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Model Estimation of Cerebral Hemodynamics
Between Blood Flow and Volume Changes:

A Data-Based Modeling Approach
Hua-Liang Wei∗, Ying Zheng, Yi Pan, Daniel Coca, Liang-Min Li, J. E. W. Mayhew, and Stephen A. Billings

Abstract—It is well known that there is a dynamic relationship
between cerebral blood flow (CBF) and cerebral blood volume
(CBV). With increasing applications of functional MRI, where
the blood oxygen-level-dependent signals are recorded, the un-
derstanding and accurate modeling of the hemodynamic relation-
ship between CBF and CBV becomes increasingly important. This
study presents an empirical and data-based modeling framework
for model identification from CBF and CBV experimental data.
It is shown that the relationship between the changes in CBF and
CBV can be described using a parsimonious autoregressive with
exogenous input model structure. It is observed that neither the
ordinary least-squares (LS) method nor the classical total least-
squares (TLS) method can produce accurate estimates from the
original noisy CBF and CBV data. A regularized total least-squares
(RTLS) method is thus introduced and extended to solve such an
error-in-the-variables problem. Quantitative results show that the
RTLS method works very well on the noisy CBF and CBV data.
Finally, a combination of RTLS with a filtering method can lead to
a parsimonious but very effective model that can characterize the
relationship between the changes in CBF and CBV.

Index Terms—Autoregressive with exogenous input model
(ARX), cerebral blood flow (CBF), cerebral blood volume (CBV),
parameter estimation, regularization, system identification, total
least squares (TLS).

I. INTRODUCTION

I
T IS WELL known that there is a dynamic relationship be-

tween cerebral blood flow (CBF) and cerebral blood volume

(CBV) [1]–[7]. With the increasing applications of positron

emission tomography and functional MRI (fMRI), where the

understanding of the blood-oxygen-level-dependent (BOLD)

signal plays a key role, it is becoming increasing important

to establish an accurate quantitative description of the dynamics
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relating CBF and CBV. The quantitative description of the re-

lationship between changes in blood flow (volume flux per unit

time through a tissue volume element) and blood volume was

first presented by Grubb et al. [1], where it was suggested that the

relationship between the two variants can be described using a

function obeying a simple power law, i.e., CBV ∝ CBFα , with

α being a constant. This has been extensively applied when mod-

eling the hemodynamic response to activation. However, due to

the fact that this power law relationship has been derived merely

based on steady-state measurements, the generalization and ap-

plication to activation scenarios involving transient changes may

not be valid. Buxton et al. [2] developed a biomechanical differ-

ential equation model, called the Balloon model, to describe how

evoked changes in blood flow were transformed into a BOLD

signal. Mandeville et al. [3] studied the relationship between

the blood flow and volume changes and presented a model in

terms of resistance and capacitance in the context of the standard

windkessel theory. Friston et al. [8], [9] proposed a unified alter-

native representation on the basis of Volterra kernel theory, by

combining system identification and model-based approaches,

to describe nonlinear responses in fMRI including the modeling

of the hemodynamic relationship between CBF and CBV.

Due to the complexity of the inherent neural hemodynamics

for which no or very limited a priori information about the bio-

physical mechanisms (the model structure and the associated

model parameters) is available, analytical or theoretical model-

ing approaches alone may not be adequate to obtain sufficiently

reliable mathematical models to describe cerebral hemodynam-

ics between CBF and CBV. As an alternative, empirical and

data-based modeling approaches that make use of both biophys-

ical observations and identification and information techniques

provide a complementary but very powerful tool for modeling

such complex systems. Regression models, including the gen-

eral linear model, autoregressive with exogenous model (ARX),

nonlinear regression and nonlinear network models, are among

the most popular classes of representations for characterizing

and understanding the dynamics of fMRI responses and related

signals, see for example [10]–[17] and the references therein.

Among the existing modeling techniques, linear-in-the-

parameters regression models, which include the ordinary linear

regression model as a special case, are an important class of

representation for signal processing and system identification.

One obvious advantage of employing linear-in-the-parameters

models is that they are easy to operate, because compared with

nonlinear-in-the-parameters models, such models are easier to

interpret physically, simpler to analyze mathematically, and

0018-9294/$25.00 © 2009 IEEE
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quicker to compute numerically using least-squares-based algo-

rithms [18]. In the classical least-squares (LS) approach, which

is the most commonly used method for solving linear regres-

sion problems, the measurements of the design matrix formed

by the “input” variables (independent variables) are assumed

to be “clean” or “noise-free” (no errors); or, the errors on the

measurements of the independent variables are much smaller

compared with those imposed on the “output” variables (depen-

dent variables) and can therefore be ignored. In many cases,

however, these assumptions may be unrealistic. When the clas-

sical LS approach is applied to solve linear regression problems,

where these assumptions are violated, the resultant LS estimates

for the associated model parameters are inevitably biased. To

overcome this drawback of the ordinary LS algorithm, Golub

and Van Loan [19], [20] developed an efficient numerical tool,

called total LS (TLS), for solving linear regression problems,

where the effects of errors on both the dependent variables and

the independent variables (and thus, the design matrix) are taken

into account. However, unlike the ordinary LS algorithm, where

the solution can be written in a compact form, the application of

the TLS algorithm involves nonlinear optimization for parame-

ter estimation.

The central objective of this paper is to propose an empirical

and data-based modeling approach that can produce an accurate

but simple description of the relationship between the changes

of CBF and CBV during brain activity. The associated model-

ing procedure involves several aspects, two of which focus on

the following issues: how to determine the model structure and

how to obtain accurate estimates of the model parameters by re-

ducing the effects of the measurement errors that are inevitable

in any real biomedical experiments. Following Occam’s Razor

(also known as the parsimonious principle) and by applying

model structure detection and model validity test methods, for

example, the orthogonal LS and statistical model validity test

algorithms [21]–[34], the model structure can be determined

effectively. As for the parameter estimation issue, as was dis-

cussed in the previous paragraph, the ordinary LS algorithm may

produce biased estimates when it is directly applied to highly

noisy experimental measurements. With this consideration, a

regularized TLS (RTLS) method [35], implemented by using a

simplex direct search optimization algorithm [36], is developed

and adapted for model parameter estimation. By combining

the parsimonious principle, the well-established model struc-

ture selection and model validity test methods, the regularized

TLS algorithm and a priori information on the associated cere-

bral hemodynamics, parsimonious but effective models relating

CBF and CBV can be obtained.

II. DATA-BASED MODELING FRAMEWORK

A. NARX Model

It has been proved that under some mild conditions a discrete-

time or discretized continuous-time dynamical system can be

described by the following difference equation model [37], [38]:

y(n) = f(y(n − 1), . . . , y(n − p),

u(n − 1), . . . , u(n − q)) + e(n) (1)

where u(n), y(n), and e(n) are the system input, output, and

noise variables; p and q are the maximum lags in the input and

output, respectively; and f is some unknown linear or nonlinear

mapping. It is generally assumed that e(n) is an independent

identical distributed noise sequence. A commonly employed

form of model (1) is the well-known nonlinear ARX (NARX)

model [37]–[40] that can describe a wide range of nonlinear

dynamic systems and includes several other linear and nonlinear

model types, e.g., Volterra, Hammerstein, Wiener, and ARMAX

models as special cases [41].

A generic form of the NARX model, with a nonlinear degree

of order ℓ, is given as follows:

y(n) = c0 +
d

∑

i=1

cixi(n) +
d

∑

i=1

d
∑

j=1

ci,jxi(n)xj (n)

+ · · · +
d

∑

i1 =1

d
∑

i2 =1

· · ·
d

∑

iℓ =1

× ci1 ,i2 ,···,iℓ
xi1

(n)xi2
(n) · · ·xiℓ

(n) + e(n) (2)

where d = p + q and

xk (n) =

{

y(n − k), 1 ≤ k ≤ p

u(n − (k − p)), p + 1 ≤ k ≤ p + q.
(3)

Practical applications have shown that NARX models, with a

nonlinear degree of order ℓ ≤ 3, can often provide satisfactory

approximations for most dynamical systems. The widely used

ARX model [42]–[44], as a special case of the NARX model

(2), where ℓ = 1 and c0 = 0, is explicitly given by

y(n) =

p
∑

i=1

aiy(n − i) +

q
∑

j=1

bju(n − j) + e(n). (4)

The initial full linear-in-the-parameters model (2) contains a

total of M = [(p + q + ℓ)!]/[ℓ!(p + q)!] model terms, where the

symbol “(p+q)!” indicates the factorial of the number (p + q).

Note that for large maximum lags p and q, the initial full model

(2) may involve a great number of candidate model terms. How-

ever, experience shows that in most cases only a small number

of significant model terms are necessary, and thus, should not be

included in the final model to represent the underlying dynamics.

Most candidate model terms are either redundant or make very

little contribution to the system output and can thus be removed

from the model. Several efficient model structure determination

and model validity test methods have been developed over the

last two decades [21]–[34].

Assume that a total of m significant model terms, denoted by

{φ1(n), φ2(n), . . . , φm (n)}, have been selected from the library

consisting of all the M candidate model terms. The selected m
model terms can be used to form a parsimonious model

y(n) = θ1φ1(n) + θ2φ2(n) + · · · + θm φm (n) + e(n) (5)

where φk (n) denote a combination of the lagged versions of

the input and output variables u(n) and y(n) (the constant may

also be included). For example, for an NARX model with a non-

linear degree of order ℓ = 3, φk (n) are then selected from the

library L = {1} ∪ {xi(n) : 1 ≤ i ≤ d} ∪ {xi(n)xj (n) : 1 ≤ i,
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j ≤ d} ∪ {xi(n)xj (n)xk (n) : 1 ≤ i, j, k ≤ d}, where xk (n)
are defined by (3). Classical linear LT type of algorithms may

be applied to estimate the associated model parameters.

B. Regularized Total Least Squares

It is known that the classical LS algorithms and the standard

statistical analysis for these algorithms require certain assump-

tions: the “input” (independent) variables, say φk (n) in (5), are

measured without errors; or the errors imposed on the “input”

variables are much smaller than those imposed on the “output”

variables (dependent variables) say y(n) in (5) and can therefore

be ignored. For many cases, this assumption may not be satis-

fied, and the ordinary LS method will not work well. To solve

this kind of errors-in-variables (EIV) problem, Golub and Van

Loan [19], [20] developed the total TLS method. Over the last

three decades, TLS methods have been successfully applied to

solve a variety of EIV problems [45]–[48], including the applica-

tions to biomedical data modeling [49], [50]. In some cases, the

TLS method alone, however, may not be effectively immune to

the amplification effects of the noise for an ill-conditioned prob-

lem. To solve this problem, the RTLS method was proposed by

combining the well-known Tikhonov regularization [51]–[54].

Taking the linear regression (linear-in-the-parameters regres-

sion) model (5) as an example, the RTLS estimate is stated

as

θ̂ = min
θ

{

||y − Φθ||2

1 + µ||θ||2
+ λ||θ||2

}

(6)

where y = [y(1), . . ., y(N)]T , θ = [θ1 , . . . , θm ]T ,Φ =
[ϕ1 , . . . ,ϕm ] with ϕk = [φk (1), . . . , φm (N)]T for

k = 1, 2, . . ., m, N is the number of available observa-

tions, and µ and λ are two adjustable parameters. Clearly,

while the ordinary LS minimizes a sum of squared residuals,

TLS minimizes a sum of weighted squared residuals with a

penalized term formed by the square of the parameters. If

µ = 0, (6) reduces to the case of the Tikhonov regularization; if

µ = 1 and λ = 0, (6) reduces to TLS. In the present study, the

adjustable parameter µ will be set to unity, i.e., µ = 1, and the

regulation parameter λ will be chosen by trial-and-error (see

the example that follows for details).

Note that the solution to RTLS (6), with respect to the un-

known parameters θ1 , θ2 , . . . , θm , involves nonlinear optimiza-

tion. Many nonlinear optimization approaches are available to

solve such a nonlinear optimization problem. In this study, how-

ever, a simplex direct search optimization algorithm, proposed

by Nelder and Mead [36], is applied to solve the nonlinear op-

timization problem. The Nelder–Mead method, first introduced

by Nelder and Mead in 1965 and recently enhanced theoretically

by Lagarias et al. [55], is a powerful direct “derivative-free”

search algorithm, where neither the computation nor the ap-

proximation of derivatives or gradients are needed. The Nelder–

Mead method has enjoyed enduring popularity. Of all the direct

search methods, the Nelder–Mead simplex algorithm is the one

most often found in numerical software packages [56].

C. Choosing Regularization Parameter

The determination of the regularization parameter λ in RTLS

(6) is a significant but difficult issue, and there is no universal

criterion on how to select the parameter for general dynamical

modeling problems. Some empirical or ad hoc methods, how-

ever, may work quite well when choosing such regularization

parameters [34]. This study suggests using a trial-and-error ap-

proach and the basic idea is as follows. Let θ̂
(LS )

be the LS

estimate for the model parameter vector θ and σ̂
(LS)
nmse be the nor-

malized mean-square-errors calculated from the model with the

LS estimate. A rule of thumb from our experience is to initially

choose a number

λ0 =
σ̂

(LS)
nmse

1 + ||θ̂
(LS)

||2
=

1

1 + ||θ̂
(LS)

||2

||ê(LS) ||2

||y − ȳ||2

=
1

1 + ||θ̂
(LS)

||2

||y − ŷ(LS) ||2

||y − ȳ||2
(7)

where ȳ is the mean of the output vector y, ŷ(LS) and ê(LS)

are the model prediction (one-step-ahead prediction) and the

model residual vectors, produced by the model with LS esti-

mate θ̂
(LS)

. Using the number λ0 , define a set: Γ = {αkλ0 :
αk = 10−k} ∪ {βkλ0 : βk = 0.5 × 10−k} for k = 0, 1, . . . , 5.

The regularization parameter λ will be chosen from the set Γ,

where each element is set to be the candidate as the regulation

parameter and the RTLS procedure is then performed. This will

lead to a set of models with different RTLS estimates. The cri-

terion for selecting the regularization parameter is to inspect the

predictive capability of the resultant models. For a dynamical

modeling problem, the resultant model should possess a satis-

factory predicative ability in terms of model-predicted output

(MPO), which is an extreme case of long-term prediction and

which is the most stringent test for dynamical models. The value

in Γ that produces the model with the best performance (in the

sense that it minimizes the errors between the MPOs and the

corresponding measurements) will be selected as the regulation

parameter λ.

As an example, consider two nonlinear systems described by

y(n) =

4
∑

i=1

aiy(n − i) +

3
∑

j=1

bj [u(n − 1)]j (8)

y(n) =
4

∑

i=1

aiy(n − i) +
3

∑

j=1

bj [u(n − j)]2 (9)

where the model parameter vector θT = [a1 , . . . , a4 ,
b1 , b2 , b3 ] = [1.8,−2.0, 1.5,−0.5, 0.5,−0.25,−0.1] for both of

the two models given earlier, and the input u(n) was chosen to

be a stochastic process

u(n) = w(n) − 1.96w(n − 1) + 0.98w(n − 2) (10)

where w(n) was a Gaussian white noise sequence with zero

mean and unit variance. The models were simulated and 200

input–output data pairs were collected for both of the two mod-

els; a noise signal was then deliberately added to the data points,

Authorized licensed use limited to: Sheffield University. Downloaded on June 29, 2009 at 09:59 from IEEE Xplore.  Restrictions apply.
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TABLE I
COMPARISON OF PARAMETER ESTIMATES PRODUCED BY LS, TLS, AND RTLS,

FOR MODEL GIVEN BY (8)

TABLE II
COMPARISON OF PARAMETER ESTIMATES PRODUCED BY LS, TLS, AND RTLS,

FOR MODEL GIVEN BY (9)

and these noisy data were then used for model parameter esti-

mation using the RTLS algorithm.

A comparison of the results produced by LS, TLS, and RTLS

for the two systems given by models (8) and (9), is shown in

Tables I and II, respectively. While the three methods produce

almost exactly the same parameter estimates when the noise

level is low (with a high SNR), for the case with high-level

noise (with a low SNR), the results are significantly different: the

RTLS estimates, which are slightly better than TLS, significantly

outperform LS, as can obviously be observed in Table II.

III. DATA MODELING BETWEEN NORMALIZED CHANGES IN

CBF AND CBV

A. Datasets

The datasets presented here were reworked from [57]. The

experimental procedures for concurrent measurements of blood

flow and volume changes were described in more detail in [4]

and [6]. These are briefly reviewed here. The animals used

were hooded Lister rats weighing between 300 and 400 g, anes-

thetized with urethane (1.25 g/kg, intraperitoneal injection),

and atropine (0.4 mL/kg, subcutaneous injection). The whisker

barrel of a rat was located using single-wavelength (∼590 nm)

illumination before the slit spectrograph mounted on the cam-

era was placed over the center of the barrel region. A laser-

Doppler flowmeter (LDF) probe (Perimed, Stockholm, Sweden:

fiber separation 0.25 mm) was then sited over the barrel region

(<1 mm from the skull surface) to measure CBF. Spectroscopic

data were analyzed using a pathlength scaling algorithm to pro-

vide the CBV time series [58].

The CBF time series was sampled at 30 Hz, while the CBV

was sampled at 7.5 Hz. For convenience of data modeling, the

Fig. 1. Measurements of normalized changes in CBF and CBV. From (top)
to (bottom), the plots are for the cases of 1, 2, 3, 4, and 5 Hz. (“NC-CBF” and
“NC-CBV” indicate the normalized changes in CBF and CBV, respectively.)

CBF data were then downsampled at 7.5 Hz. Brief 2-s stimuli

of 1, 2, 3, 4, and 5 Hz were randomly interleaved and ap-

plied within a single experimental run with stimulus intensity of

1.2 mA and a pulse width of 0.3 ms. Thirty trials were obtained

for each stimulus condition with each trial lasting 23 s (with

stimulus onset at 8 s), and an intertrial interval of 25 s to avoid

hemodynamic refractory period.

In the following, the measurement of the normalized changes

in CBF is treated as the input, denoted by u(n), and the mea-

surement of the normalized changes in CBV is treated as the

output, denoted by y(n). The objective is to learn, from available

measurements of the five cases (1, 2, 3, 4, and 5 Hz), a common

model structure that is suitable for describing the hemodynam-

ics (measured by the normalized changes in CBF and CBV).

Here, the normalized changes in CBF and CBV are defined as

∆CBF/CBF0 and ∆CBV/CBV0 , respectively, where the prefix

symbol “∆” indicates the associated relative changes and the

subscript “0” the relevant baseline values. A total of 172 input–

output data points are involved in each of the datasets for the

five cases, and these are shown in Fig. 1.

B. Model Identification

A model term and variable selection algorithm [31] was

performed over each of the five datasets, and the signifi-

cant model variables were determined to be x1(t) = y(t − 1),
x2(t) = y(t − 2), x3(t) = u(t), x4(t) = u(t − 1), and x5(t) =
u(t − 2). Three types of NARX models were considered: 1) an

ARX model given by (4); 2) an NARX model with a nonlinear

degree of order ℓ = 2; and 3) an NARX model with a nonlinear

degree of order ℓ = 3. The initial full models of all the three

types were formed using the five selected significant model

variables. Each of the three initial full models was then used

to generate a parsimonious model that fits all the five datasets,

and this was implemented by using a common model structure

selection algorithm [34], [59] over the five datasets. The model

identification algorithm presented in [34] and [59] is briefly

Authorized licensed use limited to: Sheffield University. Downloaded on June 29, 2009 at 09:59 from IEEE Xplore.  Restrictions apply.
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TABLE III
PARAMETER ESTIMATES PRODUCED BY LS, TLS, AND RTLS, FOR CBF AND

CBV MODELING PROBLEM

described in the Appendix. By comparing the resultant model

performance and by following the parsimonious principle, the

common model structure that fits all the five datasets was deter-

mined to be

y(n) = a1y(n − 1) + a2y(n − 2) + b0u(n)

+ b1u(n − 1) + b2u(n − 2) (11)

where the estimates of the coefficients ai (i = 1, 2) and bj (j =
0, 1, 2) using LS, TLS, and RTLS, for the five cases of 1, 2, 3,

4, and 5 Hz, are shown in Table III.

By setting the first two observations of CBV (the output)

as the initial condition and by using the observations of the

CBF as the inputs, the models produced by the LS and RTLS

algorithms were simulated. The associated MPOs are shown in

Fig. 2. Note that MPOs here are different from short-term (or

multistep) ahead predictions and are a far more severe test than

the often-used one-step ahead (OSA) predictions since the latter

can often look good even for very poor models.

From Table III and Fig. 2, the following conclusions can be

drawn: 1) for the given real datasets, where the associated mea-

surements of changes in CBF and CBV may be contaminated by

noise, the ordinary LS method does not work well; neither does

the TLS method; 2) the RTLS method significantly outperforms

both the LS and TLS methods, in that it can very effectively

handle the errors-in-variables problems here; 3) the proposed

empirical choice of the regularization parameter λ given by (7)

works very well for the RTLS algorithm.

C. Data Filtering

From the results presented in previous sections, there are sig-

nificant differences between the LS and RTLS estimates. This

implies that there may be some noise in the associated input and

output observations, because if the measurements are “clean,”

Fig. 2. Comparisons of the MPOs from the LS and RTLS-related models
(given in Table III) and the associated measurements, for the five cases of 1, 2,
3, 4, and 5 Hz. In each figure, the thin solid line indicates the measurement, the
thick solid line indicates the MPO produced by the RTLS-related model, and
the thick dashed line indicates the MPO produced by the LS-related model.

Fig. 3. Comparisons between the original CBF data and the filtered data for
the cases of 1, 2, 3, and 4 Hz. The thin solid lines indicate the measurements,
and the thick dashed lines indicate the filtered data.

then the LS and RTLS algorithms should in theory produce

almost exactly the same parameter estimates. By visually in-

specting the measurements of changes in CBF shown in Fig. 1,

it can be observed that the CBF data are quite noisy compared

with the CBV data. As a trial-and-error approach, the CBF data

were then filtered by using wavelet filtering methods. As will be

illustrated, filtering the original CBF data is useful for further

improving the identified model performance.

The original CBF data in all the five datasets were filtered

with Daubechies’ wavelets [60]. The filtered data, along with

the relevant original data for the first four cases of 1, 2, 3, and

4 Hz, are shown in Fig. 3 (the 5-Hz case was omitted here to

save space). Using the filtered CBF data as the input and the

associated CBV data (unfiltered) as the output, the coefficients

Authorized licensed use limited to: Sheffield University. Downloaded on June 29, 2009 at 09:59 from IEEE Xplore.  Restrictions apply.



WEI et al.: MODEL ESTIMATION OF CEREBRAL HEMODYNAMICS BETWEEN BLOOD FLOW AND VOLUME CHANGES 1611

TABLE IV
RTLS ESTIMATES FOR CBF AND CBV MODELING PROBLEM,

WHERE FILTERED CBF DATA PLAY AS INPUT AND

ORIGINAL CBV DATA AS OUTPUT

Fig. 4. Comparisons between the measurements and the associated MPOs
produced by the models estimated from the filtered CBF data using the proposed
RTLS algorithm. The thin solid lines indicate the measurements, and the thick
dashed lines indicate the associated MPOs.

of the ARX model of the form (11) were then reestimated using

the RTLS method, and the associated parameter estimates are

shown in Table IV.

The five models given in Table IV were simulated; for each

case, the original CBF data (unfiltered) was used as the model

input, and the associated MPO was then compared with the

original CBV data. Comparisons between the MPOs and the

corresponding original observations are shown in Fig. 4. From

Table IV and Fig. 4, it is quite clear that models estimated from

the filtered CBF data are much better than those from the original

CBF data. While Fig. 4 only provides some visual perception,

the values of the normalized MSE listed in Tables IV and III give

a quantitative comparison. As can be noticed, the normalized

MSE for the MPO given in Table IV is much smaller than that

given in Table III, for all the five cases.

It should be stressed that we generally would not recommend

arbitrarily filtering measured data as the initial step for data

preprocessing, in particular, for application cases where data

are used for typical nonlinear dynamic systems modeling and

identification, because this may mask the underlying nonlin-

ear dynamics. Filtering out some frequencies would imply that

these are only linear effects, whereas it may be that these are

the direct result of nonlinear behavior. For example, a frequency

component at f hertz could also be caused by a nonlinear inter-

modulation effect f1 − f2 , where the difference between f1 and

f2 is f hertz [61]–[63]. However, if there is evidence that a care-

fully chosen filter, together with an efficient modeling algorithm,

can produce much better model estimation, like the modeling

practice here, then filtering may be introduced to improve the

model performance.

D. Continuous-Time Model

In some cases, it may be desirable to identify continuous-time

models. From linear systems and signal processing theory, the

linear discrete-time model (11) can easily be converted into a

continuous model. First, the discrete-time (z-domain) transfer

function of (11) is given by

H(z) =
b0 + b1z

−1 + b2z
−2

1 − a1z−1 − a2z−2
. (12)

By applying the well-known Tustin transform (also called the

bilinear transform), i.e., by letting

z = esTs ≈
1 + sTs/2

1 − sTs/2
(13)

where Ts is the sampling interval, the z-domain transfer function

can then be converted into the s-domain. Taking the case of

5 Hz as an example, where Ts = 2/15s, and the associated

coefficients are listed in Table IV, the s-domain transfer function

is given by

G5(s) =
−0.03654s2 + 5.501s + 1.965

s2 + 28.65s + 6.316
. (14)

The transfer function (14) can further be converted into a

differential equation model

d2y

dt2
+ 28.65

dy

dt
+ 6.316y(t)

= −0.03654
d2u

dt2
+ 5.501

du

dt
+ 1.965u(t). (15)

Driven by the input (measurement of changes in CBF) in

the associated dataset of the 5 Hz case, the continuous-time

model (14) was simulated by using an extrapolation method

in the Runge–Kutta family of ordinary differential equation

solvers provided by MATLAB in the ordinary differential equa-

tion toolbox, and a comparison of the output produced by the

continuous-time model (14) and that by the discrete-time model

given in Table IV is shown in Fig. 5. Note that there is a discrep-

ancy between the outputs produced by the continuous-time and

discrete-time models here, as the bilinear transform defined by

(13), like many other model transforms, is not perfect. The maxi-

mum relative error, defined by Re = max(|yc–yd |)/max(|yd |),
where yc and yd are the outputs that were, respectively, produced

by the identified continuous-time and discrete-time models, was

calculated to be Re = 0.425/0.593 ≈ 7.17%. While such an er-

ror level here can be considered acceptable, some more complex
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Fig. 5. Comparison of the output produced by the continuous-time model (14)
and that by the discrete-time model given in Table IV, for the 5 Hz case.

and accurate transformations may still be needed to reduce the

discrepancy of the outputs produced by discrete-time and the

resultant continuous-time models.

IV. DISCUSSION AND CONCLUSION

Although the relationship between the normalized CBF and

CBV is well known to be nonlinear in general, this paper demon-

strated that it is possible to describe the dynamic relationship

between the normalized changes in CBF and CBV by a set of

linear differential equations, under certain experimental condi-

tions and within certain ranges of physiological parameters. The

data used in the paper were collected from anesthetized animals

under electrical stimulation. Further work will be needed to ex-

amine if this linear relationship holds under other anesthetic

conditions, e.g., for awake animals, and under other experimen-

tal conditions, e.g., under hypercapnia or hypocapnia.

The focus of the paper has been on the development of a

data-based modeling approach for the identification of mod-

els that can be used to describe the dynamical relationship

of changes in CBF and CBV during neural activity. This is

a complicated blackbox system where the true model structure

is unknown, and thus, needs to be identified from available ex-

perimental data. The central task of data-based modeling of

such a structure-unknown system involves several aspects in-

cluding model variable selection, model structure specification

and detection, parameter estimation, and model validation. In

this study, a NARX, which has been widely used for nonlin-

ear system identification, was chosen as the initial candidate

model structure. Compared with many other model structures,

for example, typical neural networks, the NARX model structure

possesses several advantages, some of which are as follows.

1) A wide range of nonlinear systems can be described using

the NARX model.

2) Over the last two decades, the NARX model has been

systematically studied and a series of excellent algorithms

have been developed for the identification of such models.

This means that model structure detection and parameter

estimation for such a model can be performed speedily

and efficiently using existing algorithms.

3) The NARX model is transparent, and thus, can easily be

related back to the underlying system.

4) Algorithms that exist can directly map the NARX model

and continuous-time ODE models into the frequency do-

main [61]–[63]; this allows the user to reveal the ex-

plicit link from the time-domain model parameters to the

frequency-domain properties.

For the model parameter estimation problem, it has been

illustrated that neither the ordinary LS method nor the classical

TLS method can produce reliable estimates from the available

CBF and CBV data, which were contaminated by noise. The

RTLS method, however, works very well when applied to the

error-in-variables problem here. Note that the application of

RTLS involves nonlinear optimization and the need to estimate

the value of the regularization parameter. The Nelder–Mead

simplex direct search optimization algorithm was introduced

to solve the RTLS equation (6), where the initial value of the

unknown parameters was chosen to be the LS estimates. While

Nelder–Mead algorithm, coupled with the rule of thumb for

choosing the regularization parameter given in (7), can work

very well for model parameter estimation, there still exists space

to further optimize the choice of the regularization parameter, as

well as the initial value for the free parameters to be optimized.

It can be believed that the basic ideas and algorithms devel-

oped in this paper can be directly applied or extended to other

biomedical modeling problems, where limited a priori informa-

tion is available and the true model structure of the underlying

dynamics is unknown.

APPENDIX

MULTIPLE ORTHOGONAL SEARCH ALGORITHM

FOR MODEL SELECTION

Assume that a total of K experiments have been carried out

on the same system and K different datasets have accordingly

been obtained. Also, assume that there exists a common model

structure that can best fit all the K datasets. Denote the input and

the output sequence for the kth experiment by {uk (t)}Nk
t=1 and

{yk (t)}Nk
t=1 , respectively, for k = 1, . . . ,K. The kth predictor

vector is thus given by

xk (t) = [xk,1(t), . . . xk,d(t)]
T = [yk (t − 1), . . . , yk (t − ny ),

uk (t − 1), · · · , uk (t − nu )]T .

It is assumed that all the K datasets can be represented using

a common model structure, with a different parameter set, de-

duced from the initial candidate regression model given as

yk (t) =

M
∑

m=1

θk,m φm (xk (t)) + ek (t)

=

M
∑

m=1

θk,m φk,m (t) + ek (t). (16)
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This can be expressed using a compact matrix form

yk = Φkθk + ek (17)

where yk = [yk (1), . . . , yk (Nk )]T , θk = [θk,1 , . . . , θk,M ]T ,

ek = [ek (1), . . . , ek (Nk )]T , and Φk = [ϕk,1 , . . . ,ϕk,M ] with

ϕk,m = [φk,m (1), . . . , φk,m (Nk )]T for k = 1, . . . , K and m =
1, . . . , M .

For large lags ny and nu , the regression model (16) often

involves a large number of candidate model terms, even if the

nonlinear degree ℓ is not very high, say ℓ = 2 or ℓ = 3. Expe-

rience has shown that an initial candidate model with a large

number of candidate model terms can often be drastically re-

duced to a simple sparse model that only includes a few number

of effectively selected significant model terms. A simple sparse

model is usually desirable for practical applications including

system analysis, design, control, and prediction.

Let I = {1, 2, . . . , M}. Denote by D = {φm : m ∈ I} the

dictionary of candidate model terms for an initially chosen

candidate common model structure that fits to all the K re-

gression models. For the kth dataset, the dictionary D can be

used to form a dual dictionary Vk = {ϕk,m : m ∈ I}, where

the mth candidate basis vector ϕk,m is formed by the mth

candidate model term φm ∈ D, in the sense that ϕk,m =

[φm (xk (1)), . . . , φm (xk (Ni))]
T (k = 1, . . . , K). The common

model structure selection problem is equivalent to finding, from

I, a subset of indices, In = {im : m = 1, . . . , n, im ∈ I} where

n ≤ M , so that yi (i = 1, . . . , K) can be approximated using

a linear combination of ϕi1
,ϕi2

, . . . ,ϕin
as

yi = θi,1ϕi,i1
+ · · · + θi,nϕi,in

+ ei . (18)

A squared correlation coefficient can be used to measure the

dependency between two associated random vectors [33], [64].

The squared correlation coefficient between two vectors x and

y of size N is defined as

C(x,y) =
(xT y)2

(xT x)(yT y)
=

(
∑N

i=1 xiyi)
2

∑N
i=1 x2

i

∑N
i=1 y2

i

. (19)

The squared correlation coefficient is closely related to the

error reduction ratio (ERR) criterion defined in the orthogonal

LS algorithm for model structure selection [26].

Let rk,0 = yk (k = 1, 2, . . . ,K). For k = 1, 2, . . . , K and j =
1, 2, . . . , M, calculate c1(k, j) = C(yk ,ϕk,j ), and define

s1 = arg max
1≤j≤M

{

1

K

K
∑

k=1

c1(k, j)

}

. (20)

The first significant common model term can then be selected

as the s1 th element, φs1
, in the dictionary D. Accordingly, the

first significant basis vector for the kth regression model is thus

αk,1 = ϕk,s1
, and the first associated orthogonal basis vector

can then be chosen as qk,1 = ϕk,s1
. The model residual for the

kth regression model, related to the first step search, is given as

rk,1 = rk,0 −
rT

k,0qk,1

qT
k,1qk,1

qk,1 . (21)

Notice that c1(k, s1) can be viewed as the ERR that is in-

troduced by including the first basis vector αk,1 = ϕk,s1
into

the kth regression model. The criterion (20), by maximizing the

sum of the ERR values relative to all the K datasets, guaran-

tees that the variation of the outputs in all the K datasets can

be explained by including the model term φs1
, with the highest

percentage, compared with selecting any other candidate model

term φ ∈ D = {φm : m ∈ I}. The first average error reduction

ratio (AERR) is given by AERR(1) = (1/K)
∑K

k=1 c1(k, s1).
In general, the mth significant model term φsm

can be chosen

as follows. Assume that at the (m−1)th step, (m−1) signifi-

cant model terms, φ1 , φ2 , . . . , φm−1 , have been selected. Let

αk,1 , . . . ,αk,m−1 be the associated basis vectors for the kth

regression model, and assume that the (m−1) selected bases

have been transformed into a new group of orthogonal bases

qk,1 , . . . ,qk,m−1 via some orthogonal transformation. Let

p
(m )
k,j = ϕk,j −

m−1
∑

s=1

ϕT
k,jqk,s

qT
k,sqk,s

qk,s , j ∈ Jm (22)

where Jm = {j : 1 ≤ j ≤ M, j �= st , 1 ≤ t ≤ m − 1}. For

k = 1, . . . ,K and j ∈ Jm , calculate cm (k, j) = C(yk ,p
(m )
k,j ),

and define

sm = arg max
j∈Jm

{

1

K

K
∑

k=1

cm (k, j)

}

. (23)

The mth significant common model term is thus selected as

the sm th element, φsm
, in the dictionary D. Accordingly, the

mth significant basis vector for the kth regression model is thus

αk,m = ϕk,sm
, and the associated orthogonal basis vector can

then be chosen as qk,m = p
(m )
k,sm

. The model residual for the kth

regression model, related to the mth step search, is given as

rk,m = rk,m−1 −
rT

k,m−1qk,m

qT
k,mqk,m

qk,m . (24)

Subsequent significant bases can be selected in the same way

step by step, one model term at a time. Once the first (m − 1)

basis vectors αk,1 , . . . ,αk,m−1 (respectively, the associated or-

thogonalized vectors qk,1 , . . . ,qk,m−1) have been determined,

then these (m − 1) bases together with the mth vector αk,m =

ϕk,sm
(respectively, the orthogonalized vector qk,m = p

(m )
k,sm

),

can explain the variation in the outputs of the K datasets with a

higher percentage than by including any other candidate vectors.

The quantity AERR(m) = (1/K)
∑K

k=1 cm (k, sm ) is referred

to as the mth AERR. While this step-by-step forward selection

algorithm is a nonexhaustive search method and may not always

produce the perfect global optimal solution, it can usually pro-

duce satisfactory and nearly optimal results for most real world

problems

From (24), the vectors rk,m and qk,m are orthogonal, and

hence

||rk,m ||2 = ||rk,m−1 ||
2 −

(rT
k,m−1qk,m )2

qT
k,mqk,m

. (25)
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By, respectively, summing (24) and (25) for m from 1 to n,

yields

yk =

n
∑

m=1

rT
k,m−1qk,m

qT
k,mqk,m

qk,m +rk,n (26)

||rk,n ||
2 = ||rk,n−1 ||

2 −
(rT

k,n−1qk,n )2

qT
k,nqk,n

= ||yk ||
2 −

n
∑

m=1

(rT
k,m−1qk,m )2

qT
k,mqk,m

. (27)

From (26) and (27), the model residual rk,n can be used to

form a criterion for model selection and the search procedure

will be terminated when the norm ||rk,n ||
2 satisfies some spec-

ified conditions. In the present study, an approximate minimum

description length (AMDL) criterion presented in [65] and [66]

is used to determine the model size. For the case of K = 1,

AMDL is defined as

AMDL(n) = 0.5 log2 [MSE(n)] +
1.5n log2 N

N
(28)

where MSE = ||rn ||
2/N is the mean-square-error associated

with model of n terms, N is the length of the associated training

dataset, n is the number of model terms, and rn is the associated

model residual. Other criteria [32], [64] can also be used to

replace (28) to monitor the orthogonal search procedure.

The present study uses the following average AMDL as the

criterion to determine the number of common model terms:

AAMDL(n) =
1

K

K
∑

k=1

AMDL[k ](n) (29)

where AMDL[k ](n) is the value for the AMDL criterion asso-

ciated to the kth dataset. For the case with K = 1, the afore-

mentioned multiple orthogonal search algorithm reduces to the

well-known orthogonal LS algorithm [26].
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