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Multimodal Registration Procedure for the Initial
Spatial Alignment of a Retinal Video Sequence to a

Retinal Composite Image
A. Martina Broehan, Christoph Tappeiner, Simon P. Rothenbuehler, Tobias Rudolph, Christoph A. Amstutz,

and Jens H. Kowal∗

Abstract—Accurate placement of lesions is crucial for the effec-
tiveness and safety of a retinal laser photocoagulation treatment.
Computer assistance provides the capability for improvements to
treatment accuracy and execution time. The idea is to use video
frames acquired from a scanning digital ophthalmoscope (SDO) to
compensate for retinal motion during laser treatment. This paper
presents a method for the multimodal registration of the initial
frame from an SDO retinal video sequence to a retinal composite
image, which may contain a treatment plan. The retinal registra-
tion procedure comprises the following steps: 1) detection of vessel
centerline points and identification of the optic disc; 2) prealign-
ment of the video frame and the composite image based on optic
disc parameters; and 3) iterative matching of the detected vessel
centerline points in expanding matching regions. This registration
algorithm was designed for the initialization of a real-time reg-
istration procedure that registers the subsequent video frames to
the composite image. The algorithm demonstrated its capability to
register various pairs of SDO video frames and composite images
acquired from patients.

Index Terms—Biomedical image processing, feature extraction,
retinal image registration, retinal video sequences.

I. INTRODUCTION

LASERS have developed into an ubiquitous tool in ophthal-
mology [1]. Retinal laser photocoagulation was the first

medical laser application [2] and is today an established and
important treatment method for an extensive variety of retinal
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diseases such as diabetic retinopathy and age-related macular
degeneration, both of which are the leading causes of adult
blindness in the developed world [3], [4].

Computer assistance offers numerous potential improvements
to retinal laser treatment such as increased accuracy, reduced
execution time, improved safety, and therefore, ultimately in-
creased treatment efficacy. In addition, it has the potential to
improve diagnostic capability and allow for treatment planning
and documentation. Image registration is an essential aspect of
a computer-assisted retinal laser treatment system. It is used to
align images from different modalities for diagnostic purposes
and to continuously register the patients’ anatomy (retina) to a
reference image during treatment execution. A possible realiza-
tion of such a real-time registration is based on the acquisition
of a digital video stream, whose individual frames need to be
registered to a reference image to compensate for retinal motion
during the treatment.

Retinal image registration is an established and ongoing re-
search field. Mostly the intention is to register single retinal
image pairs. These are either retinal images of different modal-
ities (e.g., a fundus image and an angiogram) or images of the
same modality taken at different points of time (temporal regis-
tration). Predominantly, algorithms used for retinal image reg-
istration are based on a segmentation of the vessel tree and/or
extraction of significant vessel features (e.g., vessel bifurca-
tions). Therefore, a substantial amount of research effort has
been directed toward retinal vessel extraction [5]–[8], and ves-
sel landmark-based retinal image registration [9]–[15]. Study
has also been done on methods that use intensity-based similar-
ity metrics [16]–[18].

Computer assistance for retinal laser photocoagulation has
only been approached by a few groups. Welch [19] introduced
a computer-controlled retinal surgery system that included reti-
nal tracking and automatic laser beam deviation. This study
was continued by the group of Markow et al. [20], Barrett
et al. [21], and Wright et al. [22]. They proposed a computer-
assisted laser delivery system that would incorporate two differ-
ent tracking (digital and analog) methods, a lesion depth control
system and laser beam deviation via galvanometer-controlled
mirrors. Solouma et al. [23] reported on the development of
a real-time movement tracking system for image-guided laser
treatment. The system provides real-time alignment of a preop-
erative treatment plan with acquired video images. The group
of Becker et al. [24] and Shen et al. [25] developed vari-
ants of their registration techniques that allowed for real-time

0018-9294/$26.00 © 2010 IEEE
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registration of retinal images with potential to be incorporated
into an automatic laser photocoagulation system. Our approach
toward a computer-assisted retinal laser photocoagulation sys-
tem is based on a retina composite image that provides a large
field of view (FOV) to aid laser treatment planning and video
frames captured from a scanning digital ophthalmoscope (SDO),
which can be equipped with a laser unit and provides a color
video stream. The approaches presented in [20], [21], [23], [24]
use either incremental tracking methods or use a reference im-
age and video frames acquired with a fundus camera, which re-
duces the registration task to a monomodal problem with mostly
translational or rigid transformations. In this paper, we present
a new multimodal registration procedure for the spatial align-
ment of the first frame from an SDO retinal video sequence to
a retinal composite image using retinal features and a nonlinear
transformation model. The procedure is particularly challenging
because substantial differences in image quality (image noise,
nonuniform illumination, and motion blur), FOV, image scale,
and spatial resolution may have to be taken into account. The
method would initialize a real-time retinal registration procedure
as contribution to a complete computer-assisted laser photoco-
agulation system.

The proposed multimodal registration procedure identifies
points on the vessel centerline and the optic disc in the com-
posite image and the video frame. The detected optic discs are
used to establish a prealignment. Subsequently, the vessel cen-
terline points of the SDO video frame are iteratively matched
to the segmented composite image to refine the prealignment
and obtain a global nonlinear registration. For the extraction of
vessel points on the composite image, an iterative vessel tracing
method as proposed in [5] is used, but adjusted with respect to
new tracing direction selection, directional template application
range, and local edge strength thresholding, to better meet the
demands of our specific image modalities.

As opposed to numerous other retinal image registration
methods [9], [24]–[26], the retinal registration procedure pre-
sented in this paper does not rely on the identification of ves-
sel bifurcations. For our application, the accurate extraction of
well-distributed corresponding vessel bifurcations in both im-
age modalities, which is necessary for a good registration result,
failed in numerous cases. We make use of the optic disc to es-
tablish a prealignment, which is a unique feature on the retina,
and therefore, eliminates the need to look for correspondences.
In addition, comparing the center and radius of two optic discs
provides information about translation and differences in scale.
Optic disc detection in retinal images is a topic that has been
tackled in a number of publications [27]–[31]. We present a
new method for the optic disc detection in retinal images that
incorporates techniques from existing methods such as mean
intensity variance computation [28] for identifying the high in-
tensity variations between vessels and background in the optic
disc region and Hough transform application [31]–[33] for cal-
culating the center and radius. In our developed method, we
constrain intensity variance calculations to regions at detected
vessel points and limit the Hough transform calculation to the
established region of interest (ROI) for the optic disc, which
makes the method more efficient and reliable.

Fig. 1. Outline of the proposed registration procedure.

II. METHODS

Fig. 1 provides an overview of the proposed registration pro-
cedure and gives the scheduling information of the algorithm.
All processing steps on the composite image such as vessel cen-
terline point and optic disc extraction, as well as the computation
of a distance map used for the iterative point matching, can be
performed offline (before a laser intervention starts). On the
composite image, which serves as a reference, a tracing of the
vasculature is performed to obtain an extensive segmentation of
the vessel centerline. On the video frame, only vessel center-
line points along a fine grid of vertical and horizontal lines are
detected to reduce the computational load. All color composite
images and video frames are converted to grayscale images us-
ing the following weighting: I = 0.299R + 0.587G + 0.114B,
where R, G, and B are the red, green, and blue color channel.

A. Detecting Vessel Centerline Points

In both retinal image modalities, vessels appear darker than
the background. In both modalities, points on the vessel cen-
terline are detected by analyzing the images along a grid of
vertical and horizontal lines and searching for local intensity
minima bounded by two edges [5]. Intensity values on each
line are low-pass filtered using a discrete approximation to a
1-D Gaussian kernel with a standard deviation set to 1. At each
pixel location along the grid lines, the derivative value I ′(x, y)
is computed. For a horizontal line, I ′(x, y) is calculated as [34]

I ′(x, y) = −I(x − 2, y) − 2I(x − 1, y) + 2I(x + 1, y)

+ I(x + 2, y). (1)

Derivative values along a vertical line are computed accordingly.
A linear search along the grid lines looks for derivatives with the
greatest local magnitude with opposite signs that lay within a
given vessel width range. Based on measurements from numer-
ous images, the vessel width range is set between 4–20 pixels
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Fig. 2. Extracted vessel centerline points. (a) Retinal composite image with
vessel centerline points extracted through iterative vessel tracing. Seed points
were detected with a grid spacing of 30 pixels. (b) Retinal video frame with
extracted vessel centerline points, which were detected with a grid spacing of
two pixels and no subsequent vessel tracing.

for composite images and between 4–16 pixels for video frames.
The intensity value at the location between two maximal deriva-
tive magnitudes, where the derivative value changes sign from
negative to positive, is considered a local intensity minimum.
False detection of intensity minima and vessel edges is mini-
mized by establishing appropriate intensity and edge strength
thresholding as proposed by Fritzsche et al. [34]. Thresholding is
applied locally to cope with nonuniform illumination frequently
occurring in retinal images.

Local intensity minima are not unique to vessels and may
also occur on retinal background caused by image noise or
pathologies. Therefore, only intensity minima below a threshold
tI are considered. The intensity values within a rectangular
region wI are denoted IwI

. The intensity threshold tI (IwI
) is

expressed as

tI (IwI
) = m(IwI

) − s(IwI
) (2)

where m(IwI
) is the median and s(IwI

) is the median of the
absolute deviations of all intensity values IwI

from m(IwI
).

The edge strength threshold represents the cutoff between what
is considered a vessel boundary and what is considered back-
ground noise. At each pixel location within a rectangular neigh-
borhood wI ′ of a possible vessel edge location, a set of deriva-
tives in four directions (0◦, 45◦, 90◦, and 135◦, respectively) is
calculated. This derivative set is referred to as I ′wI ′

. The mean
µ(I ′wI ′

) and standard deviation σ(I ′wI ′
) describe the local con-

trast and are used to set up an edge strength threshold tE (I ′wI ′
)

as follows:

tE (I ′wI ′
) = µ(I ′wI ′

) + 0.5σ(I ′wI ′
). (3)

The size of wI and wI ′ was set to 25 × 25 pixels for video frames
and 50 × 50 pixels for composite images. If both opposite signed
derivative magnitudes are above the edge strength threshold,
the enclosed local intensity minimum is considered a point on
a vessel. Fig. 2 illustrates a video frame with detected vessel
points.

B. Iteratively Tracing the Vasculature

On the composite image, an iterative tracing of the vasculature
is performed. The vessel tracing method proposed by Can et al.
[5] is applied with a few variations. We modified the calculation
of the new tracing direction, limited the range for applying the
templates in each direction, and introduced local edge strength
thresholding. The main idea is to use a set of 16 left and right
2-D directional templates that detects the parallel edges of a
vessel in an iterative manner. The previously detected points
on the vessel centerline are used as seed points. At each seed
point, the iterative tracing procedure is initiated in two opposing
directions.

L(x, y, s) and R(x, y, s) denote the left and right template re-
sponses; in other words, the correlations between the image data
and the left and right templates in direction s (as defined in [5]).
Direction s is represented by an index value {0, 1, . . . , 15}
corresponding to one of the 16 discrete directions. Rmax(s) and
Lmax(s) denote the maximal right and left template responses in
direction s. Starting from a point pk and a direction sk , the direc-
tional templates are applied to estimate the next point pk+1 on
the vessel and its orientation sk+1 . There are only small changes
in vessel width expected when tracing a single vessel segment;
therefore, the maximal range for applying the templates in a
direction s is set to (dk/2) ± 2, where dk is the detected vessel
diameter at point pk . As opposed to [5], where the new direction
sk+1 has been chosen as the direction s ∈ {sk − 1, sk , sk + 1}
with the maximal Rmax(s) or Lmax(s) value (“following the
strongest edge”), we choose the new tracing direction as the
direction, where the sum of the maximal left and right template
responses is maximum (“following the strongest edge pair”).
Mathematically

sk+1 = maxs∈sk −1,sk ,sk +1{Rmax(s) + Lmax(s)}. (4)

The next point pk+1 on the vessel centerline is estimated as
in [5]

pk+1 = pk + luk+1 + βk+1 (5)

where k is the iteration number, l is the step size, βk+1 is a lateral
refinement vector for adjusting the location of the point to the
vessel centerline (see [5]), and uk+1 is a unit vector defined as

uk+1 =
[

cos

(
2πsk+1

16

)
, sin

(
2πsk+1

16

)]
. (6)

Local edge strength thresholding, similar to that described in (3),
is applied at the locations of the maximal template responses,
Rmax and Lmax , to assure that both detected edges are strong
enough to be considered a vessel edge. Thus, we established the
following criterion:

Rmax > tE and Lmax > tE . (7)

A tracing step is terminated, if the criterion in (7) is not fulfilled
three times in a row, if the new vessel centerline point pk+1
has already been traced, or if the trace meets the image border.
The result of an iterative vessel tracing on a composite image is
shown in Fig. 2.
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C. Extracting the Optic Disc

We developed a new method for the optic disc detection in
retinal images that is efficient with respect to run-time speed
and flexible enough to detect the optic disc in large composite
images as well as small SDO video frames. In addition, it was
reasonable to make use of the detected vessel points, which are
already available for later matching. The optic disc is a bright
circular structure, where the major blood vessels converge. Our
proposed optic disc detection procedure exploits these charac-
teristics, uses the previously extracted vessel centerline points,
and exploits the fact that particularly high-intensity variations
between vessels and background occur in the area of the optic
disc. We employed ideas from existing methods, such as mean
intensity variance computation [28] and Hough transform ap-
plication [31]–[33], but we constrained the intensity variance
calculations to regions at detected vessel points and established
a ROI for calculating the Hough transform in favor of compu-
tation time and reliability.

In a first step, a local intensity variance value is calculated at
each vessel centerline point, average values of these variances
are computed, and the location of the highest average variance
value is determined. A ROI is defined around the location of the
highest average intensity variance. In a second step, the bright
circular structure of the optic disc is identified within the previ-
ously defined ROI by applying the circular Hough transform on
intensity derivatives. The grayscale composite image and initial
video frame are downsampled by a factor of two using linear
interpolation. Gaussian filtering is applied prior to resampling.

1) Defining the ROI for the Optic Disc: Let V be a set of
intensity values v in a neighborhood of a vessel centerline point.
The intensity variance value σI

2(V ) is calculated as

σI
2(V ) =

1
NV

∑
v∈V

(v − µ(V ))2 (8)

where NV is the number of values in V and µ(V ) is the mean.
Single high-intensity variance values may also occur due to
noise, rapid illumination changes, and pathologies. Calculating
the average intensity variance effectively suppresses these single
peaks. This effect is demonstrated in Fig. 3. Let U be a set of
intensity variance values σI

2 in a neighborhood of a centerline
point. The average intensity variance σ̄I

2(U) is given by

σ̄I
2(U) =

1
NU

∑
σI

2 ∈U

σI
2 (9)

where NU is the number of values in U . The size of the square
neighborhood for variance and mean variance calculation is de-
fined by the expected diameter of the optic disc, which has
been empirically determined as 160 pixels for a composite im-
age and 120 pixels for a video frame, respectively. The lo-
cation of the highest average intensity variance value defines
the center of the ROI and its dimensions are s × s, where
s = 3 × “expected optic disc diameter”. This ensures that a suf-
ficiently large area around the optic disc is covered for Hough
transform application because the detected center of the ROI
is not necessarily close to the optic disc center, but may be
anywhere in the optic disc area.

Fig. 3. Illustration of the intensity variance and average intensity variance at
vessel centerline points. (a) Retinal composite image. The region identified is
depicted in (b) and (c). (b) Intensity variance at vessel centerline points. High
variance values are visible in the area of the optic disc, but in the region of
bright illumination near the image border as well. (c) Average intensity variance
at vessel centerline points. High average variance values occur only in the region
of the optic disc. Any high variance values in the region of bright illumination
are effectively suppressed.

2) Identifying the Optic Disc: The optic disc has an approx-
imately circular shape. The circular Hough transform is, there-
fore, a suitable method for identifying its center and radius in the
previously defined ROI. A circle in Hough space is represented
by

(x − a)2 + (y − b)2 = r2 (10)

where (a, b) is the center and r is the radius. The Hough trans-
form is directly applied to derivative values within the ROI. The
directional information of the intensity changes can thereby be
taken into account. It allows us to specifically look for a bright
circle on a darker background. The x-derivative values X are
obtained as follows:

X = I(x + 1, y) − I(x, y). (11)

The values for the y-derivative Y are obtained in an analogous
way. When the transitions from a dark vessel to the retinal back-
ground yield higher derivative values than the transitions from
the optic disc to the retinal background, a circle may falsely
be fitted between converging vessels during Hough transform
calculation. To prevent this, a binary vessel mask is generated
from the vessel centerline points. Each vessel centerline point is
expanded by replacing the single point by a square region with
the size of the detected vessel width at that point. Derivative val-
ues at locations covered by the binary vessel mask are excluded
for Hough transform calculation and, therefore, not taken into
account as part of a possible optic disc border. Furthermore, the
ROI boundary of the composite image is removed by defining a
background threshold.

In the Hough transform, each derivative value contributes a
circle of radius r to the accumulation space. The accumulation
space is a set of accumulators Ar each representing a circle
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Fig. 4. Illustration of the (a) x-derivative and (b) y-derivative of a bright circle
on darker background. (c) It shows how the x- and y-derivative values contribute
to a circle in accumulator space.

Fig. 5. Optic disc detection. (a) Retinal composite image with the labeled ROI
and the corresponding accumulator revealing the peak value. (b) Segmented
optic disc of a retinal composite image. (c) Retinal video frame with the labeled
ROI and the corresponding accumulator revealing the peak value. (d) Segmented
optic disc of a retinal video frame.

radius r. The accumulation space covers an optic disc radius
range of r = 40 ± 5 pixels for the downsampled composite im-
ages and r = 30 ± 5 pixels for the downsampled video frames.
To explicitly look for a bright circle, the circle is divided in four
regions according to [35]. In each region, the derivative values
contribute differently. For the X values, the circle is divided into
left and right regions. On the left side, high X values are needed,
since we are looking for a rising edge. On the right side, low X
values are required that represent a falling edge. For Y values,
the circle is divided into upper and lower regions (see Fig. 4).
The accumulators reveal a peak, where the contributory circles
overlap. Thus, the location of the highest value amax from all
accumulators is assumed to be the optic disc’s center (a, b). The
accumulator Ar , which contains amax , defines the optic disc’s
radius r. Detected optic discs are presented in Fig. 5.

D. Determining the Prealignment Matrix

After the optic disc is located in both modalities, a prealign-
ment step is performed. From the center (a, b) and radius r of the
optic discs, an initial scale and translation estimate is computed.

Fig. 6. Outline of the five incrementing matching regions for vessel point
matching.

The scale estimate is given by

S =
rR

rF
(12)

where rR is the radius of the optic disc in the composite image
and rF is the radius of the optic disc in the video frame. The
translation vector is computed by

T =
(

aR

bR

)
−

(
aF

bF

)
(13)

where (aR , bR ) are the coordinates of the optic disc’s center
in the composite image and (aF , bF ) are the coordinates of
the optic disc’s center in the video frame. From the scale and
translation estimates, a prealignment matrix Mpre is constructed
as

Mpre =
(

S 0
0 S

)
T =

(
S 0 tx

0 S ty

)
. (14)

This matrix is applied to the initial video frame to prealign it to
the composite image.

E. Matching of Vessel Centerline Points

The prealignment is refined by iteratively minimizing dis-
tances between vessel points of both images. This match-
ing procedure requires robust outlier handling to cope with
distance measures from missing or incorrect vessel points.
This can be realized by using the robust error function of an
M-estimator, which assigns appropriate weights to the distances
during the matching process. Vessel point matching is performed
in expanding matching regions until the entire video frame is
spatially aligned. As the matching region expands, the transfor-
mation model changes from affine to quadratic (second-order
polynomial). Expanding the matching region for vessel point
matching and refining the transformation model is a concept
presented in [10]. Overall, we define five matching regions
Rκ, κ = 1, . . . , 5, of increasing area. The initial region R1 is
formed around the optic disc center in the composite image,
which is already aligned with the optic disc center in the video
frame. The size of R1 is set to 2rR × 2rR . The regions grow
linearly up to R5 , which covers the entire video frame. Fig. 6
outlines the matching regions. The initial transformation matrix
M̂κ for each matching region Rκ is the final transformation
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estimate from the previous region. For R1 , the initial transfor-
mation matrix is M̂1 = Mpre . In matching region R3 , where the
transformation parameter estimate represents a good approxi-
mation to the global estimate, the transformation model changes
from affine to quadratic.

The affine transformation of a point p = (x, y) with transfor-
mation matrix M(θ) is defined as

(
x′

y′

)
= M(θ, p) =

(
θ11 θ12 θ13

θ21 θ22 θ23

) 


x

y

1


 (15)

and for a quadratic transformation model, the definition is(
x′

y′

)
=M(θ, p)=

(
θ11 θ12 θ13 θ14 θ15 θ16

θ21 θ22 θ23 θ24 θ25 θ26

)

×




x

y

1
x2

xy

y2




. (16)

Let P be the detected vessel centerline points of the composite
image and Q be the vessel centerline points of the initial video
frame. From the points in P, a distance map is calculated by ap-
plying the method described in [36]. The robust iterative point
matching procedure takes the point locations from Q that are
in the current matching region Rκ , applies the current transfor-
mation parameter estimate θt , and finds the closest centerline
point locations in P in the precalculated distance map. From the
resulting set of correspondences Ct = (pi, qj ), a new transfor-
mation estimate is computed by minimizing the robust objective
function

E(θt) =
∑

(pi ,qj )∈Ct

ρ(d(pi,Mt(θt , qj ))
σ̂

(17)

where Mt is the matrix that maps qj into the composite image, d
is the Euclidean distance, σ̂ is a robust scale estimate, and ρ is a
robust loss function of an M-estimator. Iterative reweighted least
squares (IRLS) is applied to minimize the objective function in
(17). IRLS includes alternating steps of calculating weights ωt

using the current transformation parameter estimate θt and cal-
culating new weighted least squares estimates of θ. These alter-
nating steps are repeated until the parameter estimate converges.
The weight function introduced is the Beaton–Tukey biweight
function [37], which allows an aggressive rejection of outliers.
The limit beyond which weights are set to zero is about 4σ̂ in
statistics. Mathematically

ω(u) = ρ(u)′/u =
{

(1 − (u
a )2)2 , |u| ≤ c

0, |u| > c
(18)

where u = (d(pi,M(θ, qj )))/σ̂ and c = 4. Estimation of error
scale σ̂ is done for each set of correspondences. At the start
of IRLS, a minimum unbiased scale estimator [38] is used to
construct an unbiased scale estimate from the k smallest out

of n absolute residuals εj = |d(pi,M(θt , qj ))|. As the IRLS
procedure iterates, σ̂ is defined by a robustly weighted rms [11]
given by

σ̂2 =

∑
j ωj ε

2
j∑

j ωj
. (19)

The iterative point matching is performed for each defined
matching region and the final registration matrix is given by
the matrix obtained from R5 . In Fig. 7, different stages of the
registration procedure are visualized.

III. EXPERIMENTAL ANALYSIS

All test data used for this study were recorded from outpa-
tient volunteers at the Ophthalmology Department coming for
a regular appointment (age 24–91 years, mean 60.2 years, 66%
male, 34% female). Fundus images of seven fields were acquired
using a VISUCAM NM/FA nonmydriatic fundus camera (Carl
Zeiss Meditec, Jena, Germany) with a 45◦ FOV. The built-in
mosaicing procedure was utilized to construct the composite
images. The resulting composite images vary in spatial resolu-
tion due to differences in image overlap and exclusion of single
images by the mosaicing procedure. The resolution along the
horizontal axis is between 1723 and 2171 pixels and between
1731 and 2027 pixels along the vertical axis, respectively, with
a pixel size of approximately 9.4 µm. Video data were cap-
tured with an SDO-A scanning digital ophthalmoscope (WILD
Medtec, Wien, Austria) connected to a standard digital cam-
corder. Each SDO video frame has a resolution of 720 × 576
pixels and a pixel size of approximately 12.5 µm. Most of the
video sequences were acquired in a red-free illumination mode.

The proposed registration procedure was applied to 35 com-
posite image/SDO video frame pairs covering a wide range
of image qualities and retinal pathologies. For 31 of the 35
pairs, well-aligned vasculature was observed when presented
in checkerboard overlay (88.5% successfully registered). The
registration of the remaining image pairs failed due to errors de-
tecting the optic disc. For three cases, the optic disc could not be
correctly identified in the SDO video frame, and for one case, the
optic disc could not be correctly identified in the composite im-
age. Some registration results are shown in Fig. 8. The accuracy
of the proposed registration method was quantitatively assessed
for each registered composite image/SDO video frame pair. Two
ophthalmologists and a researcher working in the field of oph-
thalmology were asked to manually select 10–15 corresponding
control points spread over the overlap area of the images. The
registration matrix estimated with our proposed registration pro-
cedure was applied to the control points of the SDO video frame.
A registration error for each image pair was given by the mean
Euclidean distance between the control points of the compos-
ite image and the transformed control points of the SDO video
frame (see Fig. 9). For each observer, the mean and standard
deviation of the registration errors was computed. The results
are presented in Table I. The total average registration error
obtained for the presented multimodal retinal registration algo-
rithm using a quadratic transformation model was 2.68 ± 1.62
pixels (approximately 25± 15 µm) The interobserver variations
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Fig. 7. Different stages of the proposed multimodal registration procedure. (a) Composite image and video frame displayed in the same coordinate system before
registration. (b) Prealignment using the optic disc. The video frame is translated and scaled, but misalignment of the vasculature is visible. (c) Registration result
after performing iterative vessel point matching in three matching regions with the affine transformation model. Small misalignments remain in the lower part of
the overlapping region seen in magnified view. (d) Final registration result with the quadratic transformation model. The vasculature in all regions appears well
aligned.

Fig. 8. Registration results. (a)–(d) Pairs of retinal composite images and SDO retinal video frames registered with the proposed multimodal registration
procedure. The registered SDO video frames are displayed as a checkerboard overlay onto the retinal composite images. The image pairs evaluated exemplify the
diversity of images encountered in clinics.
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Fig. 9. Mean registration error across all three observers for each of the 31
registered composite image/SDO video frame pairs is illustrated.

TABLE I
MEAN ± STANDARD DEVIATION OF THE REGISTRATION ERROR

IN PIXELS ACROSS 31 IMAGE PAIRS

were small and the accuracy results consistent. The presented
accuracy validation procedure is influenced by the ability of the
individual observers to correctly identify corresponding control
points with a software tool we provided. To quantify this in-
fluence, the average error in point placement was determined
which was found to be 0.8 pixels. The average computation
time required to register an SDO video frame to a segmented
composite image was approximately 1.2 s on a 2.4-GHz Intel
Core 2 Duo. The processing steps on the composite image are
performed in 5 s on average. The actual runtime depends on the
number of extracted vessel points, which relates to the density
of the vasculature. The current implementation in C++ has not
been optimized for speed. The algorithm was integrated into the
MARVIN medical research application framework [39].

IV. DISCUSSION AND CONCLUSION

To our knowledge, this is the first time a registration procedure
was specifically created for video frames acquired from an SDO.
Furthermore, we believe that this is the first time that the video
frame to reference registration for a computer-assisted retinal
laser treatment system was considered a multimodal problem.

The average registration error in this study was 2.68 pixels,
corresponding to approximately 25 µm in the composite im-
age domain. Our method is not directly comparable to other
methods, since there is no other validated registration proce-
dure involving SDO retinal video frames available. However,
we stated the registration errors of other retinal registration pro-
cedures to classify the range of our obtained accuracy. In doing
so, it has to be taken into account that the image characteristics
of the respective retinal images and the registration model differ
significantly. Difficulties that arise in our specific registration
task are scale differences, FOV differences, resolution differ-
ences, image noise, motion blur, nonuniform illumination, and
a nonlinear transformation model. Furthermore, it has to be con-
sidered that the composite images are the result of a mosaicing
procedure, which registers and fuses seven-field fundus images,
and may introduce additional distortions and artifacts. Ryan

et al. [13] reported an accuracy of 2.9 pixels rmse for the reg-
istration of pairs of color fundus photographs and angiograms
of 575 × 480 pixels using an affine transformation model. Can
et al. [9] estimated an average centerline error of 2.47 pixels
for an affine model and 0.83 pixels for a quadratic model after
landmark position refinement using pairs of 1024 × 1024 pix-
els fundus photographs. Lee et al. [26] obtained a centerline
error of 1.88 pixels for an affine transformation model with ra-
dial distortion correction applied to fundus image pairs with a
resolution of 598 × 512 pixels.

A discussion about accuracy has to clearly incorporate its
clinical relevance for a laser photocoagulation procedure. For
panretinal laser photocoagulation, where hundreds of laser spots
are placed in the retinal periphery, it is most important to achieve
an equal distribution of lesions. For treatments of the cen-
tral retina, accuracy and patient safety are paramount. In fo-
cal laser treatment, microaneurysms with a typical diameter of
20–100 µm need to be coagulated using a laser spot size of
50–200 µm [40]. A computer-assisted retinal photocoagulation
system should allow a planned spot on a microaneurysm to be
reproduced by the system in such a way that the microaneurysm
would be covered by the laser beam and can be successfully
coagulated. Our method fulfills this clinical demand.

Optic disc detection in retinal images is topic of extensive
research, but there is no established standard for successful op-
tic disc detection. The shape and the appearance of the optic
disc in clinical retinal fundus images varies significantly. If the
optic disc cannot be accurately identified, our registration pro-
cedure may fail. Potential causes of failure include: pathological
deformations, very low contrast between the optic disc and back-
ground, and a very bright optic cup within the optic disc. For
these cases, the Hough transform may incorrectly fit the circle.
To handle difficult clinical cases, we provide the ophthalmol-
ogist, in addition to the full-automatic registration procedure,
the option to semiautomatically detect the optic disc, which re-
quires very little intervention (one mouse click to identify the
optic disc center). The subsequent parts of the registration pro-
cedure are then executed automatically to perform an initial
spatial alignment.

Our method is sensitive to rotations, but generally rotations
in the image plane are small, since the patient’s head is con-
strained to an upright position for image acquisition and laser
treatment. Situations with large rotations have, therefore, not
been evaluated. The final transformation model in the regis-
tration procedure is the quadratic. Arbitrary distortions were
occasionally observed when applying this model to image pairs
with only a small overlapping region as demonstrated in [9],
[17], [26]. This phenomenon was not observed when testing
our registration procedure, because our test pairs have high
overlap.

As part of a retinal laser photocoagulation system to initialize
a real-time registration procedure, the method presented in this
paper needs to be sufficiently fast and further optimization of
the current implementation is required. Our intention is to im-
plement parts of our algorithm in CUDA, which allows parallel
computing in the graphics processing units. A first attempt to
implement the vessel point detection method in CUDA revealed
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a tenfold increase in speed. This confirms our opinion that sig-
nificant potential for further speed improvements remain.

We have introduced a new multimodal registration method
that registers the initial frame from an SDO retinal video se-
quence to a retinal composite image, which can potentially con-
tain a laser treatment plan. This method was designed to be used
within a computer-assisted retinal laser photocoagulation sys-
tem to initialize a real-time registration procedure, which may
use the segmented features from the composite image and the
spatial information obtained from the initial registration. The
algorithm demonstrated its capability to register various pairs
of SDO video frames and composite images acquired from pa-
tients with respectable accuracy. The registration procedure has
the potential to be modified for other retinal modalities. The
development of a real-time registration method to register the
subsequent video frames from a retinal video sequence to a
reference composite image is underway.
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