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Abstract
The current gold standard to determine intracranial pressure (ICP) involves an invasive procedure
for direct access to the intracranial compartment. The risks associated with this invasive procedure
include intracerebral hemorrhage, infection, and discomfort. We previously proposed an
innovative data mining framework of noninvasive ICP (NICP) assessment. The performance of
the proposed framework relies on designing a good mapping function. We attempt to achieve
performance gain by adopting various linear and nonlinear mapping functions. Our results
demonstrate that a nonlinear mapping function based on the Kernel Spectral Regression technique
significantly improves the performance of the proposed data mining framework for NICP
assessment in comparison to other linear mapping functions.
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I. Introduction
An accurate determination of intracranial pressure (ICP) is valuable for the diagnosis and/or
management of a wide variety of neurological disorders. The current gold standard involves
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an invasive procedure (surgical penetration of the skull) for direct access to the intracranial
compartment. The risks associated with this invasive procedure include intracerebral
hemorrhage, infection, and discomfort. They may obviate its application in many clinical
circumstances. There are several clinical situations in which an assessment of ICP is
desirable but an invasive procedure is contraindicated. These situations include management
of patients with fulminant hepatic failure [1], [2] and pregnant women with preeclampsia
[3]. A reliable noninvasive ICP (NICP) assessment procedure could alter the current
treatment and management protocols for those patients.

The following scenarios exemplify the potential utility of a NICP assessment technique in
improving the care and management of patients with complex problems. First, it is often
difficult to determine whether the shunt is working properly in the follow-up management of
hydrocephalus patients with implanted shunts. An NICP protocol would be less costly and
safer to address this need in an outpatient setting than implanting an invasive telemetric ICP
device. Second, several studies have shown that elevated ICP is associated with an
unfavorable outcome for liver transplant recipients [4], [5]. However, patients with liver
disease often suffer from coagulopathy (bleeding disorder) and the risks of invasive ICP
monitoring in patients with coagulopathy overshadow the benefits of predicting outcome
[1]. In contrast, an NICP assessment procedure could be safely and easily applied.
Therefore, it could aid clinical decision making in the selection of patients with fulminant
hepatic failure for liver transplantation. In the United States alone there are around 6, 500
liver transplant cases annually while 8% of those are for treatment of fulminant hepatic
failure. Third, the NICP assessment would provide valuable information in traumatic brain
injury (TBI) patients during inter-hospital emergency transfer from smaller hospitals to
major trauma or neurosurgical centers or can be used in battle field for safe triage of injured
warriors.

Several groups have attempted to develop NICP assessment techniques during the last
decade. However, none of those techniques has proved significant clinical applicability.
Each technique has problems in order to be accepted into wide clinical practice. For
example, the ultrasound-based apparatus can not provide absolute values of ICP because of
the lack of a defined mathematical relationship between the measured physiologic variable
and ICP [6], [7]. The tissue resonance analysis, which measures the transfer time of cerebral
arterial blood to cerebral venus blood to infer ICP using an empirical linear mapping
function, is technically complex and lacks a method to quantify the goodness of inference
[8]. Transcranial Doppler (TCD) can noninvasively measure cerebral blood flow velocity
(CBFV) at major cerebral basilar arteries and three empirical formulas have been proposed
for relating arterial blood pressure (ABP) and CBFV to cerebral perfusion pressure (CPP).
However, none of these formula-based methods is capable of assessing ICP waveform and
quantifying the quality of the resultant estimate [9]-[11]. A more advanced TCD-based
approach proposed by Schmidt et al. is capable of estimating actual ICP waveform by
inputting ABP and CBFV to an ICP simulation model [12], [13]. Since the model is
identified by processing a collection of ABP, CBFV, and invasive ICP signals, this approach
can be thought of as a preliminary form of a data mining method. Two major weaknesses of
the approach are its rigid structure, which prevents it from being readily converted to a
modular method, and the incapability of assessing the quality of the resultant estimate.

We previously proposed an innovative data mining framework of NICP assessment in [14].
The proposed data mining framework explores the rules of deriving ICP from ABP and
CBFV that are captured implicitly by a signal database without using an explicit first-
principle driven mathematical model. This approach is particularly attractive for our
scenario where an accurate mathematical model of ABP, CBFV, and ICP is challenging to
build and its parametrization based on clinically available measurements is extremely
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difficult if not impossible. Another advantage of the proposed data mining framework is that
it can be presented as a general time series estimation technique with a case-based reasoning
paradigm [15]. Estimating aorta pressure (target time series) from blood pressure signals of
multiple peripheral sites (related time series) is one example of applying the proposed data
mining framework as the general time series estimation technique. The NICP assessment is
a special case of the general time series estimation technique where the target time series is
ICP and the related time series are ABP and CBFV.

The main strategy of the proposed framework is to provide a mapping function to quantify
the uncertainty of an ICP estimate associated with each database entry and to use this
information to determine the best entry to build an ICP simulation model, which can be used
to obtain an optimal ICP estimate. Designing a good mapping function, therefore, is
essential for the reliable performance of the proposed data mining framework. Our first
choice of the mapping function was a simple Ordinary Least Squares (OLS). Although our
data mining framework with the OLS linear mapping function outperformed existing data
mining techniques for NICP assessment [14], [15], the performance of NICP assessment has
not reached a satisfactory level for our data mining framework to be accepted into routine
use in neurosurgical services. The main objectives of the current work are to adopt new
(linear and nonlinear) mapping functions into our data mining framework for NICP
estimation and demonstrate that the performance of NICP assessment can be improved by
utilizing proper mapping functions.

II. Methodology
A. Data Mining Framework

This section provides a brief introduction of our data mining approach to NICP assessment
for better understanding of the current study. The complete description of the data mining
framework should be referred to our previous publications [14], [15].

Our data mining framework exploits a database of simultaneously recorded signals (ABP,
CBFV, and ICP) and dynamic models of the signals (inputs: ABP and CBFV, output:ICP).
Two types of important data are drawn from this database: hemodynamic features and
dissimilarity measures. Hemodynamic features are extracted from ABP and CBFV to
capture the characteristic aspects of the cerebral hemodynamic state. These hemodynamic
features contain information about ICP because the cerebral hemodynamics is under the
influence of the cerebral spinal fluid (CSF) dynamics [16], [17]. Dissimilarity measures are
calculated as the distance between true ICP and its estimates, which can be obtained by
simulating the dynamic models in the database. In other words, dissimilarity measures
quantify how closely each dynamic model can estimate true ICP only given corresponding
ABP/CBFV signals. Then, the main strategy of the data mining framework is to formulate a
mapping function between hemodynamic features and dissimilarity measures. In other
words, the mapping function needs to be trained to estimate dissimilarity measures given
hemodynamic features. When ABP and CBFV signals are collected from a new patient
whose ICP is unknown, the mapping function takes hemodynamic features extracted from
his/her ABP and CBFV signals as its input and outputs the estimated dissimilarity measures
of all dynamic models. These estimated dissimilarity measures are used to identify the most
appropriate dynamic model among all dynamic models. By simulating the identified
dynamic model with the patient's ABP and CBFV signals, one can obtain an estimate of his/
her unknown true ICP.

We used a linear dynamic system (LDS) to model the relation between ABP, CBFV, and
ICP signals. Considering the complex nonlinear characteristics of ICP dynamics one may
wonder whether the LDS model is an appropriate form to model the relation between ABP,
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CBFV, and ICP signals. However, our recent systematic study of the LDS model's data
fitting capability and generalizability indicated that the LDS model is a plausible choice to
model the complex nonlinear ICP dynamics for a short period of recordings, which was 100
heart-beat long in all our previous studies. This study result is under review for publication
at Physiological Measurement.

Current hemodynamic features are the coefficients of a linear autoregressive with exogenous
input (ARX) model that fits the ABP(input)/CBFV(output) signals. Although more complex
nonlinear models can be used, Panerai et al. demonstrated that a linear dynamic system is
adequate to model dynamic cerebral autoregulation [17]. More details about the
hemodynamic feature selection process can be found in [14], [18].

Dissimilarity measures, i.e. the distance between true ICP and its estimates, can be defined
in many ways since ICP signals reflect various physiological and pathophysiological
conditions of the intracranial system. In [14] we defined five types of dissimilarity measures
that concern the most relevant aspects of routine ICP monitoring. In the current study, we
will stay focused on three dissimilarity measures that are closely related with mean ICP

 and correlation between normalized ICP signals. They can be expressed as follow,

(1)

(2)

(3)

where ICPi is the ith sample of an original (true) ICP signal,  its corresponding estimate,
 its mean, ICPN the normalized ICP, and ICPS the slow wave component of ICP. We

normalized ICP by its mean so that .

B. Mapping Functions
Our first choice of mapping function was an Ordinary Least Squares (OLS), which is a
linear regression technique [14], [15]. In the current work we introduce three more mapping
functions utilizing two linear and one nonlinear techniques.

1) Ordinary Least Squares (OLS or L1)—The OLS was our first choice of mapping
function due to its simplicity and ease of implementation. Let us suppose that F represents a
hemodynamic feature matrix and E a dissimilarity measure matrix. The jth column of the
hemodynamic feature matrix F is the hemodynamic feature vector (ARX model coefficients)
of the jth entry. On the other hand, the dissimilarity measure E(i, j), i.e. the ith-row and jth-
column element of E, quantifies how closely the true ICP of the jth entry can be estimated by
simulating the dynamic model of the ith entry with ABP/CBFV signals of the jth entry. Then,
the OLS mapping matrix B can be obtained as follows,

(4)

Kim et al. Page 4

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2013 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(5)

where E is a Ne × Ne dissimilarity measure matrix, F a d × Ne hemodynamic feature matrix,
B a d × Ne mapping matrix, Ne the number of entries, and d the dimension of the
hemodynamic feature vector, i.e. the number of hemodynamic features. When a
hemodynamic feature vector, fnew, is extracted from ABP and CBFV signals of a new
patient, the dissimilarity measure vector, ê, is estimated as follows,

(6)

where ênew is a Ne × 1 dissimilarity measure vector and fnew a d × 1 hemodynamic feature
vector.

2) Recursive Weighted Least Squares (RWL or L2)—The OLS mapping function
described above is based on a multivariate regression technique since the number of
variables to estimate is greater than 1. In fact, the total number of variables to estimate is Ne
since ênew in Eq. (6) is a Ne × 1 vector. The multivariate regression expressed in Eqs. (4)-(6)
can be thought of as a combination of multiple single-variate regressions. A single-variate
regression can be expressed as,

(7)

(8)

(9)

where ênew(i) is estimated solely based on the corresponding row vector, E(i, :). In other
words, the OLS mapping function based on the canonical multivariate regression does not
utilize any column-wise relations of the elements of E. The Recursive Weighted Least
Squares (RWL) was devised as an attempt to overcome the limitation of the canonical
multivariate regression technique. The RWL performs the weighted least squares recursively
by updating the weighting matrix W at each iteration. Algorithm 1 describes the details of
the RWL mapping function. Briefly, the jth element of the weighting vector ω, i.e. ω(j), is
proportion to ∥E(:, j) − Ê(:, j)∥, which is the norm of the column-wise estimation error of E.
The elements of ω become the diagonal elements of the weighting matrix W. The rationale
for this weighting scheme is to reduce the variance of ω after each iteration so that
eventually the column-wise estimation errors of E become somewhat uniform.

3) Quadratic Programming with Constraints (QP or L3)—The Quadratic
Programming (QP) is an optimization method to minimize or maximize a quadratic function
of unknown parameters with additional linear constraints (inequality and/or equality) [19].
The linear least squares problem can be framed as an optimization problem whose objective
function can be expressed as a quadratic function of bi as follows,

(10)
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(11)

(12)

where b̂i is identical to the linear least squares solution in Eq. (8). However, the QP enables
us to impose additional linear constraints to the objective function in Eq. (11). They can be
expressed as,

(13)

where E(:−i, j) is the jth column vector of E excluding its ith element. The rationale behind
the inequality constraints in Eq. (13) is that the diagonal component E(j, j) of the
dissimilarity measure matrix E is supposed to have the smallest value among all elements of
the corresponding column vector E(:, j) because E(j, j) is the distance between the jth entry's
true ICP and its estimate by simulating its own dynamic model. Imposing the inequality
constraints to the objective function, B(:, i)), is another way to overcome the limitation of
the canonical multivariate regression technique, which is not capable of incorporating any
column-wise relations of the elements of E.

4) Kernel Spectral Regression (KSR or N)—Kernel Spectral Regression (KSR) [20] is
a recently proposed method to solve Kernel Discriminant Analysis (KDA) problems
efficiently. Specifically, it casts discriminant analysis into a regularized regression problem
that exploits a spectral graph representation. It was successfully used in a wide variety of
problems, such as face and digits recognition [20], and more recently for detecting peaks in
ICP Signals [21].

KSR captures nonlinearity through a kernel projection of the data. In this work, feature
vectors F are projected onto a high-dimensional space via a Gaussian kernel K, defined as,

(14)

where σ is the user-specified standard deviation of the kernel.

Given known dissimilarity measures, E, KSR estimates the mapping function B efficiently
using a Cholesky decomposition as follow,

(15)

(16)

where I is the identity matrix, δ ≥ 0 the regularization parameter, and L the lower triangular
matrix.

When a new hemodynamic feature vector, fnew, is extracted from ABP and CBFV signal of
a new patient, the dissimilarity measure vector, ê, is estimated as follow,

(17)
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(18)

where k is a Ne × 1 vector resulting from the kernel projection of fnew into the kernel space.

C. Experimental Design
The main concern of our experiments was to study whether the performance of the data
mining framework can be improved by adopting different mapping functions other than the
previously proposed OLS mapping function. We were particularly interested in whether the
nonlinear mapping function (KSR) is significantly better than the other linear mapping
functions.

We analyzed the performance of the data mining framework with different mapping
functions from two perspectives. First, we compared the dissimilarity measure estimates,
which are the distance between true ICP and its best estimate obtained by the data mining
framework. Depending on the type of dissimilarity measure, the distance between true ICP
and its best estimate can be calculated as described in Eqs. (1)-(3). Since our best concern
was to investigate whether or not the KSR mapping function is superior to the other linear
mapping functions, we reported the difference between the dissimilarity measure estimates
such as follow,

(19)

(20)

(21)

where the subscript N is for the KSR, the subscript L1 for the OLS, the subscript L2 for the

RWL, and the subscript L3 for the QP. For example,  is the difference between the
ith entry's dissimilarity measure estimate of the KSR mapping function and that of the OLS

mapping function, where the choice of dissimilarity measure is e(2). If  has a
negative value, it indicates that the KSR is a better choice than the OLS as the mapping
function when the choice of dissimilarity measure is e(2). We present the difference, Δ, both
in the qualitative(graphical) and quantitative ways.

The dissimilarity measures were originally proposed to investigate particular aspects of
NICP assessment in a normalized way [14]. For example, e(3) ranges between 0 and 2 where
0 represents a perfect positive correlation and 2 a perfect negative correlation. These
normalized dissimilarity measures may be preferable for the purpose of the numerical
performance analysis of the data mining framework. However, clinicians may find it
difficult to make much sense out of the numerical performance analysis results based on the
normalized dissimilarity measures. They would rather be interested in clinically meaningful
performance measures such as mean ICP estimation errors. Therefore, we report the
absolute mean ICP estimation errors, ξ.(i)(mmHg), which can be expressed as follow,

(22)
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(23)

(24)

(25)

where  represents the true mean ICP of the slow component and , and

 represent the mean ICP estimates using the OLS mapping function, the RWL mapping
function, the QP mapping function, and the KSR mapping function, respectively. We
summarized the performance analysis results of mean ICP estimation by reporting four
different percentiles (10th, 25th, 50th, and 75th) of ξL1, ξL2, ξL3, and ξN. In order to visualize
the performance difference between the KSR and three other linear mapping functions, we
also plotted the difference between the absolute mean ICP estimation errors, i.e. ξN(i) −
ξL1(i), ξN(i) − ξL2(i), and ξN(i) − ξL3(i).

The performance of the data mining framework with different mapping functions was
validated based on the leave-one-patient-out schema as in [14], [22]. In other words, a
mapping function is trained using the entries from all but one patient and tested on the
remaining one.

III. Data Collection
We collected ICP, ABP, CBFV at the middle cerebral arteries (MCAs), and ECG from 57
head-injured patients (ages: 18 – 89 [median: 47], gender: 42 male/15 female). They were
admitted to Ronald Reagan UCLA Medical Center between July 15, 2008 and November
16, 2009. Among them, 31 patients had traumatic brain injury (TBI), 20 subarachnoid
hemorrhage (SAH), 3 intracranial hemorrhage, 2 intracerebral hemorrhage, and 1
hydrocephalus.

The signals were collected while technicians affiliated with the Cerebral Blood Flow (CBF)
laboratory at UCLA Department of Neurosurgery conducted daily clinical assessment of
patients' cerebral hemodynamics using Transcranial Doppler (TCD), which involves the
insonation of multiple intracranial arteries. The duration of collected signals varies
depending on how long the TCD monitoring of the MCAs could be done. Typically, the
TCD monitoring lasted only 3-5 minutes when the probe had to be hand-held or 10-20
minutes when the probe was fixed to a headband around the patient's head. All signals were
acquired through an analog connection from the bedside monitor to a 16-port amplifier from
ADInstrument and were sampled at 400 Hz. The total recording length of all signals from 57
patients was approximately 8 hours. The total number of entries was 382 where each entry
included only the 100 heart beat time period of the simultaneous recorded ABP, CBFV, and
ICP signals. It should be noted that each entry's signal length in the unit of seconds varies
depending on the corresponding heart rate. This signal length (100 heart beat time period)
was chosen so that the signal's long-term characteristics can be captured properly and yet its
dynamic system is assumed to remain stable [14].

This study was approved by Institutional Review Board (IRB) as a data analysis project
without involvement of any personal health information.
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IV. Results
A. Dissimilarity Measure Estimation

Three plots in Fig. 1 depict the difference between the dissimilarity measure estimates:

 (top),  (middle), and  (bottom), respectively. It is obvious that

, and  have negative values for most entries (≈ 85%). The first row

of Table I confirms that on average , and  are smaller than zero. It is
convincing that the KSR mapping function is superior to three other linear mapping
functions in terms of estimating the dissimilarity measure e(2).

Three plots in Fig. 2 illustrate the difference between the dissimilarity measure estimates:

 (top),  (middle), and  (bottom), respectively. Although three plots

show that , and  have negative values for the majority of entries (≈
90%), on average they are just slightly smaller than zero as listed on the second row of

Table I. One may argue that , which is −0.07, may not be significantly different
from 0 in a statistical sense. So, we performed the Friedman test to determine whether

 is significantly different from 0. The p-value of the Friedman test was very close to

0, which indicates that  is significantly smaller than 0 in a statistical sense although its

mean value is only −0.07. The same conclusion could be drawn for  and

. Therefore, it is plausible to argue that the KSR mapping function is a better
choice than the other linear mapping functions in terms of estimating the dissimilarity
measure e(3).

Three plots in Fig. 3 show the difference between the dissimilarity measure estimates:

 (top),  (middle), and  (bottom), respectively. The third row of Table I

lists , and , which are definitely smaller than 0. Therefore,
the KSR mapping function is believed to surpass the other linear mapping functions in terms
of estimating the dissimilarity measure e(5).

B. Mean ICP Estimation
Each column of Table II summarizes four different percentiles of the absolute mean ICP
estimation errors (ξ.) of each mapping function. It is important to notice that the percentile
values of ξN (fourth column) are noticeably smaller than those of the others, i.e. ξL1, ξL2,
and ξL3. Especially, the 50th percentile (median) of ξN is as small as 4.37 mmHg while those
of the others are greater than 5.6 mmHg. We performed the Friedman test to examine
whether ξN is significantly different from each of ξL1, ξL2, and ξL3 in a statistical sense. The
p-values of three Friedman tests between ξN and ξL1, ξN and ξL2, and ξN and ξL3 were
virtually 0, which indicate that the KSR mapping function yielded significantly smaller
absolute mean ICP estimation errors than the other linear mapping functions. Three plots in
Fig. 4 visualize the differences between the absolute mean ICP estimation errors, ξN(i)
−ξL1(i) (top), ξN(i)−ξL2(i) (middle), and ξN(i)−ξL3(i) (bottom), respectively. In all three
plots, it is obvious that the differences are smaller than 0 for most entries (87%).
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V. Discussions and Conclusions
A. Query Method

A mapping function takes a hemodynamic feature vector, f , as its input and outputs an
estimated dissimilarity measure vector, ê. Based on this estimated dissimilarity measure
vector, then, a query engine selects the best entry in the database according to a certain
criterion. In [14] we investigated two distinct query methods: a deterministic and statistical
query. In short, the deterministic query returns the database entry with the smallest estimated
dissimilarity measure while the statistical query returns the database entry with the largest z-
test score. The study results showed that the statistical query method was preferable over the
deterministic one in terms of its robustness to some erroneous entries [14]. In the current
study, however, we implemented the deterministic query method instead of the statistical
one. The main reason was that the statistical query method requires the computation of the
variance of ê, which is not trivial to obtain specially for the QP and KSR mapping functions.
It may be possible to compute the variance of ê for those mapping functions by utilizing the
bootstrapping method [23]. However, it is questionable whether the statistical query method
would be necessarily more robust than the deterministic one with the QP and KSR mapping
functions as with the OLS mapping function. Another factor to consider is the computational
cost of implementing the bootstrapping method combined with the QP and KSR mapping
functions which are already computationally demanding.

B. Other Possible Mapping Functions
Designing a good mapping function is a challenging task mainly for two reasons. First, no
prior knowledge about the appropriate form of the mapping function is available. Second, a
mapping function suitable for certain hemodynamic features may not be the best choice for
other hemodynamic features.

One alternative choice of mapping function is a feed-forward neural network (FFNW) since
it is a flexible and versatile method to approximate unknown functions. As pointed out in
[14], however, it requires a large amount of data to properly train even a simple form of
neural network such as a two-layer neural network. We may need hundreds of patients from
whom we can collect ABP, CBFV, and ICP signals to train the two-layer neural network as
the mapping function. The number of patients included in our current database is only 57,
which makes the neural network mapping function an infeasible option. The FFNW
mapping function may become affordable eventually when more patients are included in our
database.

Another possible choice of a mapping function is a local linear fuzzy (LLF) mapping
function. The LLF mapping function may be more versatile than other global mapping
functions since the true mapping function between the hemodynamic features and
dissimilarity measures is expected to be complex and heterogeneous. In addition, adopting
the LLF mapping function may conform better to the local nature of the proposed data
mining framework, i.e. the final ICP simulation model is built upon one optimal database
entry. One major concern to implement the LLF mapping function is its demanding
computational load. However, it can be overcome by utilizing the parallel computing
technique implemented on multi-core processors.

C. Economical Considerations
With the burden of escalating cost of health care on our society, it is imperative to take
economical implications into consideration when designing new test methods such as our
endeavor in achieving noninvasive ICP assessment. The only existing ICP assessment
technique in market is not only invasive but also uses single-usage sensors and catheters that
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cost about $500 on average. A screening test of high ICP that is widely used in clinic
involves taking CT brain scans [24]-[26], which costs about $750–$1, 500. Compared with
these costly techniques, an ultrasound based ICP assessment technique has inherent
advantage as it can be repeatedly used without any disposable at fraction of cost ($150). The
proposed data mining framework works in theory with any other modalities of measuring
ICP-related signals as a general calibration process for ICP values. Therefore, the choice of
which related-signal to use is a multi-factorial decision problem where the economical
implication should not be neglected.

Overall, our study results demonstrate that the performance of our data mining framework
for NICP assessment definitely improves by adopting a nonlinear mapping function such as
the KSR technique instead of linear mapping functions both in the dissimilarity measure
estimation and the mean ICP estimation. Given the component-wise nature of the data
mining framework, our future effort will continue to focus on improving other individual
constituents of the framework to achieve a clinically viable noninvasive ICP assessment
technique.
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Fig. 1.
Difference between the dissimilarity measure, e(2), estimates: KSR vs. OLS(L1) (top), KSR
vs. RWL(L2) (middle), and KSR vs. QP(L3) (bottom). Each bar becomes negative when the
KSR mapping function outperforms the linear mapping functions.
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Fig. 2.
Difference between the dissimilarity measure, e(3), estimates: KSR vs. OLS(L1) (top), KSR
vs. RWL(L2) (middle), and KSR vs. QP(L3) (bottom). Each bar becomes negative when the
KSR mapping function outperforms the linear mapping functions.
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Fig. 3.
Difference between the dissimilarity measure, e(5), estimates: KSR vs. OLS(L1) (top), KSR
vs. RWL(L2) (middle), and KSR vs. QP(L3) (bottom). Each bar becomes negative when the
KSR mapping function outperforms the linear mapping functions.
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Fig. 4.
Difference between the absolute mean ICP estimation errors ξ.(i): KSR vs. OLS(L1) (top),
KSR vs. RWL(L2) (middle), and KSR vs. QP(L3) (bottom). Each bar becomes negative
when the KSR mapping function estimates the true mean ICP more accurately than the
linear mapping functions.
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Algorithm 1

Recursive Weighted Least Squares

 W1 = I

 for n = 1, …, Nt do

  E = EWn & F = FWn

  B̂ = (FFT)−1 FET

  Ê = B̂TF

  for j = 1, …, Ne do

   ωn(j) = ∥E(:, j) − Ê (:, j) ∥

    end for

    ωn =
ωn

max(ωn)
  diag (Wn) = ωn

  end for

where I is a Ne × Ne identity matrix, W a Ne × Ne weighting matrix, Nt the number of iterations, and diag (W) diagonal elements of W.
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TABLE I

Summary of the average values of the dissimilarity differences.

Error Type ave(ΔN−L1
(⋅) ) ave(ΔN−L2

(⋅) ) ave(ΔN−L3
(⋅) )

e (2) −0.21 −0.26 −0.20

e (3) −0.07 −0.08 −0.06

e (5) −0.15 −0.13 −0.14
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TABLE II

Summary of the percentiles of the mean ICP estimation errors (ξ.) in mmHg.

Percentiles ξ L1 ξ L2 ξ L3 ξ N

10 1.38 1.39 1.38 0.35

25 3.35 3.64 3.36 1.37

50 5.63 6.07 5.63 4.37

75 9.57 10.04 9.58 7.58
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