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Abstract—Computerized tomographic colonography is a min-
imally invasive technique for the detection of colorectal polyps
and carcinoma. Computer-aided diagnosis (CAD) schemes are de-
signed to help radiologists locating colorectal lesions in an efficient
and accurate manner. Large lesions are often initially detected as
multiple small objects, due to which such lesions may be missed or
misclassified by CAD systems. We propose a novel method for au-
tomated detection and segmentation of all large lesions, i.e., large
polyps as well as carcinoma. Our detection algorithm is incorpo-
rated in a classical CAD system. Candidate detection comprises
preselection based on a local measure for protrusion and cluster-
ing based on geodesic distance. The generated clusters are further
segmented and analyzed. The segmentation algorithm is a thresh-
olding operation in which the threshold is adaptively selected. The
segmentation provides a size measurement that is used to compute
the likelihood of a cluster to be a large lesion. The large lesion
detection algorithm was evaluated on data from 35 patients hav-
ing 41 large lesions (19 of which malignant) confirmed by optical
colonoscopy. At five false positive (FP) per scan, the classical system
achieved a sensitivity of 78%, while the system augmented with the
large lesion detector achieved 83% sensitivity. For malignant le-
sions, the performance at five FP/scan was increased from 79% to
95%. The good results on malignant lesions demonstrate that the
proposed algorithm may provide relevant additional information
for the clinical decision process.

Index Terms—Carcinomas, computer-aided detection, comput-
erized tomographic (CT) colonography (CTC), image segmenta-
tion, LH histogram.

I. INTRODUCTION

COMPUTERIZED tomographic colonography (CTC) is a
minimally invasive technique for the detection of colorec-

tal polyps and carcinoma. CTC involves acquisition and inter-
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pretation of original/reformatted 2-D data and endoluminal 3-D
views. Although the data acquisition is fast and reliable, the
interpretation of CTC data can be time-consuming [1]–[3] and
depends on human factors, such as experience, fatigue, and per-
ception [4], [5]. This has led to a sustained effort to develop
computer-aided diagnosis (CAD) schemes that can help radiol-
ogists with locating colorectal lesions in CTC data in an efficient
and accurate manner [3], [6]–[9].

Large colorectal lesions are of high clinical importance, since
lesion size relates to the risk of malignancy. Several previous
articles address large polyps and so-called masses, with this
later group not clearly defined. Zalis et al. [10] define them as
lesions of 30 mm and larger, while Copel et al. [11] and Kiraly
et al. [12] define them as lesions of 20 mm and larger. However,
this is a conservative viewpoint with respect to the presence
of malignancy (carcinoma) within the lesion and the chance of
developing malignancy in the future (advanced adenoma). In
daily practice, all lesions of 10 mm and larger are considered
important and should be detected, 2.6% of all lesions equal
to or larger than 10 mm is malignant, while the prevalence of
advanced adenoma is 28% [13].

We, therefore, define large colorectal lesions as colorectal
polyps or polypoid carcinoma having a diameter larger than
10 mm (we will maintain this definition throughout the paper).

The performance of automated detection systems on large
lesions is certainly promising (e.g., [14]). Still, the need for
automatic detection and segmentation systems that are able to
deal with a broad range of colorectal lesions was previously ac-
knowledged [1], [15]. Large lesions may have a rather flat sur-
face shape (i.e., a large radius of curvature), which is not so easy
to detect automatically, due to its similarity to the physiological
surface. Alternatively, large lesions can be initially detected as
multiple smaller polyp candidates by automated systems, which
may prevent a correct size measurement and/or a proper charac-
terization of the candidate [2], [3], [16], [17]. As a consequence,
these lesions may be either missed or misclassified. Such results
are confusing and decrease the confidence of radiologists.

Näppi et al. [2] proposed a dedicated method for large lesion
detection and segmentation that exploits the detection by ex-
isting CAD systems as sets of “polyps.” The algorithm selects
CAD detections that lie in a neighborhood and fulfill a number
of conditions. These detections are the input for a segmentation
algorithm based on a level-set approach. The final step of the al-
gorithm is the classification based on the computed features for
each of the segmented regions. The reported results are promis-
ing, but the number of test cases is limited and the algorithm
involves a large number of parameters, making it sensitive to
variations in the input data [18].
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Luboldt et al. [16] proposed an algorithm for automated large
lesion detection in contrast-enhanced CTC that searches for
clusters of voxels fulfilling certain criteria in a region of a given
thickness around the colon lumen. The approach was tested on
five patients only. The results showed a high sensitivity at the
expense of highly variable specificity rates. Luboldt et al. [16]
use intravenous contrast-enhanced CTC data, an approach that
is less appropriate in screening population due to potential side
effects and costs [19]–[21].

The objective of this paper is to present a new method for
automated detection and segmentation of large lesions, i.e., col-
orectal polyps or polypoid carcinoma larger than 10 mm in
diameter. Such a lesion can be intraluminal, with a significant
intraluminal component, such as lobulated, polypoid, or circum-
ferential types of masses, as well as nonintraluminal, associated
with a mucosal wall-thickening type of growth pattern. It is as-
sumed that the intraluminal component has CT density similar
to that of muscular structures.

The detection step, inspired by the work of Näppi et al. [2],
starts from intermediate results of a classical polyp CAD sys-
tem. After a preselection step, we group together locations that
satisfy certain proximity criteria. The result is a set of clusters
of nearby locations that most likely correspond to large lesions.
A key technical novelty of the algorithm is a segmentation step
based on a simple thresholding operation in which an adaptive
threshold is automatically selected. The threshold selection is
done based on an LH histogram representation of the image
data [23]–[26].

The major advantages of the proposed segmentation algo-
rithm are its speed and simplicity. This study shows that the
combination of large lesion detection and segmentation im-
proves the performance of a classical CAD system.

II. MATERIAL AND METHODS

A. Experimental Data

The methods presented in this paper were developed using
21 patients from previous studies described in the work of Van
Gelder et al. [27] and Pickhardt et al. [28]. The evaluation was
done on separate (unseen) datasets containing patients from two
different studies: a clinical population and a fecal occult-blood-
test (FOBT)-positive screening population. All patients were
scanned in both prone and supine positions. After CTC, pa-
tients underwent optical colonoscopy (OC) that served as the
reference standard. The sample size (“power”) of the patient
population was calculated to be sufficiently large for compar-
ing the “enhanced” polyp detector with a classical system (see
Section III). In particular, assuming a sensitivity of 0.6 by the
classical system, an improvement to 0.8 at a significance level
of 0.05 and a power of 0.8 yields a sample size 33. Accordingly,
within a period of three years, all patients that harbored large le-
sions, i.e., large polyps (10 mm and larger measured during OC)
and/or carcinomas were consecutively included. This rendered
35 patients in total having 41 large lesions, 19 of which were
malignant. The lesion sizes measured during colonoscopy (us-
ing an opened biopsy forceps) or the pathology measurements,
varied in the range 10–80 mm, with a median value of 15 mm.

Fig. 1. Schematic view of the large lesion detector and its integration into a
classical polyp detector.

For three patients, scanning in either prone or supine position
failed for technical reasons leaving 67 datasets. An expert la-
beled the large lesions in CT data based on the OC findings by
indicating a point in 2-D reformatted images. A CAD finding
was considered true positive if it encompassed the indicated
point. More details on the study data are given in the Appendix.

B. Large Lesion Detection

A schematic view of the proposed large lesion detection
scheme can be seen in Fig. 1. The input are suspicious locations
on the colon surface detected, using the deformation model de-
scribed by Van Wijk et al. [29]–[31]. In the latter approach,
bumps on the colon surface are flattened by solving a partial
differential equation controlled by the second principal curva-
ture. The distance between the original and the deformed surface
defines the amount of protrusion of the bump. This quantity is
used to select potential polyp locations (detection of lesion can-
didates). Apart from detection, a segmentation of the detected
locations is also provided; the segmentation is given by the re-
gion that is brushed away during the deformation process. The
segmentation is used to compute local features to characterize
an object and to compute its likelihood of being a colorectal
lesion.

The “preselection” step of the large lesion detector aims at
discarding the most obvious faulty detections, such as those
generated by small food remnants, the enema tube, and small
false positive (FP) detections emanating from image noise. This
selection is done using information provided by the segmented
region around the detected locations. We use the average inten-
sity in the segmented regions for discarding detections of tagged
food remnants. We regard those locations as noisy detections,
where the segmentation mask is too small or the protrusion is
small. The parameters of this step were learned from the devel-
opment set.

The second stage of the large lesion detection algorithm
groups those locations that passed the preselection stage and
lie close to each other. Two or more points are regarded as close
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to each other if the geodesic distance along the colon surface
between them is smaller than a given threshold.

The final step of the grouping phase is to compute the likeli-
hood PC of the cluster of detections of being a large colorectal
lesion. This is done by aggregating together the likelihood pi

associated with each detection in the group PC =
∏

i=1:N pi ,
where N is the number of detections grouped together.

At the end of this stage, each cluster of detections is con-
sidered as one hit, whose likelihood of being a lesion is given
by the computed PC . These hits are put together with all other
CAD detections (see Fig. 1) that were not included in the gen-
erated clusters. The likelihood of these latter detections remains
unchanged.

C. Large Lesion Segmentation

The detection step, described previously, identifies the loca-
tion of the large lesions without providing a proper segmenta-
tion. Consequently, additional steps are required for extracting
the entire lesion volume, which is important for a correct size
measurement and/or feature extraction for subsequent classifi-
cation. One can reliably segment the lumen side of a lesion,
using thresholding with two fixed values, one for air borders
and other for tagged material borders. However, the identifica-
tion of the internal, nonlumen side of a lesion is more complex.
Large colorectal lesions usually have CT density similar to that
of muscular structures. Most of the time, the internal side of the
lesion is surrounded by fat layers. Such layers have a slightly
lower density than the tissue present in the lesions. In such cases,
the internal border of a lesion can be seen and can be identi-
fied by simple thresholding. However, one cannot use one fixed
threshold to find this border because the range of fat densities is
not the same for all patients.

We propose a novel method for automatic selection of the
threshold value that best separates a lesion from the surrounding
fat. Since the lesion and muscular tissue have similar densities
in CT data, this approach addresses the more general problem
of separating fat and muscle.

Our method is based on the LH histogram representation of
the local gray value data [23], [26]. In such a representation,
each voxel is mapped into LH space by looking at intensity
values up and down the gradient direction at that point. The
lowest and highest encountered values represent the L and H
coordinates in the LH space, respectively. Consequently, points
belonging to a material whose mean intensity is L form a blob
in the LH space, centered at location (L, L). Points that belong
to the border region between two materials, having intensity L
and H , are mapped onto a blob centered at location (L, H), see
Fig. 2 (top row). The number of blobs in the LH space depends
on the number of materials and the number of borders in the
original gray value volume. The size of the blobs depends on
the noise level in the data.

Suppose, for simplicity, two materials are to be segmented.
Such a segmentation is equivalent to splitting the LH space
in four quadrants [thick lines, Fig. 2 (top right)] to ensure that
each quadrant, but the lower right one, contains one blob. Con-
sequently, finding the optimal threshold that best separates the

Fig. 2. LH histogram (top-right) and the average gradient magnitude as a
function of threshold to select a border (bottom-left) in the subregion of (top-
right). The average gradient magnitude for a filtered version of the subregion is
shown in the image (bottom-right).

two materials can be solved by finding a splitting of the LH
space that best separates the three blobs. Such a splitting max-
imizes the distance between the centers of the clusters and can
be found by successively trying a number of splittings and by
looking at the distance between the centers of the clusters in
each quadrant.

For an arbitrary splitting, let us denote the centers of the
clusters in the lower left, upper left, and upper right quadrant,
respectively, by (L̃, L̃), (L̃, H̃), and (H̃, H̃). L̃ and H̃ can be
regarded as estimates of the intensities of the two materials
in the image. Note that L and H indicate the true intensities.
The distances between these centers are proportional to the
difference (H̃ − L̃), which can be directly computed by only
considering the cluster in the upper left quadrant (i.e., the border
region), as follows:

H̃ − L̃ =
∑

x∈Ω H{P (x)}
N

−
∑

x∈Ω L{P (x)}
N

=
∑

x∈Ω (∆s)|∇P (x)|
N

= (∆s)
∑

x∈Ω |∇P (x)|
N

(1)

where P (x) is the intensity at location x, Ω is the set of boundary
voxels for the current partitioning, N is the number of bound-
ary voxels, H{P (x)} and L{P (x)} yield the local maximum
and local minimum, respectively, by following a path up and
down the gradient direction at location x, and ∆s is the distance
between the locations of H{P (x)} and L{P (x)}. Equation (1)
shows that the difference (H̃ − L̃) is proportional to the average
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gradient magnitude along the borders of the object generated
by the threshold used for generating the LH space splitting.
It assumes that ∆s is approximately constant, a reasonable as-
sumption when considering that ∆s depends on the point spread
function of the scanner. Specifically, the imaging of an edge by
a CT scanner does not appear as a step function, but as a blurred
version of it [26]. Consequently, going from a low intensity to
a high intensity requires covering a distance that is proportional
to the amount of blurring, which, in turn, is determined by the
point spread function of the scanner.

Based on the aforementioned considerations, one can find the
threshold that best segments the encircled region in Fig. 2 (top-
left), by computing the average gradient magnitude for a number
of successive thresholds and looking for a (local) maximum.
For a fast implementation of this operation, we use the method
proposed by Pekar et al. [32], leading to the result shown in
Fig. 2 (bottom-left).

The average gradient magnitude curve [see Fig. 2 (bottom-
left)] features a local maximum corresponding to the opti-
mal splitting of the LH space (indicated by the thick dashed
lines in the bottom-left plot). We call this local maximum “the
fat–muscle transition peak.” This maximum is surrounded by
two valleys corresponding to the “worst” splittings of the LH
space—splitting that cut through the center of the blobs corre-
sponding to the two materials. These valleys correspond to the
low (L) and high (H) material intensities in the image. The local
maxima on the sides of the plot of Fig. 2 (bottom-left) are partly
due to the presence of noise in the image. The higher the level
of noise in the image, the higher the amplitude of the side peaks.
Additionally, the side peaks may emanate from transitions be-
tween air and tissue and between air and bone/tagged material
present in the analyzed region.

The aforementioned technique can be used for discriminat-
ing fat densities from muscle densities in CTC data. Since our
eventual goal is colorectal lesion segmentation, we restrict our
analysis to a region of interest around a candidate lesion. More
specifically, for the computation of the LH histogram, we use a
cubic region of 80 × 80 × 80 mm3 and, in this region, we select
a tissue region 15-mm thick around the colon lumen. For the
selected region of interest, we compute the average gradient for
successive thresholds in the aforementioned range. In order to
identify the optimal threshold for fat–muscle separation in the
presence of the side peaks, we restrict the search for the location
of a local maximum to the range [−200;100] Hounsfield units
(HU), a typical range for fat and muscle densities [33].

We applied this approach to all detections in our development
set. In 67% of the cases, we were able to automatically identify a
fat–muscle peak. In the other 33% of the cases the combined in-
fluence of noise and other transitions suppressed the fat–muscle
transition peak.

Suppression of the effect of noise can be done by smooth-
ing the image prior to average gradient magnitude computation.
A bilateral filter [34], [35] does a weighted summation of the
image intensities in the surrounding, in which the weights de-
pend on the spatial and tonal difference between the considered
points. The results shown in Fig. 2 (bottom-right) are obtained
with a spatial sigma of 2 mm and a tonal one of 60 HU. Effec-

Fig. 3. Distribution of threshold values computed based on the fat–muscle
peak location in the development data. The white distribution corresponds to
the patients from the study described by Van Gelder et al. [27], while the gray
one corresponds to the patients from the study of Pickhardt et al. [28].

Fig. 4. Lesion from the development set (left column) and the corresponding
segmentation with a threshold based on the fat–muscle peak location (middle
column) and a fixed threshold derived from population statistics (right column).

tively, a bilateral filter attenuates the noise while preserving the
edges.

In the cases, in which the fat–muscle peak could not be iden-
tified, the proposed algorithm restarts the computation of the
average gradient magnitude plot on the bilateral filtered data.
As a result, the number of cases where a fat–muscle peak could
be found increased from 67% to 77%. For the remaining cases,
i.e., the one where the peak finding algorithm fails even after
filtering, we use a default threshold value. A visual inspection of
these latter cases revealed that most of these cases corresponded
to regions in which a low amount of fat was present in the region
of interest.

We base the choice of the default threshold value on the
distribution of the threshold values computed for the cases where
a fat–muscle peak could be identified in the average gradient
magnitude plot. This distribution, as shown in Fig. 3, suggests
that the optimal threshold for fat muscle separation depends on
the characteristics of the scanning protocol, scanner calibration,
and patient preparation. Accordingly, we used as default values,
the average of the estimated threshold values for the population
to which the considered patient belonged.

It might be argued that the bilateral filter approach and/or a
default value might be just applied, as well as in those cases in
which the threshold value was initially based on the LH his-
togram. This is not true. Fig. 4 shows the difference between the
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Fig. 5. Example from the development set [27], in which the boundary be-
tween the large lesion (pointed by the white arrow in the left image) and the
surrounding muscular structures (indicated by the dashed arrows) is not visible.
The segmentation results are shown in white. The second image shows the re-
sults in the absence of the postprocessing step, while the third one shows the
results after postprocessing. In both cases, a volume of interest around the lesion
was used. The postprocessing step eliminates most of the abdominal muscle that
was originally included in the segmentation.

segmentation results with a threshold based on the fat–muscle
peak location (middle column) and a default threshold derived
from population statistics (right column).

D. Postprocessing and Feature Computation for Segmented
Lesion

Once the threshold is determined, we apply it to the selected
region of interest. The result is a segmentation of muscle-like
structures. In order to eliminate “small” connections between
multiple muscle-like structures that might be present in the re-
gion of interest, we perform a morphological opening [36],
followed by the identification of the connected component at
the location of the initial detection.

Additionally, a few lesions are surrounded by tissues, with
similar attenuation to muscle-like tissue and no border can be
observed. In order to deal with such cases, we model a lesion as
a band-like structure attached to the colon lumen. Consequently,
any point in the lesion body should be connected to the lumen
through a straight line that goes only through the lesion region
and not through nonlesion tissue. Additionally, we eliminate
those regions that lie deeper than 15 mm (similar to the thickness
used by Vining et al. [37] and Nappi et al. [2]). Such a clipping
helps to discard muscular structures adjacent to the lesion (see
Fig. 5). A side effect of it is that internal parts of large, invasive
lesions will be cut away. However, the extent of the lumen side
of such lesions is not affected. In effect, the lesion is asserted to
a somewhat compact object connected to the lumen. A fast way
of doing this operation is by identifying the lumen side of the
segmented region and propagating this border 15 mm into the
segmented region.

Once the segmentation is available, we compute the diame-
ter d of the segmented region as the largest Euclidean distance
between two border points of the region. We further use this di-
ameter in combination with PC , the likelihood of a cluster being
a large lesion (see Section II-B), to recalculate this likelihood
P new

C according to (2), which is as follows:

P new
C =

(PC + dr )
2

(2)

where

dr =

{
d/50, if d ≤ 50

1, if d > 50.

Roughly speaking, (2) implies that any detection with a di-
ameter bigger than 50 mm has a high likelihood of being a large
lesion. Furthermore, if a cluster has a big likelihood, as com-
puted during the grouping phase (see Section II-B), and a big
diameter then, it is most likely a large lesion.

III. RESULTS

A. Parameter Overview

The algorithm involves a number of parameters that were ei-
ther determined experimentally based on the development data,
or were based on literature evidence. The density range to iden-
tify soft tissue was selected based on evidence in the litera-
ture [9], [17], [32]. The maximum lesion thickness (used in the
postprocessing phase) was determined empirically, but is similar
to values for colon wall analysis reported previously [2], [37].
The threshold on the geodesic distance has been determined ex-
perimentally. This threshold prevents the chaining effect men-
tioned by Näppi et al. [2] while insuring that sufficient detection
on a single lesion are grouped together. Small variations (under
20%) in the values do not affect the results.

B. Performance Evaluation

1) Detection: The performance of the detection step is as-
sessed by the sensitivity and specificity of the algorithm for
different threshold values for the likelihood of a detection to be
a large lesion. This approach allows us to build a free-response
receiver operating characteristic (FROC) curve. We computed
the sensitivity as the percentage of the available large lesions
that were detected in either the prone or supine scans, i.e., per
lesion sensitivity. The specificity was computed as the average
number of FPs per scan. For a number of working points on
the FROC curve, we also report the sensitivity range at 95%
confidence interval. These intervals were computed using boot-
strapping as follows: from the 35 patients, we randomly selected
50 samples (duplicates allowed) and measured the sensitivity for
the selected number of FP. We repeated this procedure a number
of times and obtained a series of sensitivity values. Such series
provided us with the distribution of sensitivity levels for the se-
lected FP rate and allowed us to estimate the range for the 95%
confidence interval.

We use as input for the proposed large lesion detector in-
termediate results of the polyp detector described by Van Wijk
et al. [29]–[31]. We will refer to the latter detector as the classi-
cal CAD system. In Figs. 6 and 8, we show in (solid) black the
FROC curve for the classical CAD system, which was obtained
by varying the threshold on the likelihood of a detection of being
a polyp.

The proposed detection/segmentation algorithms change the
list of hits provided by the classical CAD by grouping together
a number of detections (as described in Section II-B) and by
computing a new value for the likelihood of each cluster of
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Fig. 6. FROC curve for the (solid black) classical CAD system and (dashed
gray) the enhanced CAD system for all large lesions in the test set. The right
y-axis corresponds to sensitivity with regard to all large lesions, except for the
four cases that were missed by the CT.

Fig. 7. Carcinomas missed by both CAD systems. The white arrow indicates
the lesions missed at a rate of 8 FP/scan, while the orange arrows point to the
lesions missed by both detectors at a rate of 2 FP/scan.

being a lesion (as described in Sections II-B and II-D). The
hits that are not grouped together remain in the final list of
detections with the likelihood computed by the classical CAD
system. Consequently, one can regard the new system compris-
ing the classical CAD system augmented with the information
provided by the proposed detection/segmentation algorithms as
an enhanced CAD system. The performance of this new system
is shown by means of a dashed line in Figs. 6 and 8.

In a first analysis, we consider all large lesions available in
the evaluation set (see Fig. 6). At a rate of 8 FP/scan and higher,
the classical and the enhanced CAD systems have the same
sensitivity 83% ± 10% (34 out of 41). The seven false negatives
(FNs) comprised three sessile polyps of 10 mm, a polyp on a fold
of 15 mm, two pedunculated polyps of 12 mm and 15 mm that
were completely submerged, and a large obstructing carcinoma
that was partially submerged. The polyp on the fold and one of
the three sessile polyps were missed by the CTC observer in the
first reading and could only be found retrospectively. The other
two sessile polyps could not be found by the observer, not even
retrospectively.

The large obstructing carcinoma missed by both detectors be-
long to a patient for which only one scan was available. Further-
more, parts of the lesion were submerged, while those regions
that were above fluid level were fairly flat [see Fig. 7 (left)].

The two detectors showed differences in the sensitivities
when higher specificities were considered. At an average rate of
5 FP/scan, the sensitivity of the enhanced CAD system stayed at

Fig. 8. Comparison of the (solid black) classical CAD system versus (dashed
gray) enhanced CAD system for (top) malignant lesions and (bottom) benign
large lesions. The large lesions missed by both CAD systems are submerged
lesions and lesions that were missed by the CTC observer as first reader.

83% ± 11%, while that of the classical CAD system dropped at
78%± 12%. For 2 FP/scan, the enhanced CAD system achieved
sensitivity of 78% ± 10%, while the sensitivity of the classical
CAD system dropped to about 61% ± 14%. For the 2 FP/scan
rate, the enhanced CAD system discarded two carcinomas [see
Fig. 7 (middle and right)]. Both carcinomas caused obstruction
and had a fairly flat surface.

Subsequently, we made a comparison of the two CAD systems
with regard to their ability to detect malignant lesions only (19
out of 41) and benign lesions only (22 out of 41). The enhanced
CAD system performs better than the classical CAD system
in detecting malignant lesions at an acceptable FP rate, i.e.,
up to 5 FP/scan [see the plot in Fig. 8(a)]. For 5 FP/scan, the
sensitivity of the enhanced CAD system is 95%± 8%, while that
of the classical CAD system is 79% ± 15%. For 2 FP/scan, the
sensitivity of the enhanced CAD system is 84% ± 10%, while
that of the classical CAD system is 47% ± 20%. For benign
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Fig. 9. Distribution of the scores given by the Research Fellow in radiology.
The marks on this scale corresponded to degree of perceived overlap with the
actual lesion volume ranging from (1) 20% or less to (5) 80% or more overlap.

lesions, the two CAD systems have similar performance [see
the plot in Fig. 8(b)], i.e., 73% ± 20% at 2 and 5 FP/scan. The
benign lesions in our study are mainly polyps in the range of 10–
20 mm. This kind of lesions is still rather similar to the shapes
that were used in the design set of the classical CAD system [27],
and accordingly, were properly detected by it. Exceptions were
the four cases that were missed by the CTC observer as the first
reader and the two fully submerged polyps.

The main causes of FPs were stool, enema tube, and ileocecal
valve. One of the patients in Population 1 had not followed the
prescribed diet and had a lot of residual feces in the large bowel.
This patient accounted for 20% of the FP generated in the whole
set of 35 patients.

The threshold selection based on the LH histogram was able
to detect a fat–muscle peak in 70% of the true positives in the
test set. The bilateral filtering yielded another 12%, leaving the
use of a default threshold value for 18% of the cases.

2) Segmentation: Next to the evaluation of the performance
of the CAD system augmented with the information provided
by the segmentation algorithm, we also looked separately at
the quality of the segmentation results for the detected large
lesions. A Research Fellow of the Department of Radiology
(experience more than 300 colonoscopy verified CTC readings)
graded the segmentation results on a five-point Likert scale. The
marks on this scale corresponded to degree of perceived overlap
with the actual lesion volume: 1) 0–20% overlap; 2) 20–40%
overlap; 3) 40–60% overlap; 4) 60–80% overlap; and 5) 80–
100% overlap. Effectively, this grading is similar to the measure
used by Yao et al. [17] and Yao and Summers [39] except that
in this reference a manual segmentation is performed, whereas
we let the radiologist decide based on visual inspection. Such a
grading penalizes both leakages and incomplete segmentations.
The distribution of scores is given in Fig. 9.

The segmentation results received the highest mark in 73%
of all cases, with 65% of the malignant lesions falling into this
category (e.g., Fig. 10), and 81% of the benign large lesions.

The main causes for failing segmentation were obstructing
lesions and leakages into adjacent organs. Obstructing lesions
were incompletely segmented, since parts of the lesions ex-

Fig. 10. Malignant lesions (first and third rows) from the test set and their
corresponding segmentations (second and fourth rows, respectively). Note that
the lesion in the right image of the third column is adjacent to the ileocecal
valve.

tended further than 15 mm from the lumen. The leakages into
adjacent organs were due to the absence of a clear border de-
marcating the lesions. Apparently, the postprocessing step only
partially corrected for these leakages.

The lesion size measured automatically based on the large le-
sion segmentation was compared to the size measured manually
at OC in Fig. 11. The automatic measurement was determined
by the single largest distance between any two points on the
border of the object, as shown in [35]. The colonoscopy mea-
surements were available of 25/41 objects. All 16 objects that
were not measured by colonoscopy were advanced malignant
lesions typically causing obstruction of the colon lumen and
preventing colonoscopy measurement of the tumor’s maximum
dimension (size could only be coarsely estimated). The mean
difference and corresponding standard deviation between the
two types of measurement was −6.2 ± 14.6 mm. Excepting
the three outliers (top-left in the graph) rendered a mean dif-
ference and standard deviation of −0.6 ± 4.7 mm. Importantly,
it should be noticed that as long as the automatic measurement
truly categorizes a lesion as equal or larger than 10 mm, any
further measurement discrepancy is clinically irrelevant, since
the lesion is to be removed in any case.
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Fig. 11. Size measurement derived from automated segmentation (vertically)
versus size measured during OC ( horizontally).

IV. DISCUSSION AND CONCLUSION

We addressed the issue of automatic detection of large lesions
and showed that the performance of a classical polyp CAD
system can be improved by adding two components: 1) detection
and 2) segmentation of large lesions.

The proposed algorithms are simple and fast. They use only
a small number of parameters that were determined experimen-
tally. On a PC workstation with an Intel Xeon processor running
at 3.2 GHz, the detection step takes a few seconds per scan, de-
pending on the number of detections that passed the preselection
step. The segmentation algorithm takes less than a second per
lesion. Unlike segmentation methods involving iterative meth-
ods, like the ones proposed by Näppi et al. [2] and Yao and
Summers [39], the speed of our algorithm does not depend on
the size of the segmented lesion. The mean total computation
time per patient was 4 min for the classical polyp CAD system
on the previous configuration.

The starting point of our large lesion detection system is
the set of candidates generated by a classical polyp CAD sys-
tem. A preselection step effectively aims to find bumps on the
colon surface generated by large lesions. Subsequently, clus-
ters are formed of the detections that pass the preselection. The
generated clusters are further segmented and measured. The
information provided by the grouping and segmentation steps
is incorporated in a classical CAD system, leading to a better
detection performance, especially on malignant lesions.

The main source of FN of our large lesion detection algorithm
were lesions that were either submerged or lack the bumpy
appearance on the side facing the lumen. Next to cleansing,
detection methods that can cope with non or minimal intralu-
minal protruding, flat lesions (e.g., the work of Näppi et al.
[2]) and/or obstructing lesions could prove useful. Specifically,
texture based approaches might improve the detection of flat
lesions, e.g. Wan et al. [40] and Hong et al. [41]. Other sources
of FN were 10-mm sessile lesions that were hard/impossible to
find by a radiologist. The main sources of FPs were the ileocecal
valve, the enema tube, and stool.

The large lesion segmentation algorithm assumes that there
is a density difference between the lesion and the surrounding
tissue. Such an assumption is not new, being used in one way
or another in previous work [2], [17]. We asserted that lesion

tissue has a muscle-like density, whereas the surrounding tissue
shows a fat-like density. Actually, it is a more general problem of
finding the threshold that best separates fat and muscle regions.
The results showed that there is a relation between the optimal
fat–muscle separation threshold and the scan protocol and/or
scanner calibration. Analyzing which aspects of the scanning
protocol influence the value of the optimal threshold is a sub-
ject for future work. The proposed threshold selection method
is robust against such variations. Many large lesions were suc-
cessfully segmented (up to 73% of all cases). Not surprisingly,
the algorithm failed to segment lesions that were surrounded by
structures with muscle-like densities. In these cases, the border
between a lesion and the surrounding structures cannot be iden-
tified in CT data. In this step, the only parameters determined
empirically are the ones used in the bilateral filter. Another ap-
plication of the proposed segmentation algorithm might be the
segmentation of visceral fat [42]. In fact, the algorithm pro-
posed by us is immediately applicable if only the proper region
of interest is selected for LH histogram computation.

Next to the role played in improving CAD performance, an
accurate segmentation algorithm is important for correct size
measurement, which is the decisive factor for further patient
management. A recent study [43] showed that less experienced
radiologists misclassified 29% of polyps larger than 10 mm as
lesions smaller than 10 mm. The same study showed that lack
of experience poses the risk of dismissing very large lesions
(30 mm) because only part of it is perceived as polyp. Our
algorithm was able to properly segment 73% of the large lesions,
suggesting that it can provide a useful second opinion.

The good results on malignant lesions demonstrate that the
proposed algorithm may provide relevant additional information
for the clinical decision process.

APPENDIX: DETAILS OF STUDY POPULATION

The evaluation was done on a separate (unseen) dataset con-
taining 35 patients from two different studies:

Population 1 (clinical patients): Twenty-two symptomatic
daily practice patients admitted for CTC from the Academic
Medical Center, Amsterdam, The Netherlands were included.
For bowel preparation, the patients drank 4 L of macrogol so-
lution (KleanPrep, Helsinn Birex Pharmaceuticals Ltd., Dublin,
Ireland) combined with 4 × 50 mL meglumine ioxithalamate
tagging material (Telebrix Gastro, 300 mg I/mL, Guerbet,
Roissy, France) and two tablets of 5-mg bisacodyl starting
one day before the examinations. The colon was distended
by automatic insufflation of CO2 (EZEM Protocol insufflator,
Dordrecht, The Netherlands). The CT scans were performed
onto two systems: a 4-slice CT scanner (Mx800, Philips
Medical Systems, The Netherlands) was used for 13 patients
and a 64-slice CT scanner (Brilliance, Philips Medical Systems)
was used for the other nine patients. The scan parameters for the
4-slice scanner were: 120 kV, 4 × 2.5-mm collimation, 3.2-mm
slice thickness, and 1.25-mm pitch. The scan parameters for
the 64-slice scanner were: 120 kV, 64 × 0.625-mm collimation,
0.9-mm slice thickness (3.0 mm after resampling), 0.984-mm
pitch, 58 mAs for patients with an abdominal circumference
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<102.5 cm, and 82 mAs for patients with an abdominal circum-
ference≥102.5 cm. For both scanners, a standard reconstruction
filter (“C”) was used.

Population 2 (FOBT-positive screening patients): Thirteen
patients with a positive FOBT (increased risk) from the Aca-
demic Medical Center, Amsterdam, The Netherlands were in-
cluded. For bowel preparation, the patients drank 7 × 50-mL
Telebrix tagging agent (meglumine ioxithalamate, 300 mg I/mL,
Guerbet) and had a nonfiber diet starting two days before the
examinations. The colon was distended by automatic insuffla-
tion of CO2 (EZEM Protocol insufflator). The CT scans were
performed with a 64-slice CT scanner (Brilliance) with scan
parameters: 120 kV, 64 × 0.625-mm collimation, 0.9-mm slice
thickness (3.0 mm after resampling), 1.2-mm pitch, 40 reference
mAs with automatic current selection and dose modulation, and
a standard reconstruction filter (“C”).
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