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Abstract
We present a method for supervised, automatic and reliable classification of healthy controls, patients
with bipolar disorder and patients with schizophrenia using brain imaging data. The method uses
four supervised classification learning machines trained with a stochastic gradient learning rule based
on the minimization of Kullback-Leibler divergence and an optimal model complexity search through
posterior probability estimation. Prior to classification, given the high dimensionality of functional
magnetic resonance imaging data, a dimension reduction stage comprising of two steps is performed:
first, a one sample univariate t-test mean difference Tscore approach is used to reduce the number of
significant discriminative functional activated voxels, and then singular value decomposition (SVD)
is performed to further reduce the dimension of the input patterns to a number comparable to the
limited number of subjects available for each of the three classes. Experimental results using
functional brain imaging (fMRI) data include receiver operation characteristic (ROC) curves for the
3-way classifier with area under curve (AUC) values around 0.82, 0.89, and 0.90 for healthy control
versus non-healthy, bipolar disorder versus non-bipolar and schizophrenia patients versus non-
schizophrenia, binary problems respectively. The average 3-way correct classification rate is in the
range of 70 − 72%, for the test set, remaining close to the estimated Bayesian optimal correct
classification rate theoretical upper bound of about 80%, estimated from the performance of the 1-
nearest neighbor classifier over the same data.
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I. Introduction
Given the limited accepted capability of genetics to diagnose schizophrenia [1]–[3], functional
magnetic resonance imaging (fMRI) is gaining importance and becoming a more widely used
innocuous technique with the potential to help diagnose schizophrenic patients, among other
neurological illnesses. There is great potential in the development of methods based on fMRI
as a biologically based aid for medical diagnosis, given that current diagnoses are based upon
imprecise and time consuming subjective symptom assessment. In this work, we propose a
machine learning method, to discriminate among three input classes, healthy controls (class 1,
HC), bipolar disorder (class 2, BI) and schizophrenia patients (class 3, SC) using fMRI data
collected while subjects are performing two runs of an auditory oddball task (AOD), a scanning
procedure that lasted about sixteen minutes for each subject. Initial feature extraction is
performed using group independent component analysis (ICA), which is a data-driven
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approach which extracts maps of regions that exhibit intrinsic functional connectivity (temporal
coherence) [4]. Based upon previous studies, we selected two independent components on
which to evaluate our approach: the default mode network (DMN) and the temporal lobe. Since
our aim is to obtain the complete receiver operation characteristics (ROC), and not only a single
point in the ROC curve in terms of specificity and sensitivity values, we use a pattern
recognition system with soft output score values. Thus our approach is based on designing four
different learning machines with effective generalization capabilities using the minimization
of the cross entropy (CE) cost function (Kullback-Leibler divergence) [5], [6] with a
generalized softmax perceptron (GSP) neural network (NN) [7]. We use a recently developed
model selection algorithm based on the estimation of the posterior probabilities called the
posterior probability model selection (PPMS), and three cross validation (CV) based
exhaustive NN complexity model selection algorithms: called CV with weight decay, the
Akaike's information criterion (AIC) [8], and the minimum description length (MDL),[9],
[10]. Hence we present a methodology to automatically and objectively discriminate between
healthy controls, bipolar disorder, and schizophrenia patients. The challenges one faces in the
use of fMRI for classification are twofold: first one is the high dimensionality of the input
feature space, and the second one is the reduced sample set size available. For the purpose of
medical classification, it is especially desirable to use probabilistic Bayesian classifiers since
they can provide a probabilistic estimate of the decision certainty one is making. Special
emphasis is given to the methodological part of this study, aiming to present an automatic end
to end system as complete as possible that enables one to obtain discriminative results for
patients and controls. Thus, we opted for four soft output learning machines that enable us to
compute ROC and AUC: PPMS, CV, AIC and MDL. The same data set has been previously
used in [11] comprising 25 healthy controls (originally 26 but one removed since proved to be
an outlier after the SVD dimensionality reduction step), 14 bipolar disorder patients and 21
schizophrenia patients. In order to obtain good generalization over the test set, there is need
for a significant dimensionality reduction. We propose a two step dimension reduction
procedure based on a first group mean functional activation level difference thresholded score
procedure, followed by an SVD decomposition selecting the main singular values of input data
matrix similar to conventional principal components analysis procedures. There are a number
of differences between this paper and [11]:

• Here, a machine learning system is proposed, whereas in [11] a simple yet usually
effective closest neighbor approach was used. Supervised machine learning based
systems have the advantage of being fully automatic, among other advantages, and
can perform incremental learning when new input samples are available for training.

• In this work, soft output classifiers are proposed rather than hard output decisions
used in [11]. This way, one has the advantage of being able to properly estimate the
ROC curves and AUC by varying soft decision threshold. In [11], only a particular
point in the ROC curve was reported, giving both specificity and sensitivity values
for the 3-way full classification. Nevertheless, in [11], a hard 3-way decision was
used, and the threshold was on the intensity of the difference images and thus was
continuous (not hard), although as previously noted only one single point in the ROC
curve was reported.

• By using soft output learning machines, we are also able to estimate posterior
probabilities with PPMS algorithm, and at the same time, can estimate optimal neural
network size during the learning phase, by methods such as pruning, splitting and
merging neurons.

• PPMS has advantages over other previous model selection approaches, such as CV,
and the use of information theoretical criteria, as discussed in [7]. Specifically, PPMS
does not require a cross validation step, thus significantly reducing the amount of time
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needed for validation and also leaving a higher number of input samples available for
training and testing.

• Here, we report the complete 3-way classifier confusion matrices as hard output
decisions, not given in [11] and from those matrices we draw a number of conclusions.

• Finally, in this paper, the input samples are divided into training, validation, and
testing sets, with the exception of PPMS, which only needs training and testing sets
as explained above, while in [11] a leave-three-out strategy was used. It is convenient
to avoid the use of the leave-three-out strategy since the number of input samples is
often not sufficiently large.

The remainder of the paper is organized as follows: in Section II, we describe the fMRI data
we use. In Section III we give an end-to-end overview of our approach for the use of fMRI
data to classify participants into healthy controls, those with bipolar disorder and schizophrenia,
including the voxel selection procedure. In addition, in Section III, soft output probabilistic
machine learning architecture and algorithms are introduced, as well as the supervised machine
learning framework. In Section IV, we present both soft and hard output classification results,
based on estimating the ROC curves with AUC and confusion matrices, including CCR as a
particular case. Finally in Section V, we briefly discuss the results previously shown and
conclude.

II. Materials
We used a real fMRI data set consisting of AOD scans collected from participants who provided
written consent and were compensated for their participation. All subjects were scanned for
sixteen minutes during two runs of the AOD protocol, [12]. The study of schizophrenia patients
with fMRI is becoming widespread, see for instance [13] for a comprehensive review, and
more recently [14], [12], among others. Participants in this study included 25 healthy controls,
14 with bipolar disorder, and 21 with schizophrenia (60 in total), using an fMRI compatible
sound system (Magnacoustics) with a fiber-optic response device (Lightwave Medical,
Vancouver, Canada), [11], [12]. Scans were acquired at Hartford Hospital, CT, US, with a
General Electric 1.5 T scanner. Functional scans consisted in two runs of gradient-echo echo-
planar scans, with TR=3 s, TE=40 ms, FOV=24 cm, matrix = 64 × 64, slice thickness = 5 mm,
gap=0.5 mm, and with 29 2-dimensional slices, over an 8 min and 20 seconds period for a total
of 167 scans per run.

III. Methodology
A. Preprocessing and System Overview

The input to our system are the fMRI scans over time during the AOD task for each of the 60
subjects, each subject with two scanning sessions of about 6 minutes each over the GE scanner,
and the outputs are the classification of subjects in one of the three possible classes, healthy
controls (HC), those with bipolar disorder (BI) or schizophrenia (SC). It is worth noting that
the fMRI slices had to go through a preprocessing stage, which we summarize next. Data were
preprocessed using the SPM2 software (http://www.fil.ion.ucl.ac.uk/spm/software/spm2/).
Data were motion corrected, spatially smoothed with a 10 mm3 full width at half-maximum
Gaussian kernel, spatially normalized into the standard Montreal Neurological Institute space,
and then coordinates were converted to the standard space of Talairach and Tournoux. During
spatial normalization, the data acquired at 3.75 × 3.75 × 5.5 mm3 were resampled to 4 mm3,
resulting in 40 × 48 × 34 voxels. Dimension estimation, to determine the number of
components, was performed using the minimum description length criteria (MDL), [9], [10]
modified to account for spatial correlation [15]. Data from all subjects were then concatenated
and this aggregate data set were reduced to 25 temporal dimensions using PCA, followed by
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an independent component estimation using the Infomax algorithm [16]. To gain some insight
into the fMRI automatic schizophrenia classification system, in Fig. 1 we depict the system
block diagram. Given that the number of subjects is rather limited (60 subjects), and since the
number of manipulated variable is rather high, there is an absolute necessity to reduce the
dimensionality of input data through a double data reduction step, including first an
independent component analysis followed by a singular value decomposition step.

B. Input Feature-Space Definition
One of the most robust functional abnormalities in schizophrenia manifests as a decrease in
temporal lobe amplitude of the oddball response in event-related potential (ERP) data [13],
[17], [18]. Similar findings have been shown for fMRI data as well, again particularly in
temporal regions [12]. In [19], authors replicated earlier work in schizophrenia patients,
showing a lack of deactivation of superior temporal regions which was independent of memory-
task performance, possibly reflecting a core abnormality of the condition. More recently,
discriminating schizophrenia from healthy control subjects with 94% accuracy using coherent
temporal lobe fMRI activity was reported [20]. Next, we define our input feature-space based
on two independent brain components, believed to play a important role in discriminating
schizophrenia: the temporal lobe and the default mode network (DMN). There has been
evidence showing temporal lobe volume reductions in bipolar disorder, although the findings
are less consistent in schizophrenia [3]. There is also work on ERP showing decreases in P300
amplitude during the auditory oddball task in bipolar disorder. In summary, the temporal lobe
brain network appears robust, identifiable, and includes brain regions which are thought to be
relevant to both disorders. Default mode network regions are proposed to participate in an
organized, baseline default mode of brain function that is diminished during specific goal-
directed behaviors [21]. The DMN network, on the other hand, has been implicated in self
referential and reflective activity including episodic memory retrieval, inner speech, mental
images, emotions, and planning future events [22] and recently in the level of connectivity and
activity inside the brain neural network [23]. It is proposed that the default mode is involved
in attending to internal versus external stimuli and is associated with the stream of
consciousness, comprising a free flow of thought while the brain is not engaged in other tasks
[24]. There has been evidence implicating parietal and cingulate regions that are believed to
be part of the DMN in both bipolar disorder and schizophrenia [12] recently showing
differences in the default mode in patients with schizophrenia [25]. The default mode network
and temporal lobe brain components, both believed to be of importance when diagnosing
schizophrenia, were extracted following a group spatial ICA procedure [26], [4] with the Group
ICA of fMRI Toolbox (GIFT) (http://icatb.sourceforge.net/). The mean of both AOD session
scans was performed. It is worth noting that the advantages of using an ICA approach in noisy
fMRI scans have been widely studied in recent years, see for instance [4] and [27]–[29]

We selected fMRI voxels by thresholding the Tscore differences of classes X and Y where X
and Y included either healthy HC, bipolar BI or schizophrenia SC, classes:

(1)

where ηX,  and ηY,  are the mean and variance estimated values of fMRI functional
activation levels of class portions X and Y respectively, and nX and nY the number of i.i.d.
samples (voxels) of portions X and Y that are compared through a t-test for statistical
significance. Thus we select fMRI volume voxels that exceeded a determined Tscore
thresholding level, typically selected as Tscore = 4.
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Next, we show the resulting fMRI volumes for both DMN and temporal lobe brain ICs, for the
three classes. In Fig. 2, we show the thresholded independent components for the DMN and
the temporal lobe components, for healthy controls, those with bipolar disorder and
schizophrenia, respectively, estimated using group ICA [26] in GIFT,
(http://icatb.sourceforge.net/).

C. Input Space Dimension Reduction by Singular Value Decomposition
Under some circumstances, e.g, in ill conditioned problems, a singular value decomposition
(SVD) for dimension reduction, may be more desirable than using PCA based on eigenvalues
of the input data covariance matrix, , since in that case the dimension of X would always be
much smaller than the dimension of the estimate of covariance matrix XT X. If this is the case,
the singular values of X, λi, can be better estimated than the corresponding eigenvalues . It
can be shown that the SVD of input data fMRI matrix X can be written as:

(2)

where in our case the number of input database subjects is 60, v is the number of active voxels
after the Tscore step in (1), t-test difference thresholding procedure (typically for Tscore = 4, v
= 1400, which results from concatenating the features from the DMN and Temporal Lobe
independent components), U60 × 60 is usually called the hangers matrix, S60 × 60 the stretchers
diagonal matrix with the singular values λi in main diagonal elements, and Vv × 60 is the so
called aligners matrix. After performing this decomposition, dimension reduction can be easily
computed in terms of the new orthogonal database spanned by Vv × 60 , using:

(3)

where d is the desired reduced output dimensionality for each input subject, Vv × d an orthogonal
base matrix; This way  represents now the new input data components in that new
orthogonal base up to the reduced economy new desired dimensionality d after SVD, always
smaller than the original v input dimension of X60 × v after applying the Tscore stage, thus in
fact performing a dimension reduction.

D. Neural network architecture: Generalized Softmax Perceptron
Consider the labeled input sample set with N samples, including both input vectors and labels
for supervised learning  where  is an observation vector and
dn ∈ UL = {u0,..., uL−1 is an element in the set of possible L target classes, also called the class
label dn indicating to which class the input observation sample vector xn belongs. Class-i label
is an L-dimensional unit vector with components uij = δij , i.e., the Kronecker delta function,
every j component is equal to 0, except the i-th component which is equal to 1.

In this paper, we use a neural architecture based on the soft-max nonlinearity, which guarantees
that outputs satisfy probability constraints. In particular, output yi corresponding to class i is
given by

(4)

where
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(5)

and

(6)

for i = 1,..., L and j = 1,..., Mi, where yij is the soft output of network for subclass j in class i,
yi is the class i network soft output, wij is the synaptic NN weight vector for class i and subclass
j, L is the number of classes, Mi is the number of subclasses within class i, same for Mk, and
x is the input sample. This network, which is called the generalized softmax perceptron (GSP)
can be easily shown to be a universal probability estimator [7], in the sense that it can
approximate any posterior probability map P(di|x) with arbitrary precision by increasing the
number Mi of linear combiners per class [30].1. Outputs yij can be interpreted as subclass
probabilities, where Mi is the number of subclasses within class i. By the term subclass, we
refer to a part of a class, hence classes are composed of several subclasses whose outputs are
obtained by the addition of several subclass outputs belonging to the same class.

E. Complexity Model Selection and Cost Function Regularization
In [31], it is shown that any cost function providing posterior probability estimates, called strict
sense Bayesian (SSB), can be written in the form

(7)

where vector d includes the input sample desired hard outputs di (i.e., the class labels) belonging
to the previously defined UL set, vector y includes all L class network outputs which in turn
use an SSB cost function for training, where y should be the posterior class probability estimates
of an input sample x to belong to each of the L output classes. At the same time, h(y) is any
strictly convex function in posterior probability output space , which can be interpreted as
an entropy measure. In fact, the formula comprises also a sufficient condition: any cost function
in this way provides probability estimates, [31]. The selection of an SSB cost function for a
particular situation is an open problem. This work is based on the CE SSB cost function, defined
as follows:

(8)

obtained from (7) by using the definition of the Shannon entropy  and

the probability constraint , thus we can omit the term . This choice is
justified for two main reasons: first, the − CE has shown several advantages over other SSB

1A part of multinomial logit model for statisticians, which in turn are a special case of the generalized linear models introduced by
McCullagh. After the soft decision we would eventually have a hard decision based on a WTA structure, so the winner class obtains an
activated output set to 1, and the other classes get a deactivated output 0.
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cost functions, such us the square error (SE) cost function [32]–[34], and second, the
minimization of the CE is equivalent to maximum likelihood (ML) estimation of the posterior
class probabilities, [35]. Hence, large sample type arguments can be involved for steps such
as order selection.

The problem of determining the optimal network size, also known as the optimal model
selection problem, is in general difficult to solve [36]. The selected architecture must find a
balance between the approximation power of large networks and the usually higher
generalization capabilities of small networks. One can distinguish between pruning and
growing algorithms, [37], or algorithms based on adding a complexity penalty-term to the
objective function, for instance: weight decay (WD) [38], or the algorithms based on
information theoretic criteria such as Akaikes information criterion (AIC)2 [8], [6], and the
minimum description length (MDL), [9], [10] criteria. In all the approaches, complexity is
evaluated upon minimizing a total cost function Ct which is composed of two distinctive terms:
an error term plus an additional complexity penalizing term,

(9)

where C is the standard error term or cost, e.g., the empirical risk based on SE, the CE or any
SSB cost function in (7), w are the network weight vectors, and Cc is the complexity
penalization term. Note that the dependency on network weights w and training sample set 
has been made explicit in this formula. Function Cc(w) penalizes the complexity or size of the
network and depends on the model (weights w) since the input sample size  will be
fixed for a given input sample set . Variable λ in (9) can be understood as a regularizing
parameter following Tikhonov theory, [41], which helps to weight the relative importance or
of both terms.

The difference among model selection algorithms resides in the complexity penalizing term.
In particular, the second term on the right hand side of (9) takes the following values for CV
with weigh decay, AIC and MDL strategies, since PPMS does not need this complexity penalty
term definition, [7], [42]:

(10)

where  stands for the 2-norm,  represents the dimension of parameter space 
spanned by NN weight vectors w, i.e., the number of neural network weights roughly speaking,
and  the dimension of input sample set space previously defined, , that is the number
of input samples.

While, by hypothesis, the number of classes L is fixed and assumed known (L = 3 is the problem
at hand) and class labels are available a priori, the number of subclasses Mi inside each class
is unknown and must be estimated from samples during training. A high number of subclasses
may lead to data over-fitting, a situation in which the cost averaged over the training set is
small, but the cost averaged over a test set with new samples is high. In addition to the three
above mentioned CV-based complexity search supervised learning algorithms, CV, AIC and
MDL, we examine all possible network complexities starting from {M1, M2, M3} = {1, 1, 1}

2AIC was originally developed by Akaike for linear systems, but there exist new versions for nonlinear approaches, such as the network
information criterion (NIC), see [39], [40] and [5].
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up to {4, 4, 4}, where M1 is the number of estimated subclasses in the first healthy control class
(HC), M2 the number of subclasses in the second bipolar disorder class (BI), and M3 the
estimated number of subclasses in the third schizophrenic class (SC). Hence for L = 3, that is
a total of 64 different network complexities. Thus, we apply a recently proposed algorithm to
determine the GSP optimal complexity while in the learning phase without using any CV
techniques. The algorithm is called the posterior probability model selection (PPMS)
algorithm, [7], and belongs to the family of growing and pruning algorithms [37]: starting from
a pre-defined (random) architecture structure, subclasses are added to or removed from the
network during supervised learning according to needs. PPMS determines the number of
subclasses by seeking a balance between generalization capability and learning toward minimal
output errors.

F. Stochastic gradient descent learning rule for GSP architecture and CE cost function
Next, we derive the gradient descent supervised learning rule for the cross entropy, cost
function (8) in a GSP network architecture, which was used in obtaining all the classification
results from the fMRI 3-class real database. The learning rule can be written as follows:

(11)

where yij is subclass ij network soft output, yi class i network soft output, di the desired hard
output for class i (supervised learning class labels), L is the number of output classes in GSP
network, (4), wij is the weight vector belonging to subclass j and class i, Mi is the number of
subclasses within class i, x is a vector input data sample, n represents the n-th algorithm iteration
and ρ is the learning rate parameter, which is initialized to ρ0 and subsequently decreased as
specified in Section IV. The derivation of the updates in (11) are given in the Appendix.

IV. Results
The experiments presented were carried out using Matlab on a general purpose machine
running Linux. In our problem, L = 3, that is, we have three classes: healthy controls (HC, class
1), patients with bipolar disorder (BI, class 2) and schizophrenia patients (SC, class 3). The
input data fMRI voxels were selected as indicated previously, using the difference t-test
Tscore = 4, (1), over the six mean difference pairwise images from the three existing classes,
and for the two brain estimated group ICA independent components, DMN and temporal lobe.
The SVD step is performed for dimension reduction, with an optimal number of SVD
components set equal to d = 10, a value that provides a reasonable tradeoff for the input
dimension of classifiers learn from the limited number of input subjects in this dataset, (3).
Both the Tscore and SVD output dimension d optimal values for this database were empirically
cross validated.

The simulation parameters and details follow next. We separated the input data to three disjoint
groups: training set, with ne = 40 randomly chosen subjects, validation set with nval = 10 random
subjects (used only for CV-based approaches, that is, CV, AIC and MDL) and test set, with
ntest = 10 random subjects, where all sets are disjunct and total 60 subjects. In order to reduce
effects of noise in the data and to obtain statistically meaningful results, experiments where
repeated ncic = 200 times independently, and in each run, both the initial NN complexity
estimate of PPMS and the NN weights of all supervised learning machines were randomly
initialized as well as the members in the training, validation and test sets. Thus all ROC, AUC
and confusion matrices results shown in this section comprise a total of 200 × 10 = 2000 test
random samples, same samples for all 4 supervised (class labels available) learning machines
over the 200 simulations repeated, randomly chosen in each simulation. The number of classes
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was set to L = 3, initial learning rate ρ0 = 0.995, see (11), learning rate reduction parameter
with time (iteration number) τ = 25, thus implying a halving of the initial learning rate ρ0 each
τ learning input patterns, number of runs to average in all 4 learning machines was set to ncic
= 200. For PPMS algorithm, the three prune, split and merge thresholds were initialized as
follows: μprune = 0.09, μsplit = 0.25, μmerge = 0.1 All these three thresholds were increased/
decreased each time an split/prune operation took place, respectively, [7]. For cross validation
based CV, AIC and MDL cases, Tikhonov regularization parameter was initially set to λ0 =
0.08, with a minimal CV-based network complexity number of subclasses of

 and a maximal CV-based network complexity number of

subclasses of . The nval = 10 validation sample set was used to
select among the CV exhaustive NN optimal complexity starting from complexity {1, 1, 1} up
to {4, 4, 4}, thus running 64 repeated CV runs each time, being not that case under PPMS
algorithm as previously mentioned. The average complexity for the four algorithms studied
are as follows: CPPMS = {4.16, 2.43, 3.11}, CCV = {2.86, 2.03, 1.78}, CAIC = {1.60, 1.36, 1.29},
and CMDL = {1.56, 1.33, 1.28}.

A. Soft decisions: Receiver Operation Characteristic for 3-way classifiers with AUC estimates
To provide a general performance metric that yields a single specificity-sensitivity value for
each binary problem, we plot and compute both the ROC curves and AUC values for each set
of binary problems, where in the latter case, an optimal classifier is easily identified as one in
which its AUC is the unit value. Note that no training was carried out for the 2-way classifier,
hence the classifier is always a true 3-way classifier although binary ROC analysis only
involves two different classes at a time. To do so, we need to have the soft output classifier
scores. The way to compute the ROC is quite straightforward for the NN classifier. Once we
have the soft outputs in the range {0,1} as estimates of the posterior class probabilities for each
of the three classes (healthy, bipolar and schizo), we vary the output classifier decision
threshold for each input sample in the test set. The decision threshold should be varied in the
range {0,1} so as to move from the point (0,0) to the point (1,1) in the false positive ratio (FPR),
true positive ratio (TPR) plane, (FPR, TPR), or equivalently moving from point (1,0) to point
(0,1) in the (1-specificity, sensitivity) plane. Thus, in our case this is a straightforward
procedure since we record also the soft classifier outputs (score) just before the winner takes
all (WTA) hard decisions. This way, moving through the ROC curve in the (1-specificity,
sensitivity) plane, we can report various specificity-sensitivity values of the classifiers rather
than a single pair. The test set for computing the confusion matrices is the same as the one
already defined, consisting of ncic = 200 independent runs after random initialization of
networks weight (and initial complexity for the PPMS case) 10 randomly picked sample test
sets, totaling 2000 test samples, were computed in order to obtain statistically significant
results.

In Fig. 3, we display the healthy vs. non-healthy (class 1 vs. union of class 2 and 3) binary
ROC and AUC values, for PPMS, CV, AIC and MDL, while the corresponding ROCs and
AUC values for the bipolar vs. non-bipolar case are depicted in Fig. 4. The schizophrenia vs.
non-schizophrenia comparison is given in Fig. 5. Taking into account both the rather simple
voxel selection procedure, and the extremely high dimensionality of each input sample,
together with the fact that the number of subjects in each class is rather limited, the results can
be considered to be very encouraging for the discrimination task. In addition, the AUC values
in test set for 200 (ncic) independent runs each with 10 test samples, totaling 2000 test samples,
for each of the 3 binary classification problems HC, BI, SC and for all 4 learning machines,
PPMS, CV, AIC and MDL, can be found in Table IV-A.

Arribas et al. Page 9

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2010 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



It looks clear that the greatest discriminative power is obtained in the schizophrenia vs. non-
schizophrenia binary paradigm (AUCSC in the range of 0.90, Fig. 5), with some advantage over
the second discriminative power in the bipolar vs. non-bipolar problem (AUCBI about 0.89,
Fig. 4) and a finally the healthy vs. non-healthy case (AUCHC about 0.82 approx., Fig. 3). The
ROC curves suggest that the classifiers have more trouble in either properly discriminating
healthy controls and/or bipolar subjects.

The best average performance in terms of AUC values corresponds to the MDL classifier,
closely followed by the AIC classifier and then followed by the CV one. The worst classifier
is the PPMS although by a narrow margin, and also one has to take into account that the first
three above mentioned learning schemes performed an exhaustive CV-based search for the
optimal NN complexity, while PPMS finds the optimal model selection automatically while
in the learning phase and from the estimates of the posterior class probabilities at output, thus
being much less computationally expensive. As seen from the three binary classification tasks,
the differences in the classifiers are not significant.

B. Hard decisions: Confusion Matrices and the Correct Classification Rate
In addition to ROC and AUC analysis shown above, we also compute the correct classification
rate (CCR) for the particular classifier decision threshold obtained after training phase, over
the test set. To that end, we compute the 3 × 3 confusion matrices for each of the four classifiers,
PPMS, CV, AIC and MDL, which includes also the external row and column CCR as a
particular case. The test set for computing the confusion matrices is the same as the one already
defined, consisting of ncic = 200 independent runs after random initialization of networks
weight (and initial complexity for the PPMS case) 10 randomly selected sample test sets,
totaling 2000 test samples.

In Fig. 6(a), we show the confusion matrix for the PPMS algorithm over the test set, being
again the worst one in average terms, but by a narrow margin. In Figs. 6(b), 6(c) and 6(d) we
show the confusion matrices for the CV, AIC, and MDL algorithms, respectively, over the test
set. An initial conclusion upon observing the four confusion matrices is that despite the small
differences among the performance of the classifiers, there is a general tendency in the four
classifiers to behave consistently, all achieving a CCR slightly above 70% in the 3-way
classification, and in terms of the CCR the best performer is AIC, closely followed by MDL,
then CV and finally PPMS continues to be the worst classifier though a direct comparison
using the ROC curves cannot be done for the reasons already explained.

Next, we use the 1-nearest neighbor (nn) classifier to estimate the upper bound CCR for the
optimal classifier given the intrinsic entropy of input data. Let us follow equations number
(4.39) and (4.52) in [43], where authors define P as the probability of classification error for
the k-nearest neighbor classifier, and P* as the probability of classification error for the optimal
Bayesian classifier. Given the fact that the correct classification probability (CCR/100) for the
k-nearest neighbor classifier can only be estimated as 1 − P since we always have a finite
number of samples in real experiments, and also given that usually the minimum error
achievable by the optimal Bayesian classifier P* is small, we can omit the higher order term
in the equations given in [43]. Thus, the bounds for optimal P* will be given by:

(12)

where nn subindex stands for the simple 1-nearest neighbor classifier, opt subindex stands for
the optimal classifier, r = CCR/100 is the mean correct classification normalized to unity, thus
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1 − r = (100 − CCR)/100 is the normalized classification error. For our  fMRI input data,
we estimate 1 − P = rnn = 0.602 so following the upper bound equation in (12) we end up with
an estimate for the upper bound optimal Bayesian classifier correct classification value of 0.602
≤ ropt = 1 − P* ≤ 0.801, thus leading to 60.2% ≤ CCRopt ≤ 80.1%. Hence we can conclude that
our GSP NN based classifiers CCR results given in Section IV-B are rather close to the
estimated optimal Bayesian upper bound for CCR for the data at hand.

It is also worth noting that, looking at the elements of the confusion matrix in positions
(row,column) = (1,2) is particularly meaningful in relative terms, as well as (3,1), in absolute
terms (taking into account the total number of input samples in each class), since a relatively
high number of bipolar subjects are being classified as healthy ones, and in absolute terms a
high number of healthy subjects are being classified as schizophrenic, consistently for the four
classifiers. This is clearly the reason for the poor performance in the binary healthy vs. non-
healthy paradigm classification results, by far the worst ones, and should be taken into account
in future studies to further improve the classification accuracy. Finally, the opposite situation
holds in elements (2,3) and (3,2) of the four confusion matrices, meaning that the classifiers
accurately discriminate between the bipolar and schizophrenic subjects, and in relative terms
also between healthy and schizophrenic subjects. The fact that the automatic classifications
are accurate between bipolar and schizophrenia subjects is worth emphasizing, since it is
difficult to physicians to clinically differentiate bipolar and schizophrenia as these two might
have overlapping symptoms. In summary, PPMS should be preferable when low computational
cost is desired, whereas MDL (or AIC) should be the one to choose especially when a high
number of input samples are available.

V. Conclusions
We have proposed a machine learning based system, fully automatic and potentially able to
perform incremental learning by defining three disjoint training, validation and test sets,
including soft output posterior probability estimates and model complexity selection. The
method allows one to provide full 3-way classification confusion matrices (CCR and errors
among the three classes) from hard decisions and ROC and AUC values from soft outputs.
PPMS has several advantages over its partners, such as the possibility of estimating the optimal
network size while learning phase (no need to define an arbitrary Cc penalty term in the cost
function). It also does not need a validation set since no cross validation phase is needed, thus
it is computationally more attractive and can achieve a similar performance in terms of CCR
and AUC, only slightly below those of CV, AIC, and MDL. Through the experiments proposed
over the real brain imaging data, we have shown the promising generalization capabilities of
the four objective and automatic learning machines to 3-way classify between healthy controls,
those with bipolar disorder and schizophrenia. The mean AUC values were near 0.9 and CCR
over 70% for 200 independent runs including 2000 test samples to reduce noise and for
statistical significance purposes. CCR values are in turn close to the estimated optimal correct
classification (CCRopt) upper bound of around 80% for this data for the 1-nearest neighbor
classifier, over the whole test set. There is an obvious trade-off between speed and accuracy,
and in addition, we have provided the guidance on selecting an optimal classifier for a given
problem. Even though the differences observed among the classifiers were not significant, we
note the following: PPMS is preferable for low computational cost in real-time systems,
whereas either MDL or AIC should be the ones to choose particularly when a high number of
input samples are available. More powerful feature selection algorithms could be also
investigated to see if they provide an additional classification accuracy gain. The small number
of subjects used in the study is an important limitation of the present work, and it is desirable
to extend the database to include more subjects in future studies. Also, it remains an open
problem to understand the reasons behind a relatively high number of errors between the
healthy controls and bipolar disorder subjects, as the classifiers are able to discriminate between
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the bipolar and schizophrenic subjects more reliably. This last result is worth emphasizing
since it is quite difficult to physicians to clinically differentiate bipolar disorder and
schizophrenia subjects because of the overlapping symptoms in the two. Further investigations
about the existence of a possible preferred higher discriminative either temporal lobe or DMN
independent components are also worth investigating. It may be also helpful to use tools such
as the Matlab Prtools toolbox (http://www.prtools.org) and to study the performance using
other pattern classification approaches.
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Appendix

Derivation of the stochastic gradient descent learning rule for the GSP
architecture and the Kullback-Leibler divergence (CE cost function)

We derive the gradient descent learning rule applied to CE, see (8), cost function in the GSP
architecture. The adaptation rule is based on computing the gradient of an SSB cost function
with respect to the weight vector:

(13)

where wij is the weight vector belonging to subclass j and class i, Mi is the number of subclasses
within class i, see (4), x are input samples, n represents the n-th algorithm iteration and ρ is the
learning rate parameter.

When we define the GSP nonlinearity using (4), we have

(14)

Using the chain rule

(15)

Using (6),

(16)

where δk−i represents Kronecker delta function, equal to 1 if and only if k = i. Therefore,
replacing (16) in (15), we obtain,

Arribas et al. Page 12

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2010 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.prtools.org


(17)

Using (5), partial derivatives can be computed as follows,

(18)

Using (14), (17) and (18), (13) becomes

(19)

Using the CCE definition given in (8) we have

(20)

and, thus, the learning rule becomes:

(21)

where remember that di is the i-th component of input sample label vector d ∈ UL, and which
is the stochastic rule for CE cost and GSP NN that was used in the learning phase. Finally, in
the particular case of a GSP network with a single subclass per each class, softmax network,
then previous equation becomes

(22)
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Fig. 1.
Automatic fMRI Bayesian classification system block diagram for 25 healthy controls (HC,
class 1), 15 bipolar disorder (BI, class 2) and 21 schizophrenia (SC, class 3) patients. The tools
used as well as the dimension of data are indicated outside the corresponding system block
boxes.
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Fig. 2.
DMN and Temporal lobe group ICA mean spatial maps for healthy controls (HC), bipolar
disorder (BI), and schizophrenia (SC) class subjects. Ordered from left to right, and top to
bottom: (a) DMN HC, (b) DMN BI, (c) DMN SC, (d) Temporal HC, (e) Temporal BI, and (f)
Temporal SC. Images were thresholded (Tscore = 4).
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Fig. 3.
3-way classifier Receiver Operation Characteristics and AUC for the healthy vs. non healthy
controls (HC) binary problem (test set) for ncic = 200 independent random runs with 10 samples
in test set, totaling 2000 test samples.
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Fig. 4.
3-way classifier Receiver Operation Characteristics and AUC for the bipolar vs. non bipolar
disorder (BI) binary problem (test set) for ncic = 200 independent random runs with 10 samples
in test set, totaling 2000 test samples.
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Fig. 5.
3-way classifier Receiver Operation Characteristics and AUC for the schizophrenia vs. non
schizophrenia patients (SC) binary problem (test set) for ncic = 200 independent random runs
with 10 samples in test set, totaling 2000 test samples.
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Fig. 6.
3-way classifier learning machines 3 × 3 confusion matrix including CCR, computed over 2000
test samples: (a) PPMS, (b) CV, (c) AIC and (d) MDL. The estimated class is given in rows
and the true class in columns; class 1 healthy controls (HC), class 2 bipolar disorder (BI), class
3 schizophrenia (SC). ncic = 200 independent random runs with 10 samples in test set, totaling
2000 test samples.
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TABLE I

3-way classifier Area Under the Receiver Operation Characteristic curves (AUC) over the test set for PPMS,
CV, AIC and MDL learning machines. healthy versus non-healthy (HC), bipolar versus non-bipolar (BI) and
schizophrenia versus non-schizophrenia (SC) binary problems. nCIC = 200 independent random runs with 10
samples in test set, totaling 2000 test samples.

AUC PPMS CV AIC MDL

HC vs. non-HC 0.807 0.815 0.820 0.819

BI vs. non-BI 0.878 0.890 0.887 0.887

SC vs. non-SC 0.885 0.899 0.901 0.902
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