. 1, we show the rms value of the radius of the different
surface components. The figure shows that only a few com-
ponents have an important contribution to the overall shape,
supporting the idea that a reasonable approximation is possible
with a limited number of surface components.

Next, we want to determine the extent to which our random
model can represent the shape of heads not used in its construc-
tion and the number of surface components needed to attain
a good approximation. We performed a leave-one-out cross-
validation analysis [19], determining the difference between the
actual head model of each of the 30 individuals and the best ap-
proximation to these models built based on the principal surface
components, constructed by the remaining 29 head models. The
error measure is the rms error (6) between the surfaces and their
approximations at points xj

n .
In Fig. 2, we show the rms and maximum error between

the true brain–skull interface and its reconstructions; for the
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skull–scalp and scalp–air interfaces, the errors are slightly
smaller. The figure also shows in dotted lines the average of
the error in the representation of the head models that were used
to build the random model. The figure shows the results as a
function of the number Nc of surface components included
in the random head model; this number may vary between
Nc = 1 (average model and the first surface component) and
Nc = NI−1 = 29. We see in the figure that beyond a certain
number of surface components, the effect of increasing Nc is
not very significant. Note that although the proposed proce-
dure minimizes the rms error, the maximum error between each
surface and its representation with surface components also de-
creases when more surface components are used in the model.
The maximum error has values between 4 and 5 mm for a large
number (Nc > 16) of surface components, as seen in the figure.

The figure also shows that for a number of surface compo-
nents approaching NI − 1, the rms dotted line tends to a value
under 0.5 mm, which is the error of the expansion in spherical
harmonics used to describe the observed models. Since the or-
der of this expansion is finite, details of high spatial frequency
are lost in the representation. It is important to note that if the
head model differs from the real shape of the order of 1 mm, the
effect on the inverse problem solution is not significant [9].

The resulting random head model has a mean value of the
outer surface radius of 85 mm and variations among individ-
uals of 4 mm standard deviation. The mean scalp thickness is
8.6 mm with 1.8 mm standard deviation among individuals, and
the mean skull thickness of 6.2 mm with standard deviation
among individuals below 0.9 mm.

B. Source Model

In this paper, we adopt a dipolar source model. Such a model
represents some sources of interest [20] or may be used to obtain
results for distributed sources by convolution.

The coordinates of the source position are given by its azimuth
and elevation in the coordinate system defined at the beginning
of this section for the alignment of the head models. The third
coordinate is the depth of the source, measured as the distance
between the source and the surface of the brain at the same
azimuth and elevation. This choice of coordinates keeps the
source depth constant when the shape of the head varies. In this
way, we are certain that the source will always be inside the
brain, which would not be the case if the third coordinate was,
e.g., the distance from the source to the origin of the coordinate
system. Another possibility for establishing a correspondence
among the source positions in the individual models would be
to use anatomically equivalent sources, instead of geometrically
equivalent ones. However, establishing anatomical equivalences
among individuals is not a trivial task, and it is beyond the scope
of this paper.

Note that this specification of the source position relative to
the surface of the brain seems favorable for EEG, since the
electrode positions also vary with the shape of the head. For
the MEG helmet, on the other hand, the position of the coils is
fixed in the absolute coordinate system defined by the fiducial
points, and variations of the shape of the head would change the
relative position between the magnetometers and the source.

III. FORWARD PROBLEM

In this section, we show how to solve the EEG and MEG
forward problems when the head model has random geometry.
The forward problem solutions will also be random since they
depend on the geometry of the head. We characterize the forward
problem solution, validate the proposed method, and present
some results for the random head model of Section II-A.

A. Deterministic Solution

For solving the deterministic forward problem, we adopt the
boundary elements method (BEM), with triangular elements
and linear variations over the elements [21]. The use of BEM
for solving the EEG/MEG forward problem is widespread [22],
[23]; the surfaces are tesselated in small triangular elements
and a linear variation of the electric potential is assumed over
each element. The integral formulation of the forward problem
is then reduced to a linear system that must be solved to obtain
the electric potential at the nodes, i.e., at the NN vertices of
the elements, and magnetic field at the sensor positions. To
avoid numerical problems due to the low electric conductivity
of the skull, we use the isolated problem approach (IPA) [24]that
solves the EEG forward problem in two steps: first considering
a null conductivity for the skull and then modifying the result
according to the true value of the skull conductivity.

We restrict our analysis to one-time snapshot; hence, the so-
lution of the EEG and MEG forward problems is given by the
vectors φ and υ formed by the electric potential and magnetic
field components in the respective sensors.

Under these conditions, the EEG and MEG forward problem
solutions are given by

φ = EφS (7)

υ = MφS + υS (8)

where the linear operators E and M are related to the geometry
and electric conductivity of the head model, the vector φS is
the electric potential at the nodes of the innermost surface that
would be generated by the source if the media were homoge-
neous and infinite, and the vector υS is the measured component
of the magnetic field generated by the primary current density.
Note that even though the number of rows of matrices E and M
is equal to the number of electric potential and magnetic field
sensors, the number of operations needed for computing these
matrices is proportional to N 2

N . For a detailed surface tessella-
tion with several thousands nodes per surface, this represents an
important computational load.

B. Random Head Model Solution

To analyze the effect of the head shape variability on the
forward problem solution, we must solve the problem with the
random head model presented previously. Since the forward
problem solutions depend on the geometry of the head model,
they will also be random. We will denote these random forward
problem solutions as φ(χ) and υ(χ), where χ is the normalized
Gaussian random vector used in the random head model.
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One possibility would be to use a “brute force” approach,
running MCSs to obtain statistics of the forward problem solu-
tion. The drawback of this approach is the high computational
load it requires; a large number of samples of the random head
model is necessary to obtain reliable statistics, and each sample
involves the assembling of the matrices associated to the for-
ward problem solution. Instead, we perform a PCE [12], [13] of
the random vectors φ(χ) and υ(χ). This enables us to obtain a
good approximation of the covariance matrices Cov{φ(χ)} and
Cov{υ(χ)}, which depend on the source parameters and are of
uttermost importance in determining the effect of the random
geometry on the inverse problem solutions.

A PCE of any finite-variance random variable α is a series
expansion

α =
∞X

k=0

αkgk (χ) (9)

where αk are deterministic coefficients, gk (·) are multidi-
mensional Hermite polynomials, and χ ∼ N (0, I) is a nor-
mal random vector. The multidimensional polynomials gk (·)
are obtained as product of 1-D polynomials hk (·). The first
1-D Hermite polynomials are given by h0(x) = 1, h1(x) = x,
h2(x) = x2−1. See, e.g., [25] for information on how to obtain
higher degree Hermite polynomials. The degree of the multi-
dimensional polynomial is the sum of the degree in each di-
mension; thus, if χ in (9) has N elements, there will be N
first-degree Hermite polynomials, N(N+1)/2 second-degree
Hermite polynomials, etc. We assume that the index k grows
with the degree of the polynomials; the ordering among the
polynomials of the same degree plays no role, and thus, is arbi-
trary. The Hermite polynomials are orthogonal with respect to
the Gaussian measure, and form a basis of the Hilbert space of
finite-variance random variables [13], [26], with inner product
given by the expectation Eχ{·}. Thus, the coefficients of the
PCE are computed as αk = E{αgk (χ)}.

The PCE is directly extended to a random vector, and thus, it
can be applied to the EEG forward problem solution. Then, an
approximation to the EEG forward problem solution is given by
the first terms of the PCE

φ(χ) ≈
KX

k=0

φk gk (χ) (10)

where φk are the deterministic vector coefficients that must be
found. Once they are known, it is possible to obtain the first- and
second-order moments of the solution vector; note that since the
random variables gk (χ) have zero mean (except g0(χ) = 1), the
first moments of the solution are

E{φ(χ)} = φ0 (11)

E{φ(χ)φT (χ)} =
∞X

k=0

k gk k2 φkφT
k

≈
KX

k=0

k gk k2 φkφT
k (12)

and since we use normalized Hermite polynomials kgkk = 1.

The deterministic coefficients of the PCE are given by
φk = E{gk (χ)φ(χ)}, k = 0, . . . , K. These expectations are
multidimensional integrals that we evaluate numerically. Then

φk ≈
N e vX
n=1

hngk (χn )φ(χn ) (13)

where the proper values for the weights hn and the evalua-
tion points χn are selected according to the integration algo-
rithm. The domain of integration is infinite; hence, the adequate
quadrature algorithm is the Gauss–Hermite quadrature [25]. But
a direct extension of a 1-D quadrature algorithm to a higher di-
mensional space is impractical because the number of evaluation
points Nev grows exponentially with the number of dimensions.
We instead use a Smolyak or sparse grid algorithm [27]–[29].
A Smolyak quadrature of order o is a combination of low-
dimensional quadrature algorithms yielding exact integration
for multidimensional polynomials of total degree up to 2o − 1,
and for which the number of evaluation points grows polynom-
ically with the number of dimensions.

The use of 13 to obtain the PCE coefficients φk requires the
computation of Nev forward problem solutions φ(χn ), each one
being a solution of the deterministic forward problem III-A. A
PCE of the MEG forward problem solution can be obtained in
the same way.

C. Validation

Next, we validate the proposed methods for solving the for-
ward problem when the head model is random. First, we find
the right values for parameters involved in the forward problem
solution, such as the number of surface components and the
numerical integration order needed to obtain accurate results.
Then, we compare the forward problem solution with an MCS
for a small-size problem.

We solved the EEG and MEG forward problems for the
random head model of the previous section. Each surface was
tesselated in 1280 triangular elements, resulting in a total num-
ber of nodes NN = 1926. The assumed electric conductivity
for the brain and scalp was 0.33 Sm−1 , and for the skull
0.022 Sm−1 . This conductivity ratio of 1/15 is supported by
recent studies [30]–[32]. The forward problem was solved for
69 electrodes and 160 radial magnetometers.

The dipolar sources we adopt in this paper are all of 20 nAm
intensity, with the dipole moment tangential to the surface of
a sphere centered at the origin, and in a plane containing the
z-axis. In this section, we analyze the results for 106 dipolar
sources regularly distributed on the upper hemisphere of the
brain, at 10 mm depth under the brain–skull interface.

First, we tested the numerical integration scheme. For this
test, the number of principal surface components Nc does
not play an important role; so we adopt Nc = 4 to speed up
the computations, leading to a number of integration points
of Nev = 1, 9, 45, 165, 494, and 1278 for integration order
o = 1 to 6. The results obtained for o = 6 were used as the
reference. We quantify the error using the relative difference
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Fig. 3. RDM as a function of the numerical integration order. The reference
is the result for order 6. RDM of the coefficients of the PCE of the EEG and
MEG forward problem solution. Maximum RDM among all the PCE terms of
the same order and among 106 different sources in the upper hemisphere of the
head at 10 mm depth.

TABLE I
MAXIMUM RMS VALUE OF THE COEFFICIENTS OF DIFFERENT DEGREES IN THE

EEG AND MEG FORWARD PROBLEM SOLUTION PCE

measure (RDM) [23] given by

RDM =
k φ

(o)
k − φ

(6)
k k2

k φ
(6)
k k2

(14)

where φ
(o)
k denotes the kth coefficient of the PCE, computed

with (13) using a numerical integration order o.
In Fig. 3, we show the error as a function of the integration

order o. We plot the maximum RDM among all the sources
and all the terms of the same degree in the PCE. Full lines
are used for the EEG and broken lines for the MEG forward
problems. As expected, the error decreases with the integration
order. The error is higher for terms related to higher degree
Hermite polynomials in the PCE (9), because these polynomials
appear in the integrand, and the numerical integration algorithm
is exact only for polynomials of total degree up to 2o − 1.

We also computed the contribution of the terms of different
degree in the PCE. Table I shows the rms value of the for-
ward problem solution; the value corresponds to the mean value
among the 106 sources mentioned earlier and the maximum
among the terms of the same degree in the PCE. The EEG re-
sults are measured in microvolts and the MEG results in femto
Tesla (fT). It is clear that the contribution of higher degree terms
of the PCE is small compared to the expected value (degree 0)
and first degree terms, and could be neglected.

Next, we study the effect of increasing the number of surface
components Nc for the random head model. To quantify the ef-
fect of the random head model on the forward problem solution,
we use the signal to variations ratio (SVR), defined as the ratio

Fig. 4. SVR of the EEG and MEG forward problem solutions as a function of
the number of surface components included in the random head model. Results
for first- and second-order PCEs are shown.

between the norm of the expected value of the forward problem
solution and the energy of the deviations with respect to this
value. For a random vector expressed by its PCE (9), the SVR
is in logarithmic scale

SVR=10 log10
k E{φ(χ)} k2

2

k Cov{(φ(χ)} k2
=10 log10

k φ0 k2
2PK

k=1 k φk k2
2

.

(15)
Note that while the RDM is used to compare two deterministic
vectors, the SVR quantifies the variations of a random vector
and is similar to a signal to noise measure, where the “noise” is
due to the variations of the head shape.

In Fig. 4, we show the mean value of the SVR among the
different sources for first- and second-degree PCE. Taking into
account the second-degree terms of the PCE decreases the SVR
in less than 0.3 dB, so it is possible to obtain a reasonable
approximation to the forward problem solution with a first-
degree PCE. It is also possible to note in the figure that the most
important contribution comes from the first surface components,
as expected, since they correspond to larger variations of the
head shape. The figure also shows that even though the EEG and
MEG mean SVR are almost equal for these sources, the MEG
results depend only on a few surface components (around 5),
while the EEG result has significant contributions from more
surface components (around 12). This suggests that the EEG
forward problem requires a more detailed description of the
surfaces.

To validate the forward problem solution, we performed a
traditional MCS, solving the forward problem for samples of
the random head model, with five runs of 500 samples, for
106 tangentially oriented dipolar sources at 10 mm depth. We
compared the MCS results with the results obtained by the pro-
posed methodology. We chose Nc = 15 surface components to
build the random head model, a first-order PCE, and integra-
tion order o = 3, resulting in Nev = 496 evaluation points for
computing the coefficients (13) of the PCE. These parameter
values were chosen because, as seen in Table I and Fig. 4, such
a model incorporates almost all the randomness observed in the
different individuals, and as shown in Fig. 3, the error of the
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numerical integration is negligible in this case (first-order PCE
and integration order o = 3).

The computational burden of the PCE approach is exactly
equivalent to the solution of Nev deterministic forward prob-
lems, as discussed at the end of Section III-B. Thus, it is the
same as an MC run of length Nev . We performed an MCS
with runs of length 500, and compared the results with the PCE
solution of the random head model adopted in the previous
paragraph (Nev = 496). The first-order PCE leads to a forward
problem solution with normal distribution, completely charac-
terized by its expected value and covariance matrix. Hence, we
will compare only the first- and second-order moments of the
PCE and MCS solutions. The mean value of the forward prob-
lem solution of both approaches have an RDM value lower than
0.005, which is negligible from any practical point of view. To
compare the covariance matrices of the forward problem so-
lutions, which describe the variations due to the random head
model, we compute the relative error of the Frobenius norm of
the difference between pairs of covariance matrices. The PCE
covariance matrix is computed with (12), and an approximate
value of its error is given by the difference between the first-
order PCE results and the second-order PCE results, which is
of 5%. The MCS produces different estimates of the covariance
matrix for each run, and the difference between them is around
18%, between three and four times larger than the PCE error.
The expected value of the relative difference of the Frobenius
norm between MCS runs is inversely proportional to the square
root of the number of trials; hence, to achieve the same error
level as PCE, the number of MCS trials and its computational
burden, is between 10 and 15 times larger.

D. Results

For the random head model validated in the previous sec-
tion (Nc = 15, first-order PCE, integration order o = 3), we
computed the SVR for tangentially oriented dipolar sources at
10 mm depth. In Fig. 5, we show the SVR of the EEG and MEG
forward problem solution as a function of the dipole position.
The figures also show the tesselation of the standard shape of
the brain–scalp interface. We observe that the variations of the
SVR with the source position are in the range of 3 dB, for both
the EEG and MEG forward problems.

Comparing the EEG and MEG results, we see that the ef-
fect of the random geometry on the forward problem is slightly
larger for MEG than for EEG, even though for the MEG for-
ward problem this effect is produced by a lower number of sur-
face components, as seen in Fig. 4. The MEG forward problem
solution (8) is formed by two terms: one related to the volumet-
ric currents and the other due to the primary current density. We
found that the contribution of the second term to the variance
of the results is more than four times larger than the contribu-
tions due to the volumetric currents, at least for the tangentially
oriented sources under analysis. This indicates that the main
source of variations in the MEG forward problem result is not
due to the variations in the shape of the volume conductor but
due to the variations of the relative position between the source
and the magnetometers.

Fig. 5. SVR of the forward problem solution due to the random geometry of
the head model. The random model of the head includes 15 surface components.
The results correspond to a tangentially oriented dipolar source at a depth of
10 mm under the surface of the brain. The mesh corresponding to the average
brain/skull interface is also shown. The gray level indicates the SVR for a source
located at each point. (Top) EEG results. (Bottom) MEG results.

TABLE II
EEG AND MEG FORWARD PROBLEM SOLUTION STATISTICS FOR RADIAL (Dr )

AND TANGENTIAL (Dt ) DIPOLES

In Table II, we show more results for dipolar sources that we
will denote by Dr and Dt , located on the left frontal lobe, with
azimuth −π/5 rad and elevation π/4 rad. The source Dr has a
radial orientation and 20 nAm intensity, and Dt has a tangential
orientation, with dipolar moment (11.4,−8.3,−14.1) nAm, i.e.,
also 20 nAm intensity. Later on, we will use these sources in
other examples. The table shows the SVR, the mean value of the
RDM among different samples of the random forward problem,
and the 95% quantile of the RDM among samples for dipoles Dr

and Dt at 10 mm depth. We also include typical results for addi-
tive electronic noise, assuming the standard deterministic head
model and a Gaussian distribution of the electronic noise, inde-
pendent between sensors, with a typical standard deviation of
0.4 µV for EEG sensors and 32 fT for MEG [33]–[35]. Observe
that the noise term does not include background brain activity. It
is also important to note that the results for the electronic noise
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depend on the source intensity, while the relative effect of the
random head model is independent of the source intensity. This
is so because all the terms in the PCE are proportional to the
source intensity, and as a result, the variation of the intensity
cancels out in the computation of the SVR or any other relative
error measure.

We see that the effect of the random geometry of the head
model in the forward problem solution is smaller than the effect
of the electronic noise, but the former is spatially correlated.
Hence, we can draw no conclusions yet regarding the effect of
the inverse problem. A deeper analysis is necessary, and we
perform it in the next section.

IV. INVERSE PROBLEM

In this section, we study the effect of the random geometry of
the head model in the inverse problem. We want to determine the
error in the estimation of the source position with the standard
head model, when the true geometry is a sample of the random
head model. We study the localization error due only to the
random geometry, i.e., when there are no noise sources present.

A. Method

For any dipolar source in the brain, we want to obtain a
statistical description of the localization error when the inverse
problem is solved with the standard head shape. This statistical
description consists of the first- and second-order moments, or
an approximation to the distribution. An attempt to express the
localization error in any spatial direction with a PCE and apply
the same idea as for solving the forward problem showed that
a high-order PCE is needed. This leads to a large number of
evaluation points for computing the expectations numerically,
yielding the procedure impractical.

We then resort to MCSs, generating the samples of the for-
ward problem solution from (10). The algorithm is the follow-
ing: for any given dipolar source compute a sample of the for-
ward problem solution φm , which we will call the measurement.
Then, minimize the difference (L2 norm) between the measure-
ments and the forward problem solution of a dipolar source with
the deterministic standard head model. The parameters of the
dipole that achieves this minimization are the solution of the in-
verse problem. The minimization algorithm we use is a simple
steepest descent method, where the best-fitting dipole moment
is computed at every test location. This algorithm performs ad-
equately in the mentioned conditions, i.e., one dipolar source
and no additive noise present.

B. Validation

To validate the proposed methodology for characterizing the
inverse problem solution, we solve the inverse problem for the
dipolar sources Dr and Dt defined previously, at a depth of
10 mm.

First, we perform an MCS; we generate a sample of an in-
dependent normal random vector χ, and build one sample of
the random head model with (1). We solve the forward problem
for that head model, obtaining the vector of electric potential

or magnetic field that would be present at the sensor locations.
With these data, we solve the inverse problem assuming the
standard head model. Repeating this 1000 times, we form a
vector dMC with the distance between the true source position
and the estimated one in each case.

Then, we form a second vector dPC with the distance between
true and estimated source positions when the forward problem
solution is given by the PCE. In this case, we also start from
an independent normal random vector χ and use (10) to obtain
the forward problem solution for the corresponding head shape,
without actually computing the surfaces of the model. Again,
we solve the inverse problem assuming the standard head model
and repeat the procedure 1000 times.

We performed a Kolmogorov–Smirnov test to determine if
the samples of dMC and dPC could be samples from the same
random variable. The test at 1% significance level showed no
evidence for rejecting the null hypothesis that the samples came
from the same variable, both for the EEG (p = 0.012) and MEG
(p = 0.105) inverse problems.

The results of the test show that a very good approximation of
the inverse problem solution is obtained when solving the for-
ward problem with the proposed procedure. The approximation
is good in the sense that it produces inverse problem solutions
based on the standard head model that are similar to the results
of a MCS.

C. Results

For the random head forward problem solution obtained in
the previous section, we computed the geometric distance be-
tween the true dipole positions and the estimated positions when
solving the inverse problem with the standard head model, for
tangentially oriented dipolar sources at 10 mm depth. We re-
peated this for 1000 forward problem samples and obtained an
error measure for the inverse problem as the 95% quantile of
the distance between the real and estimated source positions.
Fig. 6 shows the results for the EEG and MEG inverse prob-
lem solution as a function of the dipole position. We see in the
figure that the variations of the localization error for different
positions of the source are around a factor 2 for the EEG and
MEG results, as was the case for the forward problem results.
We also observe that the effect of the random head geometry
is significantly larger on the MEG inverse problem than on the
EEG inverse problem.

The localization errors as a function of source depth are shown
in Fig. 7. The results correspond to dipole Dt at different depths.
We observe that error does not vary too much with depth.

The method described in this paper is also useful when there
is partial information regarding the shape of the head model.
To show an example of this, we built a different random head
model for which we assume that the outer surface, or scalp–
air interface, is known. In this case, the random head model is
given by two random fields describing not the absolute shape
of scalp and skull but rather the scalp and skull thickness. The
head model and forward problem solution are obtained with the
methodology described in the previous sections, and the results
are shown for dipole Dt in Fig. 7. It is possible to see a fourfold
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Fig. 6. Localization error of the inverse problem when solved with the average
head model, and the true geometry is given by samples of the random head
model. The results correspond to a tangentially oriented dipolar source at a
depth of 10 mm under the surface of the brain. The gray level indicates the 95%
quantile of the distance between the true and estimated dipole positions for a
source located at each point. (Top) EEG results. (Bottom) MEG results.

Fig. 7. 95% quantile of EEG and MEG inverse problem localization errors.
The results correspond to a tangentially oriented dipolar source in the left
temporal lobe. The results are shown for the random head model with three
random surfaces and a random model in which the outer surface is known.

reduction of the error for the MEG results, while the EEG results
do not vary significantly.

In Table III, we show a comparison of localization errors
obtained for dipoles Dr and Dt at 10 mm depth. The table shows
the mean value of the localization error, its standard deviation,
and the 95% quantile, computed from an MCS with 1000 runs.
We can see that except for the radial dipole MEG result, the

TABLE III
STATISTIC OF THE EEG AND MEG INVERSE PROBLEM LOCALIZATION ERRORS

[IN MILLIMETERS]

effect of electronic noise in the measurements is smaller than
the effect of the random head geometry, even though the effect of
the former in the forward problem was lower. This is because the
variations due to the electronic noise are not spatially correlated,
and hence, easier to differentiate from brain activity. The spatial
correlation of the random head shape MEG forward problem
results is especially important for the radial dipole; the variations
due to the head geometry appear mostly as variations in the
amplitude of the magnetic field distribution, while the shape of
the distribution is not too distorted. Hence, the localization error
is almost equal as for the tangential dipole.

It is important to note that the results shown for the electronic
noise are for one-time snapshot, and if a certain dynamics is
assumed for the source, the error could be lowered using infor-
mation from other instants. This is not true for the effect of the
random geometry; no error reduction is achieved by combining
measurements from different time slots since they all correspond
to the same sample of the random head model, i.e., the same
individual.

V. DISCUSSION

The random head model used in this paper consists of a com-
bination of deterministic surfaces with random coefficients. We
built a model based on observed models of different adult indi-
viduals and found that a limited number of surface components
can represent any head shape with a residual error of a few
millimeters. We believe that the use of large databases for the
construction of the random model would yield better results,
i.e., reduce the residual error by choosing the most representa-
tive surface components from a large set of different observed
models. With the use of a large database of head models, it
would also be possible to build gender- or age-specific random
models.

We solved the forward problem with the random head model
by finding the first terms of the PCE of the solution. With this
expansion, we obtain a reasonable statistical characterization of
the effect of the random shape on the forward problem, with
a practical amount of computational load. Another option we
studied in previous research [36], [37] is to use the stochastic
finite-elements method [13] for obtaining the PCE of the forward
problem solution, but it involves the solution of a larger linear
system, which increases the computational load of the problem.

We showed that a very good approximation of the effect
of the random head model on the forward problem solution
is given by a Gaussian distribution, which is obtained by the
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first-order terms of the PCE. The deviations from the mean
value are spatially correlated and are lower than the electronic
noise associated to the sensors.

Regarding the effect of the random geometry on the
EEG/MEG inverse problem, we restricted our analysis to the es-
timation of one dipolar source position by assuming an average
head model, and found that the maximum localization error is of
the order of 10 mm for the EEG forward problem and between
15 and 20 mm for the MEG forward problem. The difference
between EEG and MEG results is due to the specification of the
source position relative to the brain surface. Nevertheless, the
specification of the source position cannot be given in an abso-
lute coordinate system since the source could then lie outside the
brain. Also, it is sensible to assume an alignment between the
MEG helmet and the head based on the fiducial points (which
define the absolute coordinate system). In conclusion, the errors
we give for the source position estimation with an average head
model are due to the shape variations of the volume conductor
for EEG inverse problem, while for the MEG case, the errors
are mainly due to the change of the relative position between the
source and the MEG helmet. This is supported by the important
reduction of the MEG errors when the outer surface of the head
is known, as shown in Fig. 7.

With regards to our choice of a head model with three layers
of isotropic electric conductivity and a dipolar source model, we
believe that it is appropriate for studying the effect of the head
shape variations since the results are representative enough. In
addition, more exact models, e.g., with anisotropic and inhomo-
geneous electric conductivity and distributed sources, have too
many parameters (conductivity tensor of the tissues, extent, and
shape of the sources) that would complicate the interpretation
of the effects of the head shape variations.

In this paper, we assumed that only the average head shape
is known and used it for solving the inverse problem. An
alternative approach may be to consider that the principal
surface components are also known. This should lead to a
reduction in the errors since it involves some information re-
garding the structure of the spatial correlation matrix. It is
possible to compute the Cramér–Rao bound in this situa-
tion, including a term for the bias of the inverse problem
solution.

We conclude that the use of an average or standard model
for solving the EEG/MEG inverse problems instead of the true
head geometry of each individual leads to worst case localiza-
tion errors under 10 mm for EEG and 20 mm for MEG. This
value is similar to the results of other studies [10], [11] with
deterministic approaches, but in this paper we generalize these
results to a large family of head models instead of several cases.
Note that this paper does not aim to propose a particular av-
erage model, but to quantify the localization errors when such
an average model is used. To decide upon the significance of
these errors, one should consider other sources of uncertainty in
the EEG/MEG inverse problems. The effect of electronic noise
of the sensors is well established [35], but there are other im-
portant factors that are sometimes overlooked in the literature
of inverse problems, notably the background brain activity [38]
when working with dipolar source models, and in EEG, the

electrode noise related to the electrochemical skin–gel inter-
face, larger than the electronic noise of the sensors [39].
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A. Theiβen, “Automatic generation of BEM and FEM meshes,” Neu-
roImage, vol. 5, no. 4, p. S389, 1997.

[17] M. Wagner, M. Fuchs, H. A. Wischmann, K. Ottenberg, and O. Dössel,
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