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Alignment of Confocal Scanning Laser
Ophthalmoscopy Photoreceptor Images at Different
Polarizations Using Complex Phase Relationships

Alexander Wong, Member, IEEE

Abstract—A polarimetric technique for enhancing fundus im-
ages was recently introduced [8], where confocal scanning laser
ophthalmoscopy (CSLO) images are acquired under differing in-
coming polarization states, and spatially resolved Mueller images
are constructed based on the images. An important stage in this
technique is the alignment of CSLO images acquired under differ-
ing polarization states. This has proven to be particularly difficult
when dealing with photoreceptor images, which are characterized
by poor SNRs and intensity inhomogeneities due to polarization
properties. In this paper, an automated approach to aligning CSLO
photoreceptor images acquired under differing polarization states
is presented. A novel energy functional based on complex phase re-
lationships is introduced that is invariant to polarization and scale,
as well as robust to noise and highly sensitive to photoreceptor
structural characteristics. A sequential quadratic programming
approach is employed to determine the optimal alignment between
the photoreceptor images by minimizing the proposed energy func-
tional. The method has been tested on CSLO fish photoreceptor
images acquired under differing polarization states and evaluated
based on alignment accuracy. The results demonstrate that the
proposed method outperforms existing techniques used for align-
ing CSLO images, with lower mean alignment error for all test
cases.

Index Terms—Alignment, complex phase, ophthalmoscopy, pho-
toreceptor, polarization.

I. INTRODUCTION

R ETINAL dystrophies refers to a group of incurable eye
diseases that result in progressive deterioration of the

retina. Common retinal dystrophies include cone–rod dystro-
phies (CRDs) and retinitis pigmentosa (RP), which are charac-
terized by the gradual degradation of rod and cone photorecep-
tors. In CRDs, patients typically exhibit a loss of visual acuity,
color vision deficiencies, as well as loss in central vision sensi-
tivity in the early stages followed by the loss of peripheral and
night vision. This sequence of events is due to the fact that CRDs
are typically characterized by a primary loss in cone photorecep-
tors and a secondary loss in rod photoreceptors [1], [2]. In RP,
patients typically experience loss of peripheral and night vision
in the early stages, followed by loss in color vision and visual
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acuity in later stages due to the primary loss of rod photorecep-
tors followed by a secondary loss of cone photoreceptors [3].
In particular, RP represents the most prevalent cause of vision
loss among the working population in developed countries [3].
Given the debilitating effects of retinal dystrophies, it is neces-
sary to systematically study changes in photoreceptors to get a
better understanding of the underlying mechanisms of photore-
ceptor abnormalities, as well as improve clinical diagnosis and
quantification of retinal disease severity.

Traditionally, most of the knowledge regarding retinal dete-
rioration and abnormalities come from postmortem studies of
the retina. While this has contributed greatly to the understand-
ing of the underlying mechanisms associated with retinal dis-
eases, such studies are of little use for studying retinal changes
over time as well as clinical diagnosis and disease severity as-
sessment. More recently, advances in ophthalmoscopic imaging
has allowed for in vivo imaging of the retina [2], [4]–[8]. This
has given important insights in the relationship between retinal
changes and the visual function of patients suffering from dif-
ferent forms of retinal dystrophy. For example, it was observed
by Choi et al. [2] that the retina of patients with retinal dys-
trophy exhibited irregularities in cone photoreceptor densities
when compared to healthy retinas. Furthermore, it was found
that the extent of such irregularities is highly correlated to the
visual function of the patient, thus making this form of analy-
sis useful for assessing disease severity. Of particular interest
among the recent ophthalmoscopic imaging techniques is that
proposed by Bueno and Campbell [6] and Bueno et al. [8],
which utilizes the polarization properties of fundus structures
to improve and enhance the visualization of fundus images ac-
quired using confocal scanning laser ophthalmoscopy (CSLO).
This enhancement process is very important as the reliability
of retinal disease diagnosis is highly dependent on the fundus
image quality [8].

One of the key steps in the CLSO fundus image enhance-
ment technique proposed by Bueno et al. [8] is the alignment of
CLSO images acquired under different polarization states. This
alignment step is particularly necessary in the case of photore-
ceptor imaging, where even small movements during the in vivo
imaging process results in very significant misalignments in the
CLSO images. A number of techniques have been proposed for
aligning retinal images captured using ophthalmoscopic imag-
ing [5], [8], [9], all based on the concept of using the normalized
intensity correlation coefficient (NICC) as an energy functional
for obtaining the optimal alignment between the images. How-
ever, there are several drawbacks to these methods that may
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hinder their effectiveness for aligning CLSO photoreceptor im-
ages acquired under different polarization states. First, CLSO
photoreceptor images are characterized by low SNR and poor
structural contrast [5]. Both the alignment methods proposed by
Goatman et al. [9] and Bueno et al. [8] rely on image averag-
ing of temporally adjacent CLSO images to reduce the effect
of noise, while the technique proposed by Wade and Fitzke [5]
rely on a large-window averaging filtering process. However,
the use of these simple noise suppression techniques may be
insufficient in low-SNR situations and may also result in exces-
sive blurring that significantly reduces photoreceptor structural
detail. Given the low contrast nature of CLSO photoreceptor im-
ages, this oversmoothing of structural detail can be highly prob-
lematic and makes it difficult to achieve accurate alignments.
Furthermore, due to the complex polarization properties, the
CLSO photoreceptor images exhibit intensity inhomogeneities
that differ based on the polarization state used during the image
acquisition process [8]. While such differing intensity inhomo-
geneities are exploited to enhance fundus images in the CLSO
technique proposed by Bueno et al. [8], they also make it dif-
ficult for current CLSO image alignment techniques to provide
good alignment since the NICC energy functional is highly de-
pendent on linear intensity homogeneity among all the images.

The main contribution of this paper is a robust approach to
CLSO photoreceptor image alignment under differing polariza-
tion states using a novel energy functional based on complex
phase relationships. The proposed method is invariant to the
effects of polarization and scale, robust to noise, and highly
sensitive to photoreceptor structural characteristics, which are
the key challenges to CLSO photoreceptor image alignment
under differing polarization states. In this paper, the materials
and methods are described in Section II, and the experimental
results using in vivo fish cone photoreceptor images acquired
under different polarization states are presented in Section III.

II. MATERIALS AND METHODS

The polarimetric CSLO enhancement system used in this
paper is the same as that described by Bueno et al. [8]. An He–
Ne laser beam is passed through a polarization state generator
unit composed of a fixed vertical linear polarizer and a rotating
quarter-wave plate (QWP) to achieve the desired polarization
state. The beam from the generator unit is then scanned by an
X–Y scanning unit before reaching the eye and focused on a small
portion of the retina to image photoreceptors. The reflected light
from the eye is descanned and passed through a collector lens
and a confocal pinhole. Finally, the reflected light is amplified by
a photomultiplier tube before being recorded by a computer. At
a given location, video sequences are recorded for four indepen-
dent incoming polarization states by rotating the QWP. Based
on the four CLSO photoreceptor images recorded at different
polarization states, the spatially resolved elements of the first
row of the Mueller matrix of the combined eye and instrument
can be computed. These elements are sufficient for constructing
the photoreceptor image for any incoming polarized state [8].
By constructing a large number of Mueller images and selecting
the highest quality images using image quality metrics, better

visualization of the fundus structures can be achieved. To reduce
the effect of misalignments due to eye movements during the
recording process on the computation of the Mueller matrix, the
corresponding images acquired from the four different polar-
ization states must first be aligned to each other. As such, the
alignment stage is vital for proper Mueller matrix computation
as well as the quality of the constructed Mueller images.

A. Energy Functional Based on Complex Phase Relationships

An important factor that affects the performance of an auto-
mated alignment method is the underlying energy functional,
which expresses the dissimilarity between two images. The op-
timal alignment is determined by minimizing the energy func-
tional. Hence, it is imperative that the energy functional used be
designed to address the issues associated with aligning CLSO
photoreceptor images, such as low SNR, poor structural con-
trast, and intensity inhomogeneities associated with differing
polarization states. In current methods used to align retinal im-
ages acquired using ophthalmoscopic imaging [5], [8], [9], the
energy functional E is defined as the negative NICC between
two images. However, this energy functional is ill-suited for the
alignment of CLSO photoreceptor images for several reasons.
First, the NICC energy functional assumes a strict linear rela-
tionship between the corresponding image intensities, which is
typically not the case due to intensity inhomogeneities exhibited
by CLSO images acquired under differing polarization states.
Second, the NICC energy functional relies on the image intensi-
ties to measure the dissimilarity between two images. However,
CLSO photoreceptor images are characterized by poor struc-
tural contrast [5], thus making the use of image intensities a
poor choice for measuring the dissimilarity between photore-
ceptor structures. Finally, the NICC energy functional is highly
sensitive to outlier noise [10], thus resulting in poor alignment
performance for images characterized by low SNR. Therefore,
an alternative energy functional that addresses all of the afore-
mentioned issues is highly desired.

One useful approach to designing the energy functional is to
address each of the aforementioned challenges in a systematic
fashion. The first challenge that needs to be addressed in the
design of the energy functional is in dealing with the intensity
differences and inhomogeneities inherent in CLSO photorecep-
tor images due to the complex polarization properties of fun-
dus structures. These polarization-related intensity variations
makes it difficult to compare images based on their intensity
values, as is done in NICC energy functionals used by existing
CLSO image alignment techniques, since the same photorecep-
tor structural characteristics within the images may be repre-
sented by different intensity values under different polarization
states. One approach to dealing with such polarization-related
intensity variation issues is to construct an alternative image
representation that is invariant to polarization. As the basis of
our energy functional, we propose a new polarization-invariant
image representation based on structural characteristics. This is
motivated by the fact that two CLSO images acquired from the
same photoreceptors under different polarization states share
similar structural characteristics even if the underlying intensity
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characteristics are very different. To capture the structural char-
acteristics of the photoreceptors in a way that is invariant to
polarization, we propose the use of complex phase relation-
ships, which has been shown in recent studies to be very effec-
tive at representing structural characteristics in natural scenes
[11]–[16]. By relying only on complex phase information,
the proposed image representation is invariant to polarization-
related image inhomogeneities.

One approach to constructing a complex phase-based im-
age representation can be described as follows. Given an
i × j image f , an overcomplete log-Gabor complex wavelet
transform [17] is used to decompose f into a multi-
scale decomposition, where the dimension of each scale
(s = 1, . . . , m) is i × j. At each point x = (x, y) of each
scale s, there exists a set of ς complex coefficients ℘ =
{As(x, θ1) ejφs (x,θ1 ) , . . . , As(x, θς ) ejφs (x,θς )}, which corre-
sponds to the wavelet responses to the corresponding ς orienta-
tions. The amplitude As(x, θ) and phase φs(x, θ) components
of each complex coefficient can be expressed as

As(x, θ) =
√

(f(x) ∗ Re
s(θ))

2 + (f(x) ∗ Ro
s (θ))

2 (1)

and

φs(x, θ) = tan−1
(

(f(x) ∗ Re
s(θ))

(f(x) ∗ Ro
s (θ))

)
(2)

where Re
s(θ) and Ro

s (θ) corresponds to the even- and odd-
symmetric log-Gabor quadrature pair at scale s and orientation
θ. To capture the structural characteristics of natural images,
Morrone and Owens [11] proposed that the structural signifi-
cance at a point x can be quantified as the normalized weighted
summation of cosine-weighted complex phase deviations from
the mean phase φ̄ (x, θ) across m scales and ς orientations

�(x) =

∑ς
q=1

∑m
s=1 As (x, θq ) cos

(
φs (x, θq ) − φ̄ (x, θq )

)
∑ς

q=1
∑m

s=1 As (x, θq )
.

(3)
The motivation for the measure introduced by Morrone and
Owens [11] is the theory that the high phase order corresponds
to significant structural characteristics in images. It can be seen
from (3) that as phase order across scales and orientations in-
creases, corresponding to increasing structural significance, the
cosine-weighted complex phase deviations approach one and
�(x) approaches one as well. Conversely, as phase order de-
creases, corresponding to decreasing structural significance, the
cosine-weighted complex phase deviations approach negative
one and �(x) approaches negative one as well. As such, it can
be seen that complex phase relationships can be very effec-
tive at providing a polarization-invariant image representation
of the photoreceptors, thus addressing the issue associated with
polarization-related intensity differences and inhomogeneities.
Furthermore, by utilizing phase relationships across multiple
scales, the resulting image representation is also invariant to
scale. Therefore, given these benefits, the concept of complex
phase relationships will act as the basis of image representation
in the proposed energy functional.

The second challenge that needs to be addressed in the design
of the energy functional is in dealing with the poor structural

contrast inherent in CLSO photoreceptor images due to both the
underlying photoreceptor structures as well as the mechanisms
of the imaging system [5]. Poor structural contrast makes it dif-
ficult to capture and distinguish fine structural detail pertaining
to the photoreceptors, which is very important in quantifying the
structural dissimilarities between two images. One approach to
addressing the issues associated with poor structural contrast is
to increase the response sensitivity of the energy functional to
the photoreceptor structural characteristics. Since the proposed
energy functional relies on complex phase relationships to cap-
ture and distinguish photoreceptor structural characteristics, it
is important to first study the behavior of the measure ρ(x) de-
scribed in (3) with respect to phase order. Let � represent the
phase deviation between a phase angle φ(x, θ) and the mean
phase angle φ̄ (x, θ)

� = φs (x, θ) − φ̄ (x, θ). (4)

It can be observed in (3) that ρ(x) is proportional to a peri-
odic phase deviation weighing function Λ = cos(�). As such,
we can simplify the analysis by studying the behavior of Λ. It
can also be observed in (3) that the absolute value of the phase
deviation term |�| decreases as phase order increases, which
corresponds to an increase in structural significance. Further-
more, given the properties of the cosine function, the decrease
of |�| results in an increase of Λ. Therefore, one can study the
response sensitivity of Λ to phase order by taking the derivative
of Λ with respect to �

∂Λ
∂�

= − sin(�). (5)

A plot of both Λ = cos(�) and its derivative ∂Λ/∂� is shown
in Fig. 1(a). It can be observed from ∂Λ/∂� that the rate of
change of Λ near the peak of Λ (where � is minimal and phase
order is maximal) is very slow and gradual. For example, a
reasonably large phase deviation of 37◦ would still result in a
large value of Λ that is 80% of the maximum value of Λ. This
slow, gradual rate of change near the peak of Λ results in the poor
response sensitivity of ρ(x) to phase order, and consequently to
significant structural characteristics.

In an attempt to address this issue, Kovesi [15] proposed an
alternative periodic phase deviation weighing function that ex-
hibits a sharper rate of change near the peak of Λ, as shown in
Fig. 1(b). While this weighing function increases the response
sensitivity of ρ(x) to significant structural characteristics when
compared to the cosine weighing function proposed by Morrone
and Owens [11], there are two important limitations that need
to be considered. First, the weighing function decreases almost
linearly from minimum |�| to maximum |�|. As such, the re-
sponse sensitivity of the weighing function to phase order and
consequently to significant structural characteristics does not
noticeably increase as phase order increases. Hence, the weigh-
ing function does not emphasize structural characteristics with
high structural significance, which is important in capturing and
distinguishing fine structural detail pertaining to the photorecep-
tors. More importantly, the weighing function exhibits regions
where the decrease of |�| actually results in a decrease of Λ,
which is counterintuitive. To address all of the aforementioned
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Fig. 1. Plots of Λ and its derivative ∂Λ/∂� . (a) Weighing function proposed by Morrone and Owens [11]. (b) Weighing function proposed by Kovesi [15].
(c) Proposed weighing function. It can be observed that the response sensitivity of the proposed weighing function to significant structural characteristics is
noticeably higher than the other weighing functions. It can also be observed that the proposed weighing function does not suffer from the undesirable phenomenon
exhibited by the weighing function proposed by Kovesi [15], where the function Λ decreases as phase deviation |�| decreases in certain regions.

limitations associated with the weighing function proposed by
Kovesi [15], we propose an alternative periodic weighing func-
tion based on the exponential difference of sinusoids

Λν = ecos(� )−|sin(�/2)| − 3
2
. (6)

The corresponding derivative ∂Λν /∂� can be expressed as

∂Λν

∂�
= ecos(� )−|sin(�/2)|

×
(
− sin (�) − 1

2
∂ |sin (�/2)|

∂�
cos

(�

2

))
. (7)

The plots of the proposed weighing function and its correspond-
ing derivative are shown in Fig. 1(c). It can be observed that the
proposed weighing function emphasizes high phase order (low
|�|), as indicated by the high rate of change near the peak of
Λν . Furthermore, it can be observed that the proposed weighing
function Λ never decreases as phase deviation |�| decreases,
thus avoiding the undesirable phenomenon exhibited by the
weighing function proposed by Kovesi [15]. Given this new
weighing function Λν , the final complex phase-based image
representation �ν (x) used by the proposed energy functional
can be expressed as shown in (8), at the bottom of the next page,
where ξ is a small constant to handle situations where all the
amplitude components are zero.

The third and final challenge that needs to be addressed in the
design of the energy functional is in dealing with the low SNR
that characterizes CLSO retinal photoreceptor images due to the
nature of the imaging system [5]. This is partially addressed in
�ν (x), which deemphasizes structural characteristics with low
phase order such as noise. As mentioned earlier, the NICC en-
ergy functional is highly sensitive to outlier noise [10]. This is
problematic given the fact that CLSO images are characterized
by low contrast resolution and low SNR that can result in out-
liers. To reduce the effect of outlier noise on alignment accuracy,

we propose the use of a Pearson type VII distance metric [18]
as the basis for quantifying the dissimilarity between CLSO
photoreceptor images in the proposed energy functional

ψ(u, v) = ln
(√

1 + (u − v)2
)

. (9)

To analyze the influence of outlier noise on (9), one approach
is to study its derivative with respect to ε = u − v [21]

∂ψ

∂ε
=

ε

(1 + ε2)
. (10)

It can be observed from (10) that the Pearson type VII distance
metric is a redescending error metric since the influence of
outlier noise, which is proportional to ∂ψ/∂ε, is bounded and
tends to zero. Therefore, given two CLSO photoreceptor images
f(x) and g(x), the proposed energy functional E(f, g) can be
expressed as the cumulative Pearson type VII distance between
the complex phase-based image representations �ν,f (x) and
�ν,g (x) of f(x) and g(x), respectively

E(f, g) =
∑

x

ln
(√

1 + (ρν,f (x) − ρν,g (x))2
)

. (11)

Finally, to further reduce the effect of noise without affecting the
structural detail of the photoreceptors, we utilize the adaptive
bilateral estimation scheme proposed by Wong [19], which has
been shown to provide good noise removal while preserving
structural detail, to estimate the original noise-free CLSO image
prior to computing the energy functional.

B. Constrained Optimization Using Sequential
Quadratic Programming

Based on the energy functional proposed in Section II-A, the
CLSO photoreceptor alignment problem can be formulated as an
optimization problem, where the underlying goal is to estimate
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the transformation T̂ between images f and g that minimizes
the energy functional E

T̂ = arg min
T

[E (f, T (g))] . (12)

It was shown that the transformation between CLSO images
can be well modeled by x- and y-translation κ = {κx, κy} and
rotation ϑ [5], [8]. Furthermore, to reduce computational time,
the transform range for each of the transform parameters was
limited to realistic values. Based on this information, the final
CLSO photoreceptor alignment problem can be formulated as
the following constrained optimization problem:

{κ̂, ϑ̂}= arg min
{κ,ϑ}


∑

x

ln
(√

1+
(
ρν,f (x)−ρν,Υϑ g+κ(x)

)2
)


(13)

where Υϑ is the rotation matrix for ϑ, and subject to

− α ≤ κ ≤ α

− β ≤ ϑ ≤ β. (14)

For test purposes, α = (15, 15) pixels and ϑ = 2◦, which are
sufficient for real-world scenarios. To solve this constrained op-
timization problem, a sequential quadratic programming (SQP)
approach [20] was employed. In the proposed method, the
transformation parameters {Θ1 ,Θ2 ,Θ3} = {κx, κy , ϑ} are es-
timated iteratively based on the energy functional E

Θ̂k+1
i = Θ̂k

i + γi
kdi

k (15)

where k denotes an iteration, γi is a nonnegative step size, and
di is the step direction calculated by solving a quadratic sub-
program involving the energy functional E with linear approxi-
mations of the constraint functions [20]. Based on the estimated
parameters, g is transformed and the energy functional E is
recomputed between f and the transformed g. This process is
repeated until convergence is achieved to obtain the optimal
alignment between f and g.

III. EXPERIMENTAL RESULTS

To evaluate the effectiveness of the proposed method for
the purpose of aligning CLSO photoreceptor images, the pro-
posed method was implemented and evaluated using real CSLO
fish cone photoreceptor images acquired using the experimental
setup described in Section II. The CLSO images were acquired
under four different polarization states by rotating the fast axis
of the QWP to orientations of −45◦, 0◦, 30◦, and 60◦. Examples
of these CLSO photoreceptor images are shown in Fig. 2. Based
on the acquired CLSO images at different polarization states,
three image test pairs were constructed as follows.

1) PA: Image pair with QWP orientations of 0◦ and −45◦.
2) PB: Image pair with QWP orientations of 0◦ and 30◦.
3) PC: Image pair with QWP orientations of 0◦ and 60◦.

Fig. 2. Examples of CLSO photoreceptor images acquired with QWP orien-
tations. (a) −45◦. (b) 0◦. (c) 30◦. (d) 60◦. Note that the large, consistent bright
spots are a result of lens reflectance and are masked out automatically as the
fixed location of these bright spots are known.

Each of the image test pairs was manually aligned by a human
expert to establish the gold-standard transformation between the
CLSO photoreceptor images for evaluation purposes.

A. Experiment 1

The first set of experiments investigates the behavior of the
proposed energy functional and the NICC energy function-
als used by current ophthalmoscopic imaging alignment tech-
niques [5], [8], [9]. In particular, the monotonicity and the loca-
tion of the global minima of the energy functional with respect
to transformation play a crucial role in the overall alignment ac-
curacy of an automated alignment method. The monotonicity of
an energy functional with respect to transformation is important
as it affects the ability for iterative optimization methods such
as the SQP approach to converge to the global minima. In situa-
tions where the energy functional exhibits highly nonmonotonic
behavior with respect to transformation, iterative optimization
methods have a higher probability of converging to a local min-
ima as opposed to the global minima. The location of the global
minima of an energy functional with respect to transformation
is also very important as it affects the ability for the alignment
method to achieve the correct alignment between the images. In
situations where the global minima of the energy functional is
located away from the correct alignment, iterative optimization
methods will converge to a solution that does not yield the proper
alignment between the images. The first set of experiments is
performed by evaluating the proposed energy functional and the

�ν (x) =

∑ς
q=1

∑m
s=1 As (x, θq )

(
exp[cos(φs (x, θq ) − φ̄ (x, θq )) −

∣∣sin (
[φs (x, θq ) − φ̄ (x, θq )]/2

)∣∣] − (3/2)
)

∑ς
q=1

∑m
s=1 As (x, θq ) + ξ

(8)
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Fig. 3. Energy functional with respect to translation for three image test pairs. (a) NICCA [8], [9]. (b) NICCB [5]. (c) Proposed energy functional.

NICC energy functionals as described by Goatman et al. [9]
(which is also used by Bueno et al. [8]) (NICCA) and by Wade
and Fitzke [5] (NICCB) over horizontal translations within the
range of [−15, 15] pixels, as specified in α. This experiment was
performed on all three image test pairs.

The energy functionals with respect to translation are shown
in Fig. 3. It can be observed that there are significant offsets
between the global minimum of the energy functional proposed
in [8] and [9] and the gold-standard alignment for all of the
image test pairs. It can also be observed that there are noticeable
global minimum offsets for the energy functional proposed in
[5] for all but the test pair PA. This is not the case for the
proposed energy functional, where the global minimum of the
energy functional coincides with the gold-standard alignment
for all of the image test pairs. Furthermore, it can be observed
that, for test pair PC, the energy functions proposed [5], [8],
and [9] both exhibit local minima. This is not the case for the
proposed energy functional, which remains monotonic. These
results demonstrate the effectiveness of the proposed energy
functional in scenarios characterized by low SNR, poor contrast,
and polarization-related image inhomogeneities.

B. Experiment 2

The second set of experiments investigates the alignment
accuracy of the proposed method with the methods proposed
in [5], [8], and [9] (denoted as NICCA and NICCB, respec-
tively) using all three image test pairs. Each image test pair was
misaligned using 20 random transformations involving trans-
lation and rotation within the range of [−α, α] and [−β, β],
respectively, resulting in a total of 60 test cases. To evaluate

TABLE I
ALIGNMENT ACCURACY FOR EXPERIMENT 2

the alignment accuracy of the methods under test, each of the
methods was applied to align all 60 test cases, and the alignment
error εθ , εx , εy for each parameter was computed.

A summary of the alignment accuracy for the second set
of experiments is shown in Table I. It can be observed that
the mean alignment error εθ , εx , εy was noticeably lower for
the proposed method when compared to the methods proposed
in [5], [8], and [9] for all of the image test pairs. The difference
images for a sample test case for the test pair PA before and
after alignment using the proposed method are shown in Fig. 4.
It can be seen that the proposed method achieved good image
alignment results, as the difference image for the test image
pair after alignment is minimized compared to the difference
image before alignment. The remaining differences in the dif-
ference image after alignment are due to polarization-related
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Fig. 4. Sample alignment result for test pair PA (zoomed in for clarify).
(a) QWP orientation of 0◦. (b) QWP orientations of −45◦. (c) Difference image
before alignment. (d) Difference image after alignment using the proposed
method. It can be seen that the images were successfully aligned.

intensity differences as opposed to due to misalignment. These
results demonstrate the effectiveness of the proposed method for
aligning CLSO photoreceptor images acquired under different
polarization states.

IV. CONCLUSION

In this paper, we introduced a novel automated approach to
aligning CLSO photoreceptor images acquired under differing
polarization states using complex phase relationships. A novel
invariant energy functional was introduced that addresses im-
portant issues such as low SNRs, poor contrast, and polarization-
related image inhomogeneities. An SQP approach was described
for determining the optimal alignment between the CLSO pho-
toreceptor images. Experiments using CLSO fish cone photore-
ceptor images demonstrate that good alignment accuracy can
be achieved. Future work involves investigating alternate opti-
mization and noise suppression methods, as well as alternative
energy functionals for improving alignment accuracy.
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