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Abstract
This paper describes a control architecture and intent recognition approach for the real-time
supervisory control of a powered lower limb prosthesis. The approach infers user intent to stand, sit,
or walk, by recognizing patterns in prosthesis sensor data in real-time, without the need for
instrumentation of the sound-side leg. Specifically, the intent recognizer utilizes time-based features
extracted from frames of prosthesis signals, which are subsequently reduced to a lower
dimensionality (for computational efficiency). These data are initially used to train intent models,
which classify the patterns as standing, sitting, or walking. The trained models are subsequently used
to infer the user’s intent in real-time. In addition to describing the generalized control approach, this
paper describes the implementation of this approach on a single unilateral transfemoral amputee
subject, and demonstrates via experiments the effectiveness of the approach. In the real-time
supervisory control experiments, the intent recognizer identified all 90 activity mode transitions,
switching the underlying middle level controllers without any perceivable delay by the user. The
intent recognizer also identified six activity mode transitions, which were not intended by the user.
Due to the intentional overlapping functionality of the middle level controllers, the incorrect
classifications neither caused problems in functionality, nor were perceived by the user.

Index Terms
Physical human-robot interaction; pattern recognition; powered prosthesis; rehabilitation robotics

I. Introduction
The knee and ankle joints of healthy individuals generate significant net power over a gait
cycle during normal walking and during many other locomotive functions, including walking
up stairs and slopes [1–8]. Widely available commercial transfemoral prostheses can store and/
or dissipate energy, but cannot generate net power over a gait cycle. In the absence of net
power, transfemoral amputees during level walking can expend up to 60% more metabolic
energy relative to healthy subjects [9] and exert as much as three times the affected-side hip
power and torque [7]. Presumably, a prosthesis with power generation capabilities comparable
to the native limb could alleviate the need for increased exertion by the amputee during gait.
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One of the primary challenges entailed in developing a powered lower limb prosthesis is the
means by which the user can control the prosthesis. A powered prosthesis is fundamentally
different from a passive one in that the latter can only react, while the former can both act and
react. In order to effectively implement a powered prosthesis, a control interface must be
developed that enables the user to control and communicate intent to the prosthesis in a real-
time manner. Clearly, such a communication and control structure must be safe and reliable,
and should not require cognition on the part of the user. This paper describes a control and
communication structure developed by the authors for the control of powered lower limb
prostheses, with the emphasis of the paper on the method developed for intent recognition.

Though no prior work exists on the development and control of a powered knee and ankle
prosthesis, some prior work exists on the development and control of powered knee prostheses,
and separately on powered ankle prostheses. Regarding the former, [10] describes the
development of an electro-hydraulically powered knee prosthesis, developed as a laboratory
test bed for studying the control of powered knee joints during walking. This prosthesis was
utilized to develop an echo control approach, in which the authors instrumented the sound-side
knee (of a unilateral amputee) with a position sensor, and used a modified version of the
measured knee angle profile on the powered prosthesis side one half cycle later, which they
term “modified echo control” [11,12]. Ossur, a prosthetics company, recently introduced a self-
contained (battery-powered) powered knee prosthesis, in which they similarly instrument the
sound side leg (with accelerometers) and also utilize an echo type approach [13]. Other
researchers describe the development of powered prosthesis prototypes, but do not describe a
user control and communication interface structure [14,15]. Recently, an electromyography
based pattern recognizer for classifying locomotion modes using artificial neural networks and
linear discriminant analysis is presented in [16]. Regarding the echo control approaches
incorporated in [10–12,17], an obvious drawback is that the sound-side (or unaffected) leg
must be instrumented, which requires the user to don and doff additional instrumentation. The
echo control approach presumably also restricts the use of the prosthesis to unilateral amputees
and also presents a problem for “odd” numbers of steps, in which an echoed step is undesirable.
A more subtle, although perhaps more significant shortcoming of the echo-type approach is
that suitable motion tracking requires a high output impedance of the prosthesis, which forces
the amputee to react to the limb rather than interact with it. Specifically, in order for the
prosthesis to dictate the joint trajectory, it must assume a high output impedance (i.e., must be
stiff), thus precluding any dynamic interaction with the user and the environment, which is
contrary to the way in which humans interact with their native limbs.

Regarding powered ankle prostheses, a tibia based controller is implemented in [18], in which
the ankle angle is adjusted as a function of the tibia angle. In [19], the authors use finite state
controllers in combination with torque, impedance and position controllers for the control of
a powered ankle prosthesis with a series elastic actuator. They also describe a neural network
based high level controller which processes electromyogram (EMG) signals to manage
transitions of the finite state controllers for level ground and stair descent. Note that Ossur
markets an ankle prosthesis (Proprio Foot [20]) which quasistatically adjusts the ankle angle
for sitting and slope walking, but does not contribute net power to gait.

This paper describes a method for the implicit communication with a powered lower limb
prosthesis which is an alternative to an echo control approach. The approach infers user intent
via pattern recognition based on measured data from sensors on the prosthesis, which provides
several advantages relative to an echo approach. First, no additional instrumentation or wiring
apart from the prosthesis need be worn by the user. Second, the information flow is much less
delayed as compared to the half cycle in the echo control approach. Third, the prosthesis is
decoupled from the unaffected side, and thus the user is not constrained to “even” patterns of
gait. Lastly, the approach can be utilized on both unilateral and bilateral amputees.
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The authors have recently reported on the development of a powered knee and ankle prosthesis
which employs a finite-state based impedance control approach for control of walking [21].
This walking control structure is incorporated as a middle level controller in this paper,
although in this paper, the middle level walking controller is supplemented with standing and
sitting controllers. The coordination between the walking, standing and sitting middle level
controllers is supervised by a high level controller which infers the user’s intent in real-time
based on patterns in the prosthesis sensor data. The combined high and middle level controllers,
together with a low level controller that enforces joint torques, constitute the full user control
and communication interface structure through which a user can implicitly communicate with
a powered lower limb prosthesis. The paper describes the structure of the supervisory controller
and presents experimental results on a single amputee subject which demonstrate the
effectiveness of this interface and control approach. Two videos are included in the
supplemental material which qualitatively convey the performance of the approach.

II. Control Structure
A. Architecture

The control architecture for the powered lower limb prosthesis is a three level hierarchy, as
diagrammed in Fig. 1. At the lowest level, closed-loop joint torque controllers compensate for
the transmission dynamics. The middle level controllers, which control a given activity mode
(such as walking, standing, and sitting), generate torque references for the joints using a finite
state machine that modulates the impedance of the joints depending on the phase of the activity,
as described in [21]. The high level controller, which is the intent recognizer, consists of three
parts: the activity mode intent recognizer, the cadence estimator, and the slope estimator. The
latter two estimate the slope and cadence during walking to adjust the parameters of the walking
mode controller. The activity mode intent recognizer distinguishes between different activity
modes such as standing, sitting, stair climbing and walking, and switches to the appropriate
middle level controller. This work focuses on the activity mode controller (since the middle
level control was presented in [21]), and specifically describes an activity mode intent
recognition framework that uses Gaussian Mixture Models for the supervisory control of the
prosthesis for activity modes of standing, sitting and walking.

B. Finite State Based Impedance Control
In the (middle level) finite state impedance based control, the impedance behavior of healthy
biomechanical gait is emulated by modulating joint impedances of the prosthesis according to
the phase of gait. In each phase, the knee and ankle torques, τi, are each described by a passive
spring and damper with a fixed equilibrium point, given by:

(1)

where ki, bi, and θki denote the linear stiffness, damping coefficient, and equilibrium point,
respectively, for the ith state (or phase). Switching joint impedances between the gait phases
is initiated by biomechanical cues. For instance, switching from swing extension to the early
stance state during walking occurs with the detection of heel strike. With this structure, the
prosthesis is guaranteed to be passive within each gait phase, and delivers power to the user
only by switching the linear stiffness and the equilibrium point of the virtual spring between
the phases. Such switching is a direct result of natural biomechanical cues initiated by the user.
As such, the user directly and naturally controls the delivery of power from the prosthesis. The
development and implementation of this control framework for level walking is presented in
[21]. For the work presented herein, standing and sitting controllers were added to the walking
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controller (as shown in Fig. 2), and all were supervised by the intent recognizer subsequently
described.

The walking controller executes in a cyclical fashion over five phases. Early stance, Phase 0,
is the shock absorption phase and initiated by heel strike. The leg switches to middle stance
mode, Phase 1, when the ball of the foot load exceeds a predefined threshold. Middle stance
is followed by late stance, when the body center of mass passes the ankle joint indicated by
the angle of ankle joint. Ankle push-off defines late stance and is concluded when the foot
leaves the ground. Swing phases (Phases 3 and 4) are defined by the knee flexion and extension
phases of swing, respectively.

The standing impedance controller consists of two phases: weight bearing and non-weight
bearing. In the weight bearing phase, the weight of the user is supported with a high impedance
at the joints. In the non-weight bearing mode, the knee acts as a soft dashpot to enable freedom
of movement and a smooth transition to walking. While using the standing controller, the user
can shift his or her weight between the sound side and the prosthesis, balance and shuffle.

The sitting mode controller consists of four phases. Two are true sitting phases, weight bearing
and non-weight bearing. The other two encompass the transition phases, sit-to-stand and stand-
to-sit, for standing up and sitting down, respectively. The weight bearing and non-weight
bearing phases switch the knee and ankle joints between high and low impedances,
respectively. The transition phases modulate the stiffness of the knee as a function of knee
angle to assist the user in standing up or sitting down. The modulation allows for smoother
transitions near the seated position. The parameters of the impedance based controllers are
tuned using a combination of feedback from the user and joint angle, torque and power data
from the prosthesis.

C. Intent Recognition
Intent recognition was accomplished by a pattern recognizer that compares the state of the
prosthesis to probabilistic models of activity. These models wee “trained” with an appropriate
database, after which they were utilized for real-time intent recognition. In order to train and
use such models, the appropriate input was determined. Specifically, an appropriate set of
sensors was selected, an appropriate frame length for that data, and an appropriate set of features
to extract from each window. Further, for purposes of real-time implementation, an appropriate
reduction in data dimension was desirable. Once an appropriate input was selected, models
were formulated based on a set of training data. After a probabilistic model for each activity
mode (e.g., walking, standing, sitting) was established, the models were used in real-time to
determine which activity was most probable at a given instant in time. In order to increase the
likelihood of correct mode determination in the real-time implementation, the result was
essentially low-pass filtered with a majority voting scheme. The specific procedure is described
below, after which it is illustrated on a transfemoral amputee subject.

Sensor Data—The sensor data streams utilized for the intent recognizer were chosen to
reflect the state of the prosthesis and the user-prosthesis interaction. Appropriate sensor
information includes joint angles and angular velocities of the prosthesis joints (i.e., knee and/
or ankle joints), in addition to measured interaction forces and/or torques between the user and
prosthesis, and between the prosthesis and environment. Additional potentially useful sensor
data includes accelerations and electromyography measurements from the residual limb.

Feature Extraction—In this work, features were extracted from frames of data, since a
relatively long frame can be condensed into few information rich features. The real-time nature
of the intent recognition problem requires that the features extracted from the prosthesis signals
be computationally inexpensive, and as such the mean and standard deviation of each frame
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were used. Thus, for each sensor, two features were extracted, both of which were normalized
to eliminate the scaling and dimensional disparities between the various types of sensor
information.

Dimension Reduction—In order to decrease the time required to train the models, to
prevent over-fitting, and to facilitate real-time implementation, the feature space was reduced
(at the cost of information content). Recent work in myoelectric pattern recognition for upper
limb prostheses [22] also indicates that PCA dimension reduction improves classification
accuracy for a similar problem. Though multiple possibilities exist for such dimensional
reduction, two effective approaches include Principal Component Analysis (PCA) [23] and
Linear Discriminant Analysis (LDA) [24]. Both approaches employ linear transformations,
which facilitate computational efficiency due to matrix multiplication operations. In this work,
both approaches were considered.

Gaussian Mixture Model Activity Mode Classification—In this work, Gaussian
Mixture Models (GMM) were used to characterize the probability that the user and prosthesis
are engaged in a given activity mode. The reason for choosing GMM is twofold. Firstly, both
complex and simple classifier models can be generated using GMM. For instance, a GMM
classifier with two mixtures would be very similar to the simple classifiers such as Quadratic
Disciminant Analysis (QDA) and LDA classifiers. The described approach takes advantage of
this property of GMM and uses the number of mixtures in the GMM as a search parameter.
Secondly, more complicated classifiers such as artificial neural network, support vector
machine and fuzzy logic classifiers do produce black box models. The GMM outputs well
defined mathematical models for the probability of each class with the weight coefficients,
covariance matrices and mean vectors as parameters. This simplifies the code generation for
real-time implementation of the described approach.

A separate GMM was used to describe each activity mode, wi. For some set of inputs x⃗, the
probability of being in an activity mode, wi, is given by:

(1)

where

(2)

where K is the number of components of the mixture model,  is the mixture parameter of the

ith GMM for the kth component, which satisfy the constraints  and . The
mixture component, , is a multivariate Gaussian probability density function with a D ×

1 mean vector, , and D × D full covariance matrix, , with D(D + 1) / 2 free parameters.
Each GMM can be parameterized by K(1+ D + D(D + 1) / 2) − 1 parameters, which are the

mixture parameters, mean vectors and covariance matrices, notated as . Once
the GMM’s are parameterized, for a given sample feature vector, x⃗S, the activity mode, wm,
was selected as the mode with the highest probability:
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(3)

Parameterization of the GMM’s for all desired activity modes was achieved based on training
data in an iterative fashion with the Expectation Maximization (EM) algorithm [25]. Several
initialization schemes for EM are suggested in [26]. In this work, the reduced dataset for an
activity mode, wi, was roughly clustered using the k-means algorithm [27]. These clusters were
used to initialize the EM algorithm for finding the mixtures. A key factor affecting the
classification performance of GMM’s is the number of mixture components, K. As such, the
performance of the models for a range of mixture components was considered and compared
for a given application.

D. Voting Scheme for Controller Mode Switching
The confidence with which the real-time intent recognizer switches can be increased with
various types of low pass filtering. Specifically, in this work, a voting scheme was used, as
subsequently described, that requires a majority agreement over a frame of samples in order
to switch activity modes. Such an approach enhances confidence, but at the cost of increased
switching delay, which at some point might adversely affect the communication between the
user and prosthesis. As such, the trade-off between sufficient confidence and switching latency
should be assessed for a given application.

III. Implementation
A. Prosthesis

The control and communication interface structure was implemented on a powered knee and
ankle prosthesis, and tested on a unilateral transfemoral amputee subject. Specifically, the
control approach was implemented on a self-contained, battery-powered and electric motor
actuated prosthesis [28]. The powered prosthesis, which is shown in Fig. 3, is a two degree of
freedom robotic device capable of generating human-scale torque and power at the knee and
ankle joints. The device’s sensor package includes a custom load cell to measure the sagittal
socket interface moment above the knee joint, a custom foot to measure the ground reaction
force at the heel and ball of the foot, and commercial potentiometers and load cells to measure
joint positions and torques, respectively. The self-contained version includes an embedded
system which allows both tethered and untethered operation from either a laptop (via MATLAB
Simulink) or the PIC32 onboard microcontroller, respectively. The prosthesis is powered by
a 118 Watt-hr lithium polymer battery that provides approximately 1.8 hours of level ground
walking at 5.1 km/hr, based on initial experiments conducted with a single unilateral
transfemoral amputee subject.

B. Subject
The prosthesis was tested on a 21-year-old male (1.93 m, 70 kg) unilateral amputee, three years
post amputation. The length of the test subject’s residual limb, measured from the greater
trochanter to the amputated site, was 55% of the length of the non-impaired side measured
from the greater trochanter to the lateral epicondyle. The subject uses an Ottobock C-leg with
a Freedom Renegade prosthetic foot for daily use. The subject’s daily use socket was used for
the experiments, where the powered prosthesis prototype was attached in place of the daily use
prosthesis. The overall prosthesis height adjustment and varus-valgus alignment were
performed by a licensed prosthetist. The study described herein was approved by the Vanderbilt
Institutional Review Board, and the subject signed an informed consent prior to participation
in the study.
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C. Intent Recognizer Training and Model Selection
The general structure of the intent recognizer, which is illustrated in Fig. 4, consists of
generating data frames of appropriate sensors, taking the mean and standard deviation of each
frame, reducing the dimensionality of these features, using trained models to determine the
highest probability class, and using an averaging approach to increase confidence. As
previously mentioned, several specific features of this structure are application-dependent,
including the set of sensors to use, the length of the data windows, the number of components
in the mixture models, and the length of the voting vector. The sensor signals used as input to
the intent recognizer consists of seven signals, which include the joint angles and angular
velocities of the knee and ankle, socket sagittal plane moment, and heel and ball of foot forces.
Note that the joint angles and angular velocities characterize the internal state of the prosthesis,
while the forces and torques contain information regarding interaction with the user and
environment. At each time step of activity mode intent recognition (10 ms), frames are
generated from each sensor signal and the (normalized) average and standard deviation are
computed, such that the full feature set includes 14 variables. The frame length, dimensionality
of the reduced feature set, method for dimension reduction, number of model components, and
voting vector length are all application-dependent trade-offs.

In the implementation discussed below, the dimensionality of the reduced feature set, the
method of reduction, and the number of components in the mixture model were all determined
by selecting the combination that provided the best accuracy of classification for the database
that characterized the various activity modes. The frame length and voting vector lengths were
then determined as the combination that provided the smallest total delay with a 100% success
rate on a given set of test data. This process, and the resulting implementation, is described in
the following sections.

Database Generation—In order to train the GMM’s and to select the appropriate options
in the intent recognition structure, a database of sensor data was collected to characterize the
various activity modes of interest. Specifically, the powered prosthesis was tethered to a laptop
computer running MATLAB Real Time Workshop for controller implementation and the
middle-level prosthesis controllers were tuned for the subject for walking, standing and sitting.
A database was generated that contained the possible walking, standing and sitting scenarios
as outlined in Table I. Generation of the database took approximately 2 hours. It should be
noted that the presented intent recognition approach is based on mechanical sensors, which do
not change their behavior significantly over time. Therefore, after the initial two hour training
period, the intent recognizer should only need to be re-trained after major adjustments (e.g.,
realignment by a prosthetist, or re-tuning of the middle-level control parameters), since the
general characteristics of the user gait does not in general change significantly.

All data was sampled at 1000 Hz, which provides real-time reconstruction of information up
to approximately 100 Hz. Note that generation of the features (mean and standard deviation of
the frames) is not computationally expensive, and thus 1000 Hz sampling does not significantly
tax the microcontroller. For the standing mode, two activities were considered: static and
dynamic standing. The former consists of activities in which the feet do not leave the ground,
such as standing stationary and shifting weight between the limbs. The latter contains more
active movements, such as taking small steps, turning in place, and repositioning the limb.
Walking includes slow, normal and fast walking with the respective middle level walking
controllers. For each walking and standing scenario outlined in Table I, four 100-second trials
were measured. Of these, the first two trials were used for model training, while the second
two were used for performance evaluation of the intent recognizer.

In order to recognize standing and walking modes, the database generated must contain the
possible matched and unmatched activity modes. Specifically, a matched activity mode is when
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the activity corresponds to the current control mode (e.g., standing while the prosthesis is in
standing mode), while an unmatched mode is when the activity corresponds to a different
control mode (e.g., walking while the prosthesis is in standing mode). Fig. 5 illustrates the
timing of mode transitions and makes clear why such unmatched datasets are required for
proper intent recognition.

Generation of the database for the sitting mode is more complicated, since the finite state based
impedance controller for sitting includes the standing up and sitting down transitions. These
transitions are initiated by the intent recognizer. Without a database containing these
transitions, the intent recognizer cannot be designed. In order to overcome this problem, the
standing up and sitting down transitions were triggered using knee angle thresholds for
generating the database. In order to generate the sit-to-stand database, the activity mode change
was artificially triggered when the knee angle became less than 5 degrees. In order to generate
the stand-to-sit database, the activity mode was artificially switched to sitting mode when the
knee angle exceeded 5 degrees. Fifteen trials for both cases were conducted. The four seconds
after the sitting down transition and four seconds before the standing up transition were
recorded for generating the sitting feature frames for the GMM classifier design. From each
trial 20 frames of length 50, 100, 200 and 400 samples were generated. Moreover, two 100-
second sitting trials were recorded for finding the optimal voting vector length for sitting to
standing transitions. During these trials, the subject sat on a stool, performed sitting activities
such as repositioning limbs, changing orientation, and reaching an object excluding standing
up transition. For each frame length, the database for the GMM classifier design included 1600,
1200, and 600 frames of walking, standing and sitting modes, respectively.

Model Selection—The model search space consisted of 30 models, which were the
combinations of 6 dimension reduction methods (i.e., PCA and LDA for 1 to 3 dimensions)
applied to 5 GMM models with number of components K ranging from 2 to 6, for each frame
length. In order to find the best classifier for each frame length, the Area under the Receiver
Operator Characteristics (AUC) curve [29] was used as the performance metric. This metric
was used because it provides a comprehensive metric that computes true and false positives
for all possible classification thresholds observed in the data, and because it is insensitive to
class distribution. For adapting the AUC score to the multidimensional case, the scores between
different classes were computed and the average was used as the final score for a specific
model. Ten-fold cross-validation (CV) [30] was employed to avoid over-fitting. In ten-fold
CV, the data is split into ten sets of size N /10 each. For purposes of model selection, the
classifier was trained on 9 datasets and tested for the AUC on the remaining one. This was
repeated ten times until all the data splits were tested and the mean AUC score was recorded
as the performance metric for a specific classifier.

Voting Scheme for Controller Mode Switching—The real-time implementation of the
voting scheme consists of overlapping frames that are classified at each 10 ms interval (Δt).
In the voting scheme, the last l classifier decisions are stored in a voting vector and mode
switching occurs if more than 80 percent of the classification results are in agreement. The
activity mode switching logic based on the voting scheme for the walking, standing and sitting
modes is demonstrated in Fig. 6. To avoid chattering during transition and increase the
robustness of the powered prosthesis control, a rule was introduced to prevent mode switching
for 500 ms after the most recent mode switching occurs (i.e., it is assumed a user does not enter
and leave a given activity mode in 500 ms).

The combination of the voting length l and the frame length f determines the total delay of
activity mode intent recognition. To minimize the total delay in the intent recognizer, the last
two trials for each scenario in the experimental database were used to select the minimum
voting vector length, corresponding to each frame length, that resulted in no incorrect
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classifications in the two test trials. In this process, the real-time activity intent recognizer was
implemented (offline) with possible voting vector length from 10 to 100 in increments of 5.
For each activity mode and for each of the four frame lengths f, the voting vector length was
increased until the intent recognizer provided 100% accuracy in the two test trials. Once the
optimal voting lengths for each frame size were found, the best frame length/voting vector
length combination was determined as that which yielded the smallest overall delay d, where
d = f/2+10 lmax, where lmax is the greatest voting vector length determined among the four
transitions shown in Fig. 6.

IV. Results and Discussions
PCA versus LDA for Dimension Reduction

PCA and LDA reduced datasets for the frame length 200 are shown in Fig. 7. The inherent
characteristics of the transforms are apparent in the figures. Specifically, PCA essentially
maximizes the variance of the data, while LDA generates ellipsoid clusters for different classes
by maximizing the distance between different class clusters and minimizing the in-class
variances. One might think that LDA dimension reduction would result in better classification
results compared to PCA, since LDA takes into account the labels of the classes. As stated by
[31], however PCA may outperform LDA when the inherent distribution of the data is non-
normal. In [32], the authors report that PCA outperformed LDA for the intent recognition
between standing and walking classes for a three-dimensional reduction, which was a binary
classification problem. In the present three-class problem, LDA outperforms PCA in all cases.
As an example, Fig. 8 shows the mean AUC scores for both PCA and LDA reduced GMM
classification for the frame length 200.

Gaussian Mixture Model Selection
The best AUC scores are obtained from the LDA dimension-reduced three-dimensional
GMM’s with 5, 6, 5, and 4 mixtures for the frame lengths 50, 100, 200 and 400, respectively.
It is observed that the best AUC score increases with increasing frame length. Surface plots of
the standing and walking mixture models for frame length 100, showing the portions of the
feature space with greater than 0.05 probability densities are presented in Fig. 9. The distinct
locations of the three different activities in the reduced feature space can be seen in this figure.
The dynamic nature of walking is observed in the walking mixture model, which creates a three
dimensional loop consisting of several ellipsoids of areas with high probability density. The
standing up and sitting down transitions are bridge-like volumes connecting the standing and
sitting modes. Lastly, the standing mixture model resides in a small region of the reduced
feature space, which connects the walking and sitting regions.

Voting Vector Length Selection
As previously described, the first two trials of each dataset were used to train the mixture
models, while the last two trials were used to select the voting vector lengths that correspond
to a minimum total delay and 100% accuracy (in the last two trials). The minimum voting
vector lengths that correspond to 100% accuracy are 55, 45, 65, and 60, respectively, which
correspond to frame lengths of 50, 100, 200 and 400, respectively, and GMM models of 5, 6,
5, and 4 components, respectively. These and the respective approximate intent recognition
delay for each frame length is listed in Table II. As can be observed from the table, the shortest
approximate delay for the intent recognition is obtained for the frame length 100 (which
corresponds to a voting vector length of 45 and 6-component GMM. With this combination,
the intent recognizer switches to a new mode in approximately one half a second.

For EMG-controlled upper limb prostheses, it is stated in that the maximum latency without a
perceivable delay is 300 ms [33]. Therefore, one might argue that the half a second approximate
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delay for the lower limb intent recognition is too long. The described intent recognition
problem, however, is different in comparison to the one in the EMG-controlled upper limb
prostheses. Realistically, no latency is allowed for the control of the powered lower limb
prostheses. Therefore, the middle layer controllers which govern the dynamics of the system
for specific activities such as walking, standing, or sitting switch between different phases
using biomechanical cues measured directly by the mechanical sensors of the prosthesis. For
the supervisory control described in this paper, the negative effects of latency are alleviated
by designing the middle layer controllers such that in the switching regions the controllers
exhibit overlapping functionality. For instance, the middle stance phase of the walking
controller and the weight-bearing phase of the standing controller both exhibit similar
impedance properties. Therefore, the subject can stand using both controllers but the standing
with the standing controller is more comfortable because it is specifically designed for that
purpose. The authors are not aware of any analytical method for computing the maximum
allowable latency for this device. Nonetheless, the described approach tries to create the most
robust controller with the least amount of delay. The maximum allowable latency is tested in
real-time supervisory control experiments and the subject stated that he does not have any
perceived latency in his actions.

Real-Time Supervisory Control
The intent recognition structure with the selected components (three dimensional LDA
dimension reduction with GMM with 6 mixtures using 100 sample-long frames and voting
vector length of 45) was tested in real-time activity mode intent recognition. Three trials lasting
190 seconds each on a treadmill were conducted to verify that the method works in a closed
feedback loop as a supervisory controller. A video showing one of these trials (corresponding
to the data in Fig. 10) is included in the supplemental material. Each trial began with the test
subject standing on a treadmill. The treadmill was started and stopped at arbitrary intervals
several times during the trials, requiring the test subject to switch between walking and
standing. Note that standing included shifting weight from one side to the other and turning in
place. During some of the periods when the treadmill was stopped, a stool was placed on a
treadmill and the subject volitionally transitioned between standing and sitting. During these
trials, 56 activity mode transitions were made by the subject, and all 56 were correctly identified
by the intent recognizer, with no user-perceived latency in mode switching. Despite this, the
intent recognizer identified three activity modes during the 570-second trial period that were
not intended by the user. Specifically, during the standing mode, the intent recognizer once
identified intent to walk, and twice identified intent to sit (and in both cases switched back
within one second). Though such incorrect inferences may sound potentially dangerous, they
in fact are benign, and in these cases were not noticed by the user. Specifically, as can be seen
in Fig. 10, when casually shifting weight between legs during standing, the distinction between
standing, walking, and the initial transition state from standing to sitting are all quite similar
in state and in desired functionality (i.e., both the state of the leg and its behavior are non-
unique). That is, the switching errors occurred in a region of the feature space in which both
the movement patterns and the leg impedances are similar, and thus they have little significant
effect. For instance, the impedance behavior of the prosthesis for the stand to sit transition is
defined by a stiff spring with an equilibrium point of 5 degrees. The virtual spring in the weight
bearing standing mode is set to 0 degrees and has a similar stiffness. When the prosthesis makes
an erroneous mode switch from standing to sitting, the impedance behavior of the prosthesis
does not change significantly. As such, the distinction between these modes is somewhat
artificial, and thus there is little importance in distinguishing between them. Thus, the apparent
confusion of the intent recognizer is more a problem with the non-uniqueness of these
respective activity modes than with a misunderstanding of the user’s intent.
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An example of an erroneous mode switch is shown in the trial of Fig. 10, which shows the
activity mode, knee angle and ground reaction force for a 190-second trial, with an erroneous
stand-to-sit transition at approximately 130 seconds. Note that the video clip included in the
supplemental material corresponds exactly to the 190-second trial shown in Fig. 11, and thus
this misclassification of user intent is also captured in the video (although there is no ostensible
visual evidence of the incorrect switching).

One of the advantages of the intent recognition approach using mechanical sensors is that the
database generation does not need to be frequently repeated. In order to test this, three additional
trials lasting 110 seconds wee conducted in another experimental session on a different day.
During these trials, 34 activity mode transitions were made by the subject, and all 34 were
correctly identified by the intent recognizer, again with no user-perceived latency in mode
switching. Despite this, the intent recognizer identified three activity modes during the 330-
second trial period that were not intended by the user.

One might argue that a simple thresholding scheme such as that implemented for the sitting
database generation might suffice for switching between different controllers. The knee angle
and the activity mode from a trial during which the subject stood (and shuffled) and made
stand-to-sit and sit-to-stand transitions is shown in Fig. 11. As can be observed from the figure,
the knee angle threshold used for generating the database (5 degrees) is exceeded couple of
times during dynamic standing. If this threshold were used, incorrect stand-to-sit transitions
would be initiated. In general, the intent recognizer creates an intricate switching function
combining many measurements which results in a robust supervisory controller.

The robustness of the intent recognition was tested with respect to weight change of the user,
since the intent recognition approach uses mechanical sensors including the ones measuring
the ground reaction force. In this scenario, the subject walked, occasionally stopping to stand
(including shuffling) while carrying objects with different weights. The subject carried
separately a 9 kg backpack and an 8 kg briefcase and then carried both objects together
amounting to approximately 20 percent of subject’s body weight. The subject stated that the
weight of these objects were greater than the ones he would carry in daily use. The subject
stated that the switch from standing to walking controller occurred earlier with increasing
weight. It is seen that the intent recognizer worked without any problems for these scenarios.
A video corresponding to this trial is included in the supplemental material.

Though the described method requires significant computation during the training phase (i.e.,
generating GMM’s for all the combinations, CV and frame length optimization), real-time
implementation does not require extensive computation. The entire powered prosthesis control
system (lower and middle level controllers, along with the intent recognizer) implemented in
real-time using Matlab Real-Time Workshop requires approximately 10% processor utilization
for a Pentium 4, 2.0 GHz desktop computer. It should be noted that in real-time implementation,
the computation required by the algorithm scales linearly with the addition of other activity
modes, such as stair ascent/descent, and thus should allow real-time implementation on an
embedded microcomputer with more limited resources.

V. Conclusion
The authors present an activity mode intent recognition framework for a powered lower limb
prosthesis which uses only signals from the prosthesis. The authors describe the approach, and
demonstrate it on a powered knee and ankle prosthesis. For this prosthesis, LDA dimension
reduction with 100 sample-long frames yielded the best results for standing, sitting and walking
mode recognition using GMM as a classifier. Experiments with a unilateral amputee subject
showed that the activity mode intent recognition framework extracts the user intent in real-

Varol et al. Page 11

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2011 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



time and switches to the correct underlying activity controller. Some classification errors were
observed, although only in highly similar types of activity, and thus the errors in switching
were not problematic and were not perceived by the user.

Future work includes testing the described framework with multiple amputee subjects and
adding new activity modes such as stair ascent and descent.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Powered prosthesis control structure.
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Fig. 2.
The state chart depicting the phase transitions for standing, walking and sitting modes.
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Fig. 3.
Self-contained powered knee and ankle transfemoral prosthesis.
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Fig. 4.
Block diagram of the activity mode intent recognizer.
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Fig. 5.
Demonstration of the controller and real mode discrepancy during mode transitions.
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Fig. 6.
Controller mode switching logic for gait mode intent recognition.
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Fig. 7.
PCA (left) and LDA(right) dimension reduced features extracted from 200 sample-long frames.
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Fig. 8.
Classification performance of different model order GMM’s with PCA and LDA dimension
reduction to one (a), two (b) and three (c) dimensions for frame length. Note the y-axis scaling
for each dimension.
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Fig. 9.
Gaussian Mixture Models surface plots for standing, walking and sitting showing the portions
of the feature space, where probability density function is greater than 0.05, for three
dimensional LDA reduced data.
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Fig. 10.
Real-time activity mode switching (top), knee angle (middle) and ground reaction force
(bottom) for a 190 seconds long trial. A video corresponding to this trial is included in the
supplemental material.
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Fig. 11.
Knee angle (top) and real-time activity mode switching (bottom) for a 90 seconds sit to stand
and stand to sit trial.
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TABLE I

Different Activity Scenarios For Database Generation

Scenario Num. of trials Activity Mode Activity Purpose

1 4 Walking Slow walking with walking controller GMM, OVVL

2 4 Walking Normal walking with walking controller GMM, OVVL

3 4 Walking Fast walking with walking controller GMM, OVVL

4 4 Walking Walking with standing controller GMM, OVVL

5 4 Standing Standing with walking controller GMM, OVVL

6 4 Standing Static standing with standing controller GMM, OVVL

7 4 Standing Dynamic standing with standing controller GMM, OVVL

8 15 Sitting Standing up GMM

9 15 Sitting Sitting down GMM

10 2 Sitting Sitting OVVL

GMM stands for the task of designing the GMM classifier. OVVL stands for the task of finding the optimal voting vector length for real-time controller
switching.
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TABLE II

Approximate Intent Recognition Delays for Different Frame Lengths

Frame Length Frame Delay (ms) Voting Delay (ms) Total Delay (ms)

50 25 550 525

100 50 450 500

200 100 650 750

400 200 600 800
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