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Nonlinear Influence of T-Channels
in an in silico Relay Neuron

Kai M. Hynna and Kwabena A. Boahen*, Member, IEEE

Abstract—Thalamic relay cells express distinctive response
modes based on the state of a low-threshold calcium channel
(T-channel). When the channel is fully active (burst mode), the
cell responds to inputs with a high-frequency burst of spikes; with
the channel inactive (fonic mode), the cell responds at a rate pro-
portional to the input. Due to the T-channel’s dynamics, we expect
the cell’s response to become more nonlinear as the channel be-
comes more active. To test this hypothesis, we study the response
of an in silico relay cell to Poisson spike trains. We first validate
our model cell by comparing its responses with irn vitro responses.
To characterize the model cell’s nonlinearity, we calculate Pois-
son kernels, an approach akin to white noise analysis but using
the randomness of Poisson input spikes instead of Gaussian white
noise. We find that a relay cell with active T-channels requires at
least a third-order system to achieve a characterization as good as
a second-order system for a relay cell without T-channels.

Index Terms—Neuroengineering, neuromorphic, relay cell
model.

I. THALAMIC RELAY CELLS

HE THALAMUS is centrally located for much informa-
T tion ascending to the cortex. Excluding olfaction, all sen-
sory input passes through one of its nuclei. For this reason,
scientists often refer to the thalamus as the gateway to the cor-
tex. Early thoughts on its role consisted of nothing more than a
simple relay station for ascending information. Recent studies,
however, suggest that the thalamus, with the massive feedback it
receives from the cortex, may play an active role in information
processing in the awake state [1].

Thalamic cells possess a low-threshold Ca™ channel, the
activation of which dramatically alters the cell’s output response.
These channels—often called T-channels—are complicit in the
generation of high-frequency bursts of action potentials, 2—6
spikes at frequencies greater than 250 Hz [20]. However, before
the T-channel can cause a burst, it must first be deinactivated,
accomplished through an extended period of hyperpolarization
of the cell’s membrane voltage—hundreds of milliseconds for
full deinactivation [10].

When studying the influence of this channel, neuroscientists
generally have considered its state in two extremes: fully dein-
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activated (burst mode) or fully inactivated (fonic mode). In these
two modes, the response properties of the relay cell vary dra-
matically, not only in its firing patterns but also in properties
such as temporal filtering [6], [21], [24], receptive field or-
ganization [7], [8], and representation of visual stimulus fea-
tures [6], [19].

Our goal in this paper is twofold: First, we present our
in silico model of a thalamic relay neuron—complete with a
low-threshold calcium channel—and compare its behavior to
real cells. Neuromorphic models are silicon reconstructions of
neural circuitry, mimicking cellular-level ion-channel dynamics
through similarities between transistors and ion channels [13].
Due to their compact designs, these models offer a means of
studying the interaction among thousands of cells with biologi-
cal realism, without slowing simulation speed.

Second, we characterize the model cell’s nonlinearity in its
two response modes using an approach similar to Wiener series
analysis, except that instead of white noise current injections, we
drive the cell with Poisson spike trains. We quantify the ability of
the kernels thus obtained to capture the cell’s behavior by using
them to reproduce its output; the order of the kernels required
to achieve a certain degree of fidelity serves as a measure of
nonlinearity.

The kernel order is effectively the number of input spikes
that interact to produce an output spike. For real relay cells, the
efficacy of retinogeniculate synapses—defined as the percentage
of input spikes generating an output spike—is approximately
30% [25]. Excluding other influences, such as proximity in
time, this suggests that on average, three input spikes cause an
output spike. Thus, we expect that a system order greater than
one is necessary to capture the cell’s behavior in tonic mode.
We expect the system order to be even higher in burst mode,
given the T-channel’s complex dynamics.

We begin by providing a background on Poisson series, briefly
comparing it to its predecessor the Wiener series, and describ-
ing its underlying mathematics (Section II). In the next section,
we continue by describing our relay cell model and verifying
its operation (Section III). Following that, we proceed with the
analysis, first by describing our approach, and then presenting
our computed kernels (Section IV). We then quantify these ker-
nels’ ability to capture the model’s nonlinear behavior by using
them to recreate its output (Section V). The paper concludes
with a discussion (Section VI).

II. POISSON SERIES

The Poisson approach is an extension of the Wiener series,
using the statistics of Poisson input spikes—rather than white
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noise—to calculate the system kernels. Wiener series analy-
sis [18], [23]—also called white noise analysis—has been ap-
plied extensively over the past few decades to many sensory
systems, especially visual (for a brief review, see [23]). The
advantage of a technique like this, in addition to being sim-
ple (procedurally) to perform, is that it bypasses many of the
details of the transduction process (e.g., of light to current
for vision), and results in a set of kernels that are intuitive—
at least in the first-order case—to the researcher. In addition,
the extension of the single-input model to multiple inputs al-
lows the vision researcher to expand the white noise stimu-
lus spatially to study spatiotemporal behavior—the receptive
field of the cell. This approach has been used successfully to
study temporal contrast adaptation in both salamander gan-
glion [14] and bipolar cells [22], to study contrast sensitivi-
ties in ON and OFF ganglion cell pathways [27] as well as to
study Na* inactivation in the salamander retinal ganglion cell
[15].

For central neural systems, away from sensory periphery,
Wiener series analysis can still be used—through white noise
current injection—to study a cell’s internal, postsynaptic dy-
namics. However, for these neurons, using trains of action po-
tentials is potentially more informative [17]. Using input spikes
to probe the response of a cell lumps synaptic processing with
membrane filtering and provides a spike-in to spike-out system
description. Neurons do not operate their ion channels in iso-
lation of their synapses, and so the Wiener series, while useful
for understanding isolated membrane components, may be less
valuable in understanding a neural system’s function. Poisson
kernels were first used to study synaptic transmission in lob-
sters [16], [17].

A system’s response to a Poisson spike train is represented
by

y(t):g0+/ g1 (o) z(t—o0) do
+ /—oo/_oogz (o1,02)x (t —01)
01#02
X z(t —02) doy dog + -+ (1)

where g, is the nth-order kernel and = (t) = >, 0 (t — t;) is the
input Poisson spike train with rate A, with each spike represented
by a Dirac delta function (§ (¢)). Note the restriction on the di-
agonal of the integration variables (o7 # o9) for the second
(and higher) order integrals. This restriction removes additional
terms that occur at 0; = o9 when calculating the kernels (de-
scribed next). In the Wiener series, these additional terms are
removed using lower order kernels [18]. The same approach
is not possible with Poisson spike trains, due to differences in
the input statistics, and thus the need for the restriction on the
integral [17].
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Before calculating the kernels g,,, we must first calculate an
intermediate set of kernels for the following system:

y(t):z()—i—/jczl(o) zp (t—0) do

+ /—oc /_ooZz (01,09) ) (t —01)

01707

Xz, (t —o2) doy dog + -+ 2)

where x,,(t) = 2(t) — A is the zero-mean Poisson spike train—
the spike train equivalent of Gaussian white noise in the Wiener
series. Like the system expression for Wiener series, each inte-
gral expression in (2) is a functional, and to help isolate the ker-
nels’ forms, these functionals are constrained to be orthogonal
to each other. Thus, to calculate the kernels z, , the expectation
of the output and an appropriate number of inputs isolates each
functional [17]

20 =Efy (0
2 (0) = 3Bl e (t—0)) -
1
»

— 21 (01) — 21 (02) — z0>

o (0102) = 5 (B WO =)o (e - o)

where E[-] is the expectation over the stimulus period [17].
Since x(t) consists of Dirac delta functions, calculating the ex-
pectation simply becomes a sum of the output function sampled
at different intervals by the input. For example, in the first-order
kernel calculation, the expectation is

Ely(®)a(t-o)= [ ylt) a(t=0)
T
:/0 y (t) Zé(t—ti—a) dt
:Zy(tiJra).

The relationship between the kernels z, and g, are calcu-
lated by substituting x, (t) = z () — A into (2) and grouping
terms of the same integral order together. The variable g; is
then the sum of functionals z;, where i < j < n (with n be-
ing the order of the system). For example, for a third-order
system

(o) o0
o0
gozz()—k/ 71 d01+k2[m[m22d01d02
—00

0'1?50'2

_XB[w[wKx23d01d02d03
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Fig. 1. Second-order kernel. (a) Contour plot showing a sample second-order
kernel (arbitrary output units). Background gray represents zero and increasing
lighter shades representing increasing positive values. The IS oy — o1 between
pairs of input spikes defines the second-order effect (dashed line). (b) Kernel
from (a) drawn with a change of variable. Time from second spike is isolated to
one axis, with ISI on the other. (c) Sample output response to two input spikes
(vertical arrows). In a linear system, the output would be the sum of individual
linear kernels (black solid line, shaded white). The ISI defines the second-order
effects, and manifests itself on top of the linear response (shaded gray).
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For each additional order included in the system, the lower
order kernels are modified by removing some of the higher order
influences. The difference between a second- and third-order
system is simply all of the aforementioned terms containing
z3. The mean output of the system, however, remains constant
regardless of the system order.

Kernel interpretation for a spike train stimulus, given its dis-
crete nature, is much more intuitive than for Gaussian white
noise. The linear kernel g; is the response of the system to
each individual input spike. The second-order kernel g», which
is more difficult to understand in the continuous input case,
demonstrates the response of the cell to two spikes on top of
the sum of the individual linear kernels (Fig. 1). Extending to
higher orders, the nth-order kernel represents the effect on the
output of the system from combinations of n spikes. For ease
of presentation, we will rearrange the second-order and higher
order kernels so that they show the response of the system to the
interspike interval (ISI) of input spikes [compare Fig. 1(a) with
Fig. 1(b)].
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Fig. 2. Relay cell model. The in silico cell consists of two compartments: a
dendrite, which receives input spikes and contains the T-channel circuit, and a
soma, which generates output spikes. See text for details.
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Fig. 3. T-channel gating dynamics in silico. (a) I activation in response to
step changes of the membrane voltage V; (bottom). V' begins low so that
the activation variable is zero, and steps to higher voltages. The activation level
increases with V', approaching steady state more slowly at intermediate levels
of V. (b) I deinactivation in response to step changes of the membrane
voltage V') (bottom). V' begins high so that It is inactivated, and steps to
lower voltages. The deinactivation level increases with decreasing V' ; as in
activation, the dynamics are slower at intermediate levels of V' .

III. SILICON RELAY CELL

Our silicon relay cell consists of two compartments (Fig. 2):
a dendritic compartment to integrate inputs and a somatic one
to generate outputs. The dendritic compartment contains all ac-
tive membrane components not involved in spike generation—
namely, the T-channel and synaptic circuits—as well as com-
mon passive membrane components—a membrane capacitance
(Cn) and a membrane conductance (transistor N1).

The synapse circuit [2] is based on a simple kinetic synapse
model that represents biophysical mechanisms of transmitter re-
lease and binding to receptors [5]. It converts spikes into synap-
tic currents, tuned such that we achieve a 5-ms time-constant
matching those observed in excitatory alpha-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid (AMPA) receptors [4], [9].
The efficacy of the synapse is set to roughly 30%, as seen at
the retinogeniculate synapse [25], using a 10-Hz input Poisson
spike train (in simulated real time; see discussion of hypertime
later). We transmit spikes to and from our chip over a digital
link using address events [3].

The T-channel circuit has been described in detail previ-
ously [12]. Briefly, it uses two channel variables to model the ac-
tivation and inactivation dynamics of the low-threshold calcium
channel. The activation variable [13] takes advantage of thermo-
dynamic similarities between transistor channels and ion chan-
nels to capture the voltage dependence of both the steady state
and time constant of the variable. The inactivation variable [12]
is based upon similar principles, but we use a different approach
to achieve the slower inactivation dynamics found in real cells.
Activation opens the channel as V'y; increases [Fig. 3(a)], initi-
ating a burst; inactivation, which operates much slower, closes
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Fig. 4. Dendritic voltage (V) records for the cell’s two firing modes.
(a) Tonic. (b) Burst. In tonic mode, V' is initially high (=500 mV), which
inactivates /7. In burst mode, V' is initially low (=200 mV), which deac-
tivates /1. For both figures, a 400-ms-wide current step is injected into the
dendritic compartment at £ = 50 ms. The soma’s spike does not propagate back
to the dendrite due to the axial diode between the two compartments. Instead,
the dendritic compartment only reflects the reset component of the cell body’s
spike.

the channel, ending the burst. V) needs to lower sufficiently to
deactivate the channel before another burst can occur [Fig. 3(b)].
The product of these two variables defines the T-channel current
(I1), which we feed directly into the dendritic compartment.

The somatic compartment integrates current received from
the dendritic compartment on its capacitor (C'¢cp) and generates
spikes. The main component within this compartment models
the axon hillock, which causes the cell to generate a spike once
a voltage threshold is surpassed. The axon hillock circuit also
activates interface circuitry that transmits the spike of-chip as
an address event.

Connecting the two compartments is a diode-connected tran-
sistor (transistor P1). Due to its rectifying behavior, this diode
allows current to pass only from the dendrite to the soma. As
a result, the somatic action potential does not propagate back
to the dendrite (Fig. 4); only the hyperpolarization (reset) that
follows is evident in the dendritic voltage trace (V'yr). This is
a simple approximation of dendritic low-pass filtering of the
back-propagating signal.

The dendritic voltage spans a range of 0—1.2 V. This corre-
sponds to a cellular voltage range of approximately —120 to —45
mV, the latter being the spike threshold of the cell. The map-
ping is not perfectly linear, given our membrane conductance’s
nonlinear dynamics; in addition, the activation and inactivation
thresholds of the T-channel are slightly lower relative to the
spike threshold than seen in vivo. This would appear as a slight
temporal shift in the position of the burst, as I, once activated,
needs to raise V' further. While this should be taken into con-
sideration when interpreting our results, qualitatively we do not
feel they will change.

Our silicon circuits’ temporal dynamics are faster than seen
in biology, i.e., our chips run in hypertime, for reasons discussed
in [11]. This feature allows us to collect large amounts of data
in a practical amount of time. However, when presenting our
results, we have scaled our data in time by a hypertime factor,
such that the time scale of our measured results—which we
call simulated real time—matches biological time scales. More
specifically, we scaled time such that the time constant of our
T-channels are similar to those seen within relay neurons, to
facilitate comparing in silico and in vitro results.

The results in this paper are measured from two different
chips, both fabricated in 0.25 ym CMOS. Due to differences
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Fig.5. Frequency responses in the two firing modes: burst (dashed, gray) and

tonic (solid, black). (a) Mean response and (b) phase are extracted from a Fourier
transform of the peristimulus time histogram (PSTH), each trial corresponding
to the spikes recorded in a single cycle [24]. The cell’s response mode is adjusted
through the mean current level of the input sinusoid. [(c) and (d)] Mean response
and phase from a real relay cell (data replotted from [24]).

in transistor dimensions, however, these chips possess different
hypertime factors. For the results presented in this section, the
hypertime factor is 5 (i.e., our chip ran five times faster than
biology). For the results presented in Section IV, the hypertime
factor is 10. For instance, the 10-Hz input that we used to set our
synaptic weight is defined in simulated real time; in real time
(i.e., not scaled by our hypertime factor), our input spike train
had a mean rate of 100 Hz.

A. Current Clamp Response

We use a current clamp experiment to demonstrate our cell’s
different modes (Fig. 4). If we initialize the dendritic resting po-
tential at depolarized levels—Vy; ~ 500 mV, sufficiently high
to inactivate the T-channel—the cell responds to a step input
current with a constant-rate spike train [Fig. 4(a)]. Immediately
after the step (=50 ms), V'\ begins to rise, and current eventu-
ally passes into the somatic compartment via the axial diode. V'
continues to increase linearly until V ¢ reaches spike threshold,
the point at which the axon hillock generates a spike. After spike
reset, dendritic integration continues. Since Vy;’s trajectory is
linear, the firing rate increases linearly with input current (data
not shown), as observed in real relay cells [20].

Next, we repeat the procedure with a constant inhibitory cur-
rent added to the injected current step [Fig. 4(b)]. The inhibitory
current lowers the initial V' to approximately 200 mV, thereby
deactivating I1. After the step, V1 begins to rise; at around
400 mV, It activates, causing a rapid rise in V'y; and initiating
a burst. The initial spike rate approaches 200 Hz, decreasing
with each successive spike as the channel inactivates, and even-
tually the cell stops firing.

B. Frequency Response

Another measure that we can use to validate our in silico
model is its frequency response (Fig. 5). Real thalamic cells
change their response from bandpass in burst mode to all-pass
in tonic mode [Fig. 5(c)]. Our cell shows a similar change from
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burst to tonic [Fig. 5(a)]. In burst mode, spiking is entirely due
to I, as the maximum input current is insufficient to cause
the cell to spike. At high frequencies (above 3 Hz), the cell
spends less time at low membrane voltages, and /1 does not
have sufficient time to deactivate, and spike rates start to drop,
eventually ceasing. At medium frequencies (from 0.5 to 3 Hz),
It has enough time to fully deactivate, and the cell fires a burst
with the same number of spikes every cycle; thus, the response
is proportional to stimulus frequency. At low frequencies (below
0.5 Hz), I1 begins to inactivate before it can activate, and the
number of spikes per burst decreases. Thus, there is a sublinear
increase in spike rate with stimulus frequency.

In tonic mode, the T-channel is always inactive, and so the
response is dependent solely on the input current, which the cell
simply integrates. At low frequencies, the cell responds with
multiple spikes on top of the sinusoid peak. As the frequency
increases, the number of spikes within each cycle decreases. At
frequencies greater than the mean spike rate, the cell no longer
is capable of generating spikes at every cycle, but responds
subharmonically. This results in a flat frequency response, as
the number of spikes per cycle is inversely proportional to the
stimulus frequency.

The response’s phase also matches to that seen in in vitro
[Fig. 5(b) and (d)]. In burst mode, the response leads at low fre-
quencies; the T-channel activates and induces a burst before the
input peak. This lead disappears as the frequency increases, and
eventually, the response lags. The latency is due to the chan-
nel’s activation dynamics and membrane integration. For low
frequencies, the latency is negligible compared to the stimulus
period, and so, as the frequency drops, the phase asymptotes
to the position where the input current overcomes the mem-
brane leak. As the frequency increases, the latency becomes
more significant, delaying the burst toward the input’s peak, and
eventually, past it.

In tonic mode, the response always lags [Fig. 5(b)], due to
temporal integration by the membrane capacitance. Only at low
frequencies, where this latency becomes negligible with respect
to the stimulus period, with spikes distributed approximately
equally before and after the input peaks, does the tonic phase
approach zero. As the period shortens, the latency becomes
significant, causing a greater phase lag. In vitro measurements
show a similar shift toward a phase lag. Real cells, however, be-
gin with a phase lead that becomes a phase lag as the frequency
increases [Fig. 5(d)]. The discrepancy is due to frequency adap-
tation within real neurons, which results in a stronger initial
response—and thus a phase lead—at low frequencies.

Even though our in silico data match in vitro data well qual-
itatively, there are quantitative differences between them: the
absolute spike rates are higher in vitro, the peak response for
burst mode is higher than tonic mode in silico, and the burst
phase in silico falls off at higher frequencies than in vitro. How-
ever, our focus is to characterize the T-channel dynamics and not
the cell as a whole, which possesses numerous other currents
that our model does not include.

IV. POISSON KERNELS

To study nonlinearity, we will calculate the Poisson kernels
for our in silico neuron. We represent our system by two serial

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 56, NO. 6, JUNE 2009

x(t) () x,(1)
Poisson 1

Fig. 6. System diagram of a neuron. G | . ] performs temporal filtering, repre-
senting the action of synaptic and membrane dynamics on the input spike train
(z (t)). This operator’s output y (¢) is converted to a spike train (z, (¢)) by a
second operator, representing integration of current supplied by the dendrite to
a fixed threshold at the axon hillock.
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T T T T T T T T T T T T T T T T T

Fig. 7. Converting the output spike train to a rate function. Each qualified ISI
is replaced by a function whose integral (gray) over the ISI is unity. A qualified
ISI is defined as one between an output spike and the closest spike preceding it,
either output (black) or input (gray). In the former case, the function has zero
slope; in the latter case, it has non-zero slope and starts from zero—a simple
representation of synapse dynamics.

operations (Fig. 6): a temporal filter that processes incoming
input spikes and a current-to-frequency converter that generates
output spikes. These operations correspond to the two compart-
ments within our model cell (Fig. 2).

Our interest lies in characterizing the operator G [.], which
we can represent using (1). Before computing the kernels, how-
ever, we must first obtain the output rate function (y (t)) from
the measured output spike train (x, (¢)). To do so, we must in-
vert the second operation (i.e., the action of the axon hillock).
In its simplest form, it integrates the input and generates a spike
once a fixed threshold is reached. After each spike, the integral
resets to zero and integration resumes. And as such, the output
spike rate is proportional to y (), averaged over a time inter-
val immediately preceding the output spike. When considering
instantaneous spike rate, the time interval is the ISI between
output spikes. We, however, define the start of this time interval
as the closer (to the output spike) of either the previous output
spike or the preceding input spike.

For intervals defined by consecutive output spikes, we place
a unit-area pulse with height inversely proportional to the ISI
(Fig. 7). For intervals defined by an input—output spike pair,
we place a ramp that increases linearly from zero—the firing
rate before the input arrived—to a height such that its integral
is unity. This ramp is a simplified representation of synaptic
interactions: the input arrives at the synapse and generates an
output that increases from zero.

We ignore input—output pairs shorter than a fixed minimum
interval—defined as the smallest output ISI within the complete
tonic data set. This choice prevents any part of the output rate
function from becoming abnormally large. This is reasonable
because an input spike cannot trigger an output spike infinitely
fast—the minimum latency is set by the postsynaptic current’s
peak amplitude and rise time. Once we have obtained the output
rate function, we can compute our kernels.

In either firing mode (tonic or burst), we drive the cell with
identical 10 Hz Poisson spike trains and record the output spike
trains. At this input rate, the mean ISI is 100 ms, which is
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Fig. 8. Zeroth- and first-order kernels for tonic mode (10 Hz input). (a) Vari-
able gy for zeroth-, first-, second-, and third-order systems. As the order of the
system increases, g ’s magnitude decreases, suggesting there is no constant out-
put, but rather the response is stimulus-dependent. (b) Variable g; for first-order
(black, solid), second-order (gray, solid), and third-order (dashed) systems. In
the higher order systems, g; virtually disappears.

sufficient time for /T to deactivate more often than not in burst
mode.

Using both input and output spike trains, we obtain the output
rate function and calculate kernels for systems of order zero to
three. For our kernels, we use 200 bins with a binwidth of 1 ms,
for a kernel width of 200 ms, sufficiently long to capture all the
interactions for both modes.

A. Tonic Mode

In tonic mode, only synaptic and membrane dynamics are
present, since we set the resting potential of the cell sufficiently
high to inactivate I 7. In describing the kernels in this (and the
following) sections, we will proceed by kernel order (e.g., de-
scribing all the first-order kernels for systems of various orders),
rather than by system order (e.g., describing all the kernels for a
first-order system). This choice facilitates comparisons between
the system representations.

All four systems (order zero through three) possess g
[Fig. 8(a)]. For the zeroth-order system, g is 3.5 spikes/s, the
neuron’s mean output rate. For the first-order system, g is nega-
tive, offsetting the first-order kernel’s contribution to the output
rate to match the mean output rate. For second- and third-order
systems, g, becomes positive again, but approaches zero with
higher orders. This is an encouraging indication that, for our
10 Hz input, our higher order systems are successfully captur-
ing system dynamics.

The variable g; for a first-order model [Fig. 8(b)] demon-
strates a form similar to synaptic dynamics: a sudden rise to a
peak, followed by a decay to zero. When we increase the system
order from two or three, g; essentially disappears, indicating that
the response is described better by the higher order kernels. This
is not surprising considering we chose the synaptic weights to
necessitate multiple input spikes for output activity. However, a
residual contribution—the initial negative bump—remains; this
could be an artifact created by crosstalk between digital and
analog circuits.

The variable g» for both a second- and third-order system have
similar forms (Fig. 9). Two input spikes less than 10 ms apart
generate a tall peak, whose height (321.8 and 373.9 spikes/s
for second- and third-order systems, respectively) indicates the
occurrence of two output spikes with a short (<3.5 ms for both
systems) interval. As the input ISI increases, the peak disap-
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Fig. 9. Second-order kernels for tonic mode. (a) Second-order system.
(b) Third-order system. Unlike the second-order system, the third-order sys-
tem’s g2 does not include interactions at long ISIs (ISI > 20 ms). Contour lines
are drawn at 15, 30, 60, 125, and 250 spikes/s. For this and all contour plots,
0 spikes/s falls within the background gray area; negative rates are darker while
positive rates are lighter. The contours in each plot vary, and are chosen to
highlight differences between kernels.

pears; the system now responds with a lower spike rate—a single
spike—that declines with increasing ISI. This decline, however,
is more pronounced in the third-order system; its response dis-
appears for ISIs greater than 20 ms. Apparently, these longer
ISI interactions are better captured by the third-order kernel,
indicating that they are the result of interactions among more
than two spikes. This effect suggests that temporal integration
occurs only for synaptic inputs that are less than 20 ms apart.

Only the third-order system has a third-order kernel. The
variable g3 is a 3-D structure, which we can rearrange such
that two-dimensions represent the two successive ISIs within a
spike triplet, and the third-dimension represents the response’s
evolution in time from the third spike. We plot snapshots of g3
taken at different intervals between the second and third spikes
(Fig. 10). When this interval ISy = 1 ms, we see two prominent
zones of interaction: One occurring 5-10 ms after the triplet
for ISIz < 10 ms, and another occurring immediately after the
triplet for ISIy > 10 ms.

The first interaction zone has a negative trough that corre-
sponds in time with the peak in go [Fig. 9(b)], and a posi-
tive peak that appears immediately afterward. The effect of the
trough would be to suppress the triplet’s g, contributions (from
pairwise combinations of its spikes). The effect of the peak
would be to compensate for the resulting drop in mean rate
by producing an uptick, albeit a little latter in time. These ef-
fects suggest that spike-triplet responses are more spread out in
time than one would expect from spike-doublet responses, and
likely reflects saturation in the synaptic current. This first in-
teraction zone disappears when ISI, increases to 10 ms, which
corresponds to when g ’s peak disappears.

The second interaction zone consists of a (smaller) positive
peak, which extends out to longer ISI; times. The effect of this
peak is to produce an uptick in output rate immediately (<5 ms)
after the triplet—unlike the first zone’s peak, which produces a
delayed response (>5 ms). This effect suggest that, even though
synaptic activity has decayed too much for spike pairs to cause
an output spike (go effectively disappears at 20 ms), there is suf-
ficient residual activity for triplets to do so. Conversely, the dis-
appearance of gz when either interval is around 10 ms suggests
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Fig. 10.  Third-order kernels for tonic mode. Snapshots at different intervals

(ISI;) between the second and third spikes of a triplet are shown; ISIy is the
interval between the first and second spikes. (a) Variable g3 at ISI; = 1 ms,
(b) ISI; = 10 ms, and (c) IST; = 20 ms. Two zones of interactions are evident:
The first is most pronounced when ISI; is extremely short; the second is most
pronounced when both ISI; and ISIy are about 20 ms. Contour lines are drawn
at —150, —100, —50, 15, 30, and 60 spikes/s.

that the third spike is superfluous in this case; just two suffice to
produce an output spike.

B. Burst Mode

The kernels change dramatically when we lower the resting
potential of the dendritic voltage to switch the cell from tonic
mode to burst mode. Looking at the zeroth-order system’s g
[Fig. 11(a)], we see that the cell’s mean output rate is higher than
in tonic mode (14.4 versus 3.5 Hz). This increase reflects the
action of I, which, due to our choice of a 10 Hz input rate, is
deinactivated more often than when a spike arrives. Due to I1’s
low threshold for activation, this spike can trigger a burst all
by itself—whereas multiple spikes are required to produce just
one spike in tonic mode. This arrangement explains the increase
in mean output rate. As the system order increases, we see a
decrease in gy (as in the tonic case), indicating an improved
ability to capture the neuron’s dynamics.

When we look at g; , we see that it has a much taller and tighter
peak than the tonic system, and a negative trough that was not
present before [Fig. 11(b)]. The larger peak represents output
bursts; the negative trough represents inactivation—its length
corresponds to the time I needs to deactivate. In the first-order
system, the trough is not deep enough to prevent another burst—
it only marginally reduces the burst peak (by less than 5%)—it
represents inactivation by countering gy after a burst.

Unlike the tonic case, g; does not disappear in the second-
and third-order systems; rather, its peak is enhanced. This en-
hancement suggests that, even though a single spike can trigger
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Fig. 11. Zeroth- and first-order kernels in burst mode (10 Hz input). (a) Zero-
order kernels for zeroth-, first-, second-, and third-order systems. As the order
of the system increases, go decreases, reflecting the fact that the higher order
kernels account for more and more of the output spikes. (b) g; for first-order
(solid, black), second-order (solid, gray), and third-order (dashed) systems. The
positive peak is followed by a negative trough (inset).
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Fig. 12. Second-order kernels for burst mode. (a) Second-order system.
(b) Third-order system. Both kernels display a trough that extends to long
ISIs and a peak at short ISIs. The inset expands the kernels at the low ISIs.
Contour lines are drawn at —150, —75, —25, 25, 75, and 150 spikes/s.

a burst, there are many instances when this does not occur. In-
deed, we expect this to be the case when this spike follows
the previous one too closely, providing insufficient time for It
to deiactivate. These pairwise (and multispike) interactions are
captured by the higher order kernels, making g; a truer reflec-
tion of what happens in the case of a single isolated spike when
the system order increases. Thus, the enhanced peak is a more
accurate reflection of the burst’s influence.

When we look at g», we see a long trough that extends
out to ISI = 100 ms for both second- and third-order systems
(Fig. 12). This trough’s position in time matches g; ’s peak, sug-
gesting the following interaction between it, and g,:g; captures
the response to each input spike, which is by default a burst; g,
modulates the size of the burst by capturing the previous spike’s
contribution to channel inactivation. This interaction explains
the increase in g;’s peak with increasing system order—gs’s
trough is deeper in the third-order system, roughly accounting
for the difference in peak height.

The variable g, has a second salient feature: a peak at small
ISIs, which likely represents synaptic influences. Since a single
spike can trigger a burst, the synaptic response around the burst
(from 5 to 10 ms) is also captured by g;. The remainder of
its synaptic response (05 ms) stays in go. This explains why
the peak in go in burst mode occurs earlier than in tonic mode,
where all the synaptic response appeared in gs.

When we look at g5 (Fig. 13), we get a glimpse of how the
higher order kernels help in modulating g;’s response, which
now more accurately represents the structure of a canonical
burst (i.e., one invoked by an isolated spike). The modulation is
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ISI; = Ims ISI; = 50ms
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(a) ISI; (ms) (b) IST, (ms)
Fig. 13.  Third-order kernels for burst mode. Snapshots at different intervals

between the second and third spikes of a triplet (ISI; ) are shown; ISIy is the
interval between the first and second spike. (a) ISI; = 1 ms. (b) ISI; = 50 ms.
The trough and peak—which correspond in time to go’s peak and trough,
respectively [Fig. 12(b)]—are most pronouced when the second and third spikes
occur in close succession. Contour lines are drawn at —80, —45, —10, 10, 45,
and 80 spikes/s.

strongest when the triplet’s last two spikes occur close together
[Fig. 13(a)]. When they occur less than 10 ms after the triplet’s
first spike, there is a positive contribution from five separate
kernel instantiations: two pairings—between the first spike and
both of the other two—output the peak from gy, and each in-
dividual spike contributes g;. The trough in g3 is positioned to
suppress these contributions, suggesting a nonlinear interaction
within the triplet. The fact that this trough—and the subsequent
peak—becomes less pronounced as the second-to-third spike
interval increases [Fig. 13(b)], recapping g3’s behavior in tonic
mode, suggests saturation plays a role in burst mode as well.

When the triplet’s second and third spike occur more than
10 ms after its first spike, we see a positive bump that extends
up to 80 ms—it shortens as the second-to-third spike interval
lengthens [Fig. 13(b)]. This bump coincides with g»’s trough,
whose length [100 ms in Fig. 12(b)] matches the length of
triplets that fall in the bump (the longest first-to-last spike inter-
val in Fig. 13’s snapshots are 78 + 1 and 35 + 50 ms). Thus, the
g1 burst from the third spike is suppressed by two gs troughs,
caused by first and third, and second and third spike pairs. How-
ever, only a single trough is necessary to suppress the burst from
the third spike, and thus, this second trough is superfluous and
would prolong inactivation too much. Thus, g3’s bump reduces
the magnitude of this double trough.

V. KERNEL EVALUATION

We evaluate the Poisson kernels by using them to predict
the cell’s output. Convolving the kernels with an input spike
train (1) produces a time-varying rate. This rate is input to an
integrator (see Fig. 6) to produce an output spike train. A spike
is generated once the integral reaches a fixed threshold, which
we set to unity, corresponding to the unit-area shapes used to
obtain the (instantaneous) rate from the actual spike train (see
Fig. 7).

Unsurprisingly, prediction accuracy improves as system or-
der increases [Fig. 14(a) and (b)]. Starting with uniformly dis-
tributed spikes in the zeroth-order case, spikes move to their
correct locations with increasing order; the mean output rate
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Fig. 14. [(a) and (c)] Performance of Poisson kernels in tonic mode and [(b)

and (d)] burst mode. [(a) and (b)] Spike trains for stimulus (in), actual response
(out), and predicted response (0,1,2, and 3 for respective system order). Note that
the stimulus is the same in both cases. [(c) and (d)] Percentage of spikes predicted
correctly versus window size. Zeroth-, first-, second-, and third-order systems
(black circles, gray squares, black diamonds, and gray triangles, respectively)
are plotted.

remains constant. However, even for the third-order system,
spurious spikes did occur (e.g., at £ = 13.55 s in burst mode),
because gy is still nonzero. We calculate the percentage of spikes
predicted correctly to quantify performance. This measure is
adequate since, regardless of system order, the output rate is
constant. We paired predicted spikes with actual spikes using
an algorithm designed to calculate a distance metric for spike
trains [26]. This algorithm matches individual spikes between
two spike trains (in our case, the real and predicted spikes) by
minimizing a cost function. For each matched pair, a cost is
incurred equal to the time interval between the spikes multi-
plied by an interval cost parameter. The algorithm also adds
(or deletes) spikes from either train at a fixed cost; thus, paired
spikes will fall within a fixed time window, defined as the fixed
cost of adding/deleting a spike divided by the interval cost. This
interval cost—or its inverse, the window size, which we use—is
the free parameter within the metric.

In both burst and tonic modes, the percentage of spikes
predicted correctly improved with increasing system order
[Fig. 14(c) and (d)]. In tonic mode, the percentage increases
dramatically from first- to second-order, but hardly at all from
second to third. For 2 ms precision, the percentage jumps from
28% to 81% to 85% for first-, second-, and third-order sys-
tems, respectively. For 4 ms, it jumps from 36% to 88% to 91%.
This suggests that a second-order system suffices to capture
the cell’s behavior in tonic mode. In burst mode, while the im-
provement from first- to second-order is still the most dramatic,
the improvement from second- to third-order is significant. For
2 ms, the percentage jumps from 43% to 72% to 79% for first-,
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second-, and third-order systems, respectively. For 4 ms, the
percentage jumps from 46% to 76% to 87%.

Comparing performance in the two modes, zeroth- and first-
order systems perform better in burst mode than they do in tonic
mode, whereas the reverse is true in for second- and third-order
systems. Zeroth-order does better in burst mode simply because
the spike rate is higher—its just luck. First-order does better
in burst mode because just one spike is required to trigger a
burst—it gets the timing right. Whereas second- and third-order
do better in tonic mode for the nontrivial reason that the cell’s
dynamics are simpler: the only thing you have to predict is the
spike’s timing. In burst mode, in addition to timing, you also
have to predict the number of spikes within each burst, which is
much more dependent on the presence of previous inputs. Both
second- and third-order burst systems do well with timing, but
the latter does better at predicting the number of spikes in a
burst [Fig. 14(b)]. Third-order’s 7%—-9% performance edge also
comes from its ability to eliminate spurious spikes (g, drops
from 6.2 to 2.3 spikes/s). In terms of absolute performance,
third-order does about as good a job in burst mode as second-
order does in tonic mode (79% versus 81% and 87% versus 88%
for 2—4 ms precision, respectively).

VI. DISCUSSION

We studied an in silico relay neuron consisting of electronic
circuits representing the T-channel, the cell, and a single excita-
tory synapse. Our goal was to characterize It ’s role in the cell’s
behavior using Poisson kernels, which isolate interactions of dif-
ferent orders by exploiting the statistical properties of Poisson
spike trains. They are similar to Wiener kernels, which use white
noise as input (either as current injections or sensory stimuli).
Driving the cell with Poisson spikes rather than white noise has
two distinct advantages: First, synaptic dynamics are included,
whereas when current is injected directly into the cell, they are
ignored. Second, Poisson kernels provide an intuitive descrip-
tion: the nth-order kernel describes how n spikes interact to
contribute to the output. A more detailed comparison between
the two approaches can be found in [17].

We evaluated the ability of Poisson kernels to capture the
cell’s behavior by using them to predict its spike train. A second-
order system performed as well in tonic mode as a third-order
system did in burst mode (81% versus 79%, respectively, for
2 ms precision), confirming our hypothesis that behavior was
more nonlinear in burst mode. Increasing the system order from
two to three yielded negligible improvement in tonic mode, sug-
gesting that pairwise spike interactions sufficed to capture most
of the cell’s synaptic and membrane dynamics. As we were
careful to calibrate the model’s synaptic and membrane proper-
ties with physiological measurements (e.g., matching synaptic
strength and time course), we expect the second-order system’s
performance to hold up in vivo.

A third-order system yielded significant improvement over
a second-order system in burst mode (from 72% to 79% for
2 ms precision). This improvement stems from the third-order
system’s greater ability to generate a more canonical burst and
to suppress responses to input spikes that arrive within the in-
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activation period after a burst. With the in silico cell’s resting
potential set such that I1 deactivates, the default response is
a burst, which shows up as a tall peak in the first-order kernel.
Since any response is I 7-dependent, the arrival of an input spike
after a burst will cause a response dependent on the level of It
deinactivation. The troughs in g5 [Fig. 12(a)] enact this response
modulation. The deeper troughs in g» of the third-order burst
system [Fig. 12(b)], however, are much better at eliminating
the postburst response (data not shown). The third-order ker-
nels (Fig. 13) then work to counter the deep troughs from g5 in
situations where there are more than two spikes.

When using Poisson kernels to study a system, it is important
to consider a couple of (related) points. First, since the approach
is rate constant, using a system order that is too small for the
system’s interactions will result in the lower order kernels ac-
counting for the higher order (nonrepresented) interactions; the
higher order kernels effectively “pollute” the lower order ker-
nels. We saw this pollution with decreasing system order, most
prominently within g; in tonic mode when increasing the system
order from 1 [Fig. 8(b)], but also in burst mode in the increase of
the burst peak in g; with increasing system order [Fig. 11(b)].
When looking at the highest order kernel, it may not be imme-
diately clear which aspects of it are from—or being suppressed
by—even higher order interactions.

Second, the presence of higher order dynamics are strongly
dependent on the Poisson spike train statistics (i.e., the input
frequency), which means the system order necessary to achieve
a sufficient performance level also relies on these statistics. For
example, had we used an extremely low input spike frequency—
say 0.1 Hz—the probability of a second spike arriving within
the deinactivation period of the T-channel would be very low.
In this scenario, a first-order system would perform very well,
since It would likely be fully deinactivated when each input
spike arrives. In our case, we knew the temporal dynamics of the
underlying interactions ahead of time, and therefore, chose an
appropriate input frequency. Without prior knowledge, varying
the frequency and observing the changes in the kernels would
be necessary to obtain information on the system’s temporal
dynamics. The first-order kernel of a first-order system will not
change with input frequency if the underlying system consists
only of first-order interactions, but will change if higher order
interactions exist.

These caveats are relevant in interpreting our results. Looking
at the tonic system’s go, it is clear that most of the relevant
input spike interactions occur when the second spike arrives
within 20 ms of the first. The T-channel, by contrast, extends
spike interactions out to 100 ms, and, as a result, higher order
kernels are necessary to accurately represent the burst system.
However, had we used a higher input frequency, more spikes
may have fallen within the tonic system interaction window,
and a second-order system would be insufficient to represent
the tonic mode. This does not contradict our conclusion that the
burst mode is more nonlinear, since at this higher frequency,
a burst system would require an even greater system order to
capture its operation. So the relevant point here is that I extends
the interactions at the input to longer times than simply the
synapses alone, and thus will always be more nonlinear.
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One of the benefits of this approach is its flexibility: it is
not limited to studying ion channels, but can be used to study
other cell processes that involve spikes as inputs. This includes
interactions at the synapse (e.g., depression), and the influence of
other neurotransmitters (e.g., y-aminobutyric acid (GABAergic)
inputs). In addition, while our simple model used only a single
input spike train, the model can easily be expanded to include
multiple input pathways. With independent Poisson spike trains
at each input, cross kernels can be calculated for the interactions
between the separate pathways, in addition to kernels for each
individual pathway.

Future work involves expanding our in silico relay cell studies
in these directions. In this paper, we used the cell’s resting po-
tential to set it’s mode: higher voltages for tonic mode and lower
ones for burst mode. As a result, a burst was dependent on the
absence of excitatory input to allow for T-channel deinactiva-
tion. In vivo cells in awake mammals, however, generally rest in
tonic mode, and so any T-channel response relies on inhibitory
mechanisms to deactivate I7. Adding an inhibitory synapse to
our in silico cell would allow us to study the interactions of the
excitatory and inhibitory input spikes and their influence on the
cell’s behavior.
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