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Abstract
The extraction of the cardiac Purkinje system (PS) from intensity images is a critical step toward
the development of realistic structural models of the heart. Such models are important for
uncovering the mechanisms of cardiac disease and improving its treatment and prevention.
Unfortunately, the manual extraction of the PS is a challenging and error-prone task due to the
presence of image noise and numerous fiber junctions. To deal with these challenges, we propose
a framework that estimates local fiber orientations with high accuracy and reconstructs the fibers
via tracking. Our key contribution is the development of a descriptor for estimating the orientation
distribution function (ODF), a spherical function encoding the local geometry of the fibers at a
point of interest. The fiber/branch orientations are identified as the modes of the ODFs via
spherical clustering and guide the extraction of the fiber centerlines. Experiments on synthetic data
evaluate the sensitivity of our approach to image noise, width of the fiber, and choice of the mode
detection strategy, and show its superior performance compared to those of the existing
descriptors. Experiments on the free-running PS in an MR image also demonstrate the accuracy of
our method in reconstructing such sparse fibrous structures.

Index Terms
Cardiovascular systems; clustering algorithms; magnetic resonance imaging; nonlinear filters

I. Introduction
The development of robust image processing techniques to quantitatively characterize sparse
fibrous structures is an important yet challenging problem in medical image analysis. This
type of quantification provides significant insights into several biological mechanisms and
can ultimately improve current diagnostic and therapeutic approaches. For instance, the
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extraction of coronary arteries in angiogram or retinal blood vessels in ophthalmoscope data
can improve current diagnostic tools for identifying stenoses and aneurysms, or performing
a timely detection of proliferative diabetic retinopathy, respectively. Similarly, the extraction
of the Purkinje system (PS) can improve electrophysiological models of the heart and
benefit advanced modeling studies of cardiac dysfunction. Specifically, the PS comprises
specialized fibers responsible for the propagation of the electrical impulse initiating
myofiber contraction and is implicated in the initiation and sustenance of arrhythmias and
ventricular fibrillation [1], [2]. Recent advances in ex vivo MRI offer sufficient image
resolution to identify the free-running Purkinje fibers activating endocardial structures.
However, their extraction is challenging due to the presence of image noise and numerous
fiber junctions. Indeed, the only existing approach for reconstructing the PS requires
significant manual intervention, which is time consuming and error prone [3].

A. Overview and Paper Contributions
In this paper, we address these issues by introducing an orientation descriptor to study
different fiber geometries and extract the fiber centerlines. We model the local geometry of
the fibers with an orientation distribution function (ODF), a spherical function estimated as
the combination of three different profiles computed by using a nonlinear filter. The modes
of the ODFs, which correspond to the local fiber orientations, are then identified via
spherical clustering. Finally, for centerline extraction, the resulting modes (if any) are
followed to successively find points on the fiber of interest. The stages of this framework are
shown in Fig. 1(a) and our contributions are the following.

1) Estimation of ODFs—Our descriptor estimates the probability of having an oriented
structure by using nonparametric statistics and employs a nonlinear filter with an oriented
spatial support to encapsulate the fibers around a point of interest. The filter is used for
measuring three types of statistics generating the ODF: the intensity coherence along a
candidate oriented segment, the difference in appearance between the segment and the
background, and the medialness of the segment. This yields a fine representation of the local
fiber geometry.

2) Identification of Local Orientations—Identification of the local fiber orientations is
performed by detecting the modes of the ODF via a reformulation of the mean shift
algorithm for directional data. Since the algorithm finds both the number and the locations
of the modes, it has the advantage of automatically identifying the different types of fiber
geometries.

3) Extraction of the Purkinje Fibers—Including the PS in conduction simulations
would be paramount in the study of cardiac arrhythmias. High-resolution MRI techniques
only show the free-running Purkinje fibers in the cavities [3], but local geometries such as
Purkinje–myocardium junctions (PMJs) and Purkinje–Purkinje junctions (PPJs) [see Fig.
1(b)] can be identified by visual inspection. Since the ODF provides an estimate of the local
orientation that is sufficiently accurate to extract the fiber centerlines as pathlines, we
reconstruct the PS by using a tracking algorithm, which estimates the ODF at a starting
point, e.g., a PMJ, on the fiber of interest and identifies its modes as the directions to be
followed. By considering the local smoothness of the resulting point trajectory, the
algorithm repeats the estimation and mode detection steps at the newly identified locations
until a termination criterion is met. To the authors’ knowledge, this is the first processing
study that reconstructs the free-running Purkinje fibers from an MR image.
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B. Related Work
The analysis of fibrous structures is a well-studied problem in pattern recognition, which
finds a wide range of applications in medical image analysis. A fibrous structure often has a
spatially coherent and oriented appearance pattern, which can be detected via different
feature-based or model-based descriptors. Some methods [4]–[8] estimate the local
orientation from the spectral decomposition of a multiscale version of the image Hessian
matrix or the structure tensor, which are formed from the second-order partial derivatives of
the image. Other methods measure the image gradient flux, i.e., the amount of image
gradient flowing in or out of a local spherical region. Such methods have been successfully
applied to centerline extraction [9] and segmentation [10]–[12] of blood vessels. However,
the aforementioned descriptors are not designed to find multiple local orientations and their
multiscale implementations require special attention when analyzing segments with high
curvature. Thus, these methods are often used for computing a scalar measure of
tubularness. This quantifies how likely it is that each voxel belongs to a tubular structure
and helps the segmentation.

The goal of identifying complex fiber geometries has motivated the development of
algorithms inspired by the concept of steerable filters [13]–[16]. These works aim to
identify regions where multiple lines or edges intersect by applying operators that are
tunable for a particular orientation. Selected methods include invertible apertured orientation
filters [17], the concept of orientation space [18] computed via Gabor filters, the concept of
cores [19] measuring the intensity-based medial strength, the difference of oriented
appearance means [20], multiscale lineness filters [21], and polar neighborhood intensity
profiles [22]. Nonetheless, they still primarily aim to improve detection and segmentation
performances rather than estimating fiber orientations as accurately as possible.
Alternatively, one can extend the classical descriptors to multiple orientations. For instance,
a generalized tensor formulation is used in [23] to analyze multiple orientations. However,
despite its success in estimating the orientations in image patches, the method does not
provide a quantitative voxel-level solution to differentiate between neighboring voxels in the
same patch, which limits its applicability to fiber extraction or segmentation. In addition to
accurately estimate local orientations, it is crucial to identify the different types of fiber
geometries if one aims to delineate the fiber centerlines via tracking. Early works [19], [24],
[25] proceed by sequentially traversing coherent appearance patterns or medial points and
can deal with restricted complexities, e.g., only bifurcations. Recent tracking schemes based
on minimal path detection [26]–[29], particle filters [30], and multiple hypothesis analysis
[31] have the same limitation.

Although this paper focuses on the analysis of sparse fibrous structures in 3-D intensity
images, it is worth mentioning the concept of ODFs in high angular resolution diffusion
imaging (HARDI). HARDI produces in vivo images of biological tissues by quantifying the
anisotropy of water diffusion. By acquiring diffusion measurements in several gradient
directions, one can estimate the ODF, a nonparametric representation of the amount of
apparent diffusion in different directions [32], from the corresponding MRI signals. Due to
the relationship between the signals and the tissue microstructure, the modes of the ODF are
aligned with the physical orientations. The state-of-the-art methods in HARDI thereby
employ such functions—see [33], [34] and references therein—which motivated us toward
building a similar representation for intensity data. Nonetheless, due to the absence of a
rigorous relationship between the (intensity) signal and the fibers, we solve the problem of
estimating ODFs by using an orientation descriptor.
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II. Local Orientation Analysis
Consider an image of a fibrous structure with a coherent intensity pattern, as illustrated in
Fig. 2(a). Let x ∈ ℝ3 be a point in the image at which we want to determine the presence of
an oriented structure and its orientation. Our ODF estimator takes a neighborhood around x
and investigates, using nonparametric statistics, the presence of cylindrical tube(s) of length
l, radius r, and oriented along s ∈ S2, where S2 is the unit sphere. In a probabilistic setting,
one can model s, l, and r as discrete random variables1 taking values on the sets , , and

, respectively.

Assuming that l and r are independent, the ODF at x can be defined as the probability mass
function (pmf)

(1)

Here, p(s|l, r; x) is the conditional ODF given the shape parameters l and r of the tubes and
p(l, r; x) is the pmf that encodes the prior information on these parameters. Notice that if l
and r are assumed to be uniform, then the estimation of p(s|l, r; x) becomes the only step
toward building the ODF.

A. Estimation of the Conditional ODF
In order to estimate the conditional ODF p(s|l, r; x), we propose to use a 3-D pivoting filter
inspired by the 2-D filter in [35]. As depicted in Fig. 2(b), our filter has a fixed point x and a
moving point f located at a distance lF from x. Having sampled the unit sphere at N vectors
{sn} = , the segment  aligns with the orientation of interest s ∈  such that f = x + lF s.
The points  are placed on a circle of radius rF, centered at f such that . Their
role is to tightly encapsulate the candidate fiber rooted at x and oriented along s. The vectors

 and  are separated by an angular step α = 20° and (fk, fk + K) form an antipodal
pair. One can alternatively place {fk } around x to encapsulate the fiber, but the current
shape of the support is in accordance with our model, i.e., it resembles a cylinder oriented
along s with length lF and radius rF.

Notice now that in the presence of a fibrous structure, the intensity values along the structure
are expected to be coherent. In addition, the absolute intensity variation along the structure
should be less than the absolute intensity variation orthogonal to the structure. Moreover, the
normals to the lateral surface of the fiber should align with the image gradients at the
surface. In the following discussion, we use these three principles to estimate p(s|l, r; x)
assuming that the filter is constructed at x and oriented along s ∈  with lF = l ∈  and rF =
r ∈ .

1) Appearance Profile via Intensity Coherence—Since the intensity values along a
fiber segment (at x) are expected to be coherent, this profile is designed to measure this
coherence by considering the voxels along . Let us first denote the image domain by  ⊂
ℝ3 and the intensity value at p ∈  by I(p)2.

1For notational simplicity, we use s to denote both the random variable S and its instantiation. Consequently, we refer to p(s) either as
the pmf or as the probability of a specific instance Pr(S = s) depending on the context.
2When the point p lies outside the discrete grid, the corresponding intensity value is computed via trilinear interpolation.
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The intensity coherence along  is computed as

(2)

which is minimized when s aligns with the orientation of a fiber segment rooted at x [22].
The appearance profile is subsequently computed as pA (s|l, r; x) ∞ exp(−βA(s|l; x)), ∀ r ∈

, where β > 0 is a user-specified parameter. Thus, pA (s|l, r; x) is high when s aligns with
the fiber orientation.

To demonstrate the use of the appearance profile, we use the synthetic bifurcating fiber
shown in Fig. 3(a) to generate a 3-D binary image whose intensities are corrupted at varying
levels of noise. Fig. 3(b) shows one image slice with eight manually selected points of
analysis. Fig. 3(c) shows the profile pA (s; x) (marginalized over uniform l and r with β = 5)
at these eight points. We observe that the appearance profile provides a coarse estimate of
the fiber orientation despite its sensitivity to noise. In particular, at points {1, 3, 4, 5}, pA
gives accurate yet coarse estimates of the fiber orientations, whereas at points {2, 6, 7, 8}
the profiles do not have the anticipated modal shape due to noise and points being placed at
boundaries or in nonfibrous regions. The profile also offers an efficient way of measuring
the coherence without considering all the voxels in the tubes, but this causes the loss of
discrimination among their radii. Furthermore, although (2) can be considered as the
“discretized” version of the cost function minimized by the structure tensor [8], [36], the
appearance profile is capable of modeling antipodally asymmetric geometries by
construction.

2) Directional Profile via Nonlinear Filter Response—This profile is designed to
measure if the absolute intensity variation along a fiber segment  is less than the
minimum absolute intensity variation orthogonal to that segment. In order to fully
encapsulate a fiber segment of radius r, the points {fk} are repositioned at a distance rF = r +
1 from f. The nonlinear response of the filter at x along an orientation s is computed for each
pair of antipodal points {fj }, j ∈ {k, k + K}, as

(3)

This response can be considered as a partial filter response for a fixed k. The cumulative
filter response is computed by summing (3) over all pairs of antipodes as

. This response attains its peak when s aligns with the true
orientation and remains high even if there are a few erroneous partial responses due to noise.
The directional profile is then defined as pD (s|l, r; x) ∞ D(s|l, r; x).

It is worth noting that an alternative definition for the filter response would be to take the
minimum absolute intensity variation from all the pairs of antipodes and set D(s|l, r; x) = 1
if it is larger than |I(f) − I(x)|. However, this would produce a strong assignment making the
response too dependent on rF. Our definition gives a softer assignment, which brings more
robustness to affine changes in illumination, while keeping the filter tuned to having a high
response along the true orientation. We illustrate this property by generating a set of images
where the intensity of the fiber (foreground) in Fig. 3(a) is 0 and the intensity of the
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background gradually decreases from 1 to 0. Fig. 4 shows eight image slices and plots the
value of pD (s|rF; x) (marginalized over l) at the true orientation s = s* as a function of 1) the
absolute intensity difference ΔI between the foreground and the background and 2) the filter
radius rF. We observe that pD is robust to illumination changes as it does not depend on ΔI.
Moreover, the profile attains its maximum value when rF is greater than the true fiber radius
r* = 1, but it shows a nondiscriminative behavior among all rF > r*.

3) Medialness Profile via Image Gradient Flux—This profile aims to quantify how
well the point f is located on the medial axis of a fiber. It uses a flux-based measure that
seeks to align the inward3 normals {nk} at points {fk} with the image gradients at these
points. The measure is computed as

(4)

where nk is the unit vector such that f = fk + rFnk, nk = −nk + K, ∇I (p) is the image gradient4
at p, and 〈·, ·〉 denotes the dot product. Assuming that the fiber of interest has a circular cross
section, (4) would be maximized if {fk } are placed on the boundary of the fiber. The
medialness profile is then computed as pM (s|l, r; x) ∞ M (s|l, r; x).

We illustrate the medialness profile by using the fiber shown in Fig. 3(a) to generate noisy
image data with fibers of different widths. Fig. 5 shows a selected slice from each image
along with the profiles pM (s; y) marginalized over uniform l and r. We observe that pM has
an accurate modal shape for r* ≥ 1, but it does not show two of the three modes when 2r* =
1. Therefore, the profile yields adequate discriminative information among the search radii,
but it may become unreliable for thin fibers due to inaccuracies in the computation of the
image gradients.

4) Conditional ODF—Although each of the aforementioned profiles does capture the
degree of tubularness around a voxel, none of them is successful on its own right. We
thereby propose to combine the profiles and estimate the conditional ODF as

(5)

The rationale behind multiplying the profiles comes from the assumption that the profiles
are independent given the fiber orientation. Although this assumption is quite strong, in
practice we observed that (5) provides a better estimate of the local orientation than other
combinations, e.g., a weighted sum, and alleviates the shortcomings of the profiles. Notably,
p(s|l, r; x) is less affected by the sensitivity of pA to noise and the nondiscriminative
behavior of pA and pD among . Our combination strategy also yields “sharp” ODFs, i.e.,
ODFs having less variation around their modes, which can improve the accuracy in
orientation detection. Moreover, one can incorporate (if computable) the reliabilities of the
profiles into (5) for further improvements. However, notice that each profile should have
modes (or high values) at directions close to the ones of the true segments so that the
contributions from other profiles are not lost. Addition of the profiles would not cause such

3We assume that fibers are dark structures over a brighter background.
4Gradients are computed via multiscale derivative-of-Gaussian filters.
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a loss, but erroneous modes may appear and corrupt the procedure unless a reliable pruning
mechanism is adopted.

B. Estimation of the Shape Prior and the ODF
The term p(l, r; x) in (1) encodes the prior information on l and r. In practice, the
distributions of such random variables are either assumed to be uniform or inferred from the
data. In orientation estimation, we assume that l and r are uniformly distributed, but in fiber
tracking, we will enforce shape regularity by replacing the prior on r with a nonuniform
distribution. Once the prior is computed, the ODF p(s; x) is estimated from (1) and provides
a multiscale representation due to its cumulative nature over the tubes of different shapes.

C. Detection of Local Fiber Orientations
The problem of identifying the local orientations is equivalent to finding the modes of the
ODF. We solve this problem by employing a reformulation of the mean shift algorithm for
directional data. The mean shift algorithm is a nonparametric kernel density estimator,
which finds the number and locations of the modes of an unknown distribution via gradient
ascent [37]. Given the points , the true density function p(μ) is approximated as

, where Φ is a kernel of bandwidth h and ZΦ is a normalization
term. Radially symmetric kernels are a natural choice for Φ. The estimation can be improved
by introducing adaptive bandwidths {hn}.

We are particularly interested in clustering directional data on the unit sphere S2, so we
employ the von Mises–Fisher kernel Φ (s, μ; ν) = (ν/(4π sinh(ν)))exp(ν 〈s, μ〉) between two
vectors s and μ with the concentration parameter ν > 0. Furthermore, since the ODF maps a
vector sn to a non-negative value ρn = p(sn; ·), the weights {ρn} and the bandwidths {hn ∞ 1/
νn} can be used for obtaining a weighted estimate of the form

(6)

Here, an adaptive bandwidth selection strategy is adopted by computing νn as the inverse
geodesic distance between sn and its 10th nearest neighbor. The modes of the density
estimate are then located via iterative evaluations of a mapping q: S2 ↦ S2. Starting at an
arbitrarily chosen candidate mode μ1 ∈ , each mode is updated as μj + 1 = q (μj) so that ∇ μj
p̂(μj) → 0 as j → ∞. In particular, at the jth iteration, given μj together with the sets {ρn}
and {νn} associated with {sn}, each mode is updated as μj + 1 = μ̃j + 1/||μ̃j + 1||, where

(7)

This update rule represents a Riemannian gradient ascent on S2 [38]. Hence, the algorithm

finds the number C and locations of the fixed points (modes) , which are identified as
the orientations of the branches rooted at the point of analysis.
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D. Implementation Details
The proposed method for estimating and analyzing the ODFs is summarized in Algorithm 1.
We sample the unit sphere at N = 642 predefined vectors  obtained by using a
threefold tessellation of an icosahedron. Unless otherwise stated, l and r are assumed to be
uniformly distributed on  = {3, 4, 5} and  = {0.5, 1, …, 4}, respectively, and β = 5 in the
computation of pA. For a visual demonstration, we generate a synthetic fibrous region and
manually place 14 points of interest [see Fig. 6(a)] at which the ODFs and their modes are
estimated [see Fig. 6(b)]. It is observed that neither the presence of adjacent structures nor
varying widths of the fibers severely affect the quality of the ODFs and the detection of their
modes.

III. ODF-Guided Tractography

Our descriptor provides an estimate of the local orientation that is sufficiently accurate to
delineate fiber centerlines even via simple tracking techniques. Algorithm 2 is an improved
version of the semiautomatic method we introduced in [39], which iteratively tracks a fiber
by following the local orientation estimates. The fiber is represented as a sequence of points
(x0, x1, …, xt) = . The first two points {x0, x1} are manually placed by the user. Our

algorithm then estimates the ODF at x1, detects the C mode(s)  of the ODF, finds the

next point(s) along the mode(s), , and so on. Notice that when C > 1, a new branch
of the initial fiber is created and tracked. To enforce the spatial regularity on the resulting
trajectories, we modify the computation of the ODF by using nonuniform priors on the fiber
width and smoothness. We now describe these modifications for the ith iteration.

1) Prior on Fiber Width—Since the points {xi−1, xi } delineate the “known” portion of
the fiber, they are first used for estimating its width as follows: Having positioned the filter
such that x = xi−1 and f = xi, the radius of the segment oriented along si−1 ∞ xi − xi−1 is
computed as

(8)

This step is useful in defining a prior on the radius r at xi, i.e., p(r; xi), by assuming that the
width does not change drastically. For simplicity, r is taken to be normally distributed at xi,
i.e., p(r; xi) ∞ exp(−((r − r̃i−1)2/2σ2)) with σ > 0.

2) Prior on Smoothness—To penalize sharp directional changes in the fiber trajectory,
we define the smoothness profile pS by using the von Mises–Fisher distribution over S2, i.e.,

(9)

where si−1 is the mean direction and ν > 0 is a parameter regulating the concentration
around the mean direction. In our experiments, we set ν to 1. Finally, assuming that l is
uniformly distributed on , the algorithm estimates the ODF p(s; xi) as
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(10)

and detects the modes at xi via spherical clustering.

A. Implementation Details
The ODF-guided tracking method proceeds as outlined in Algorithm 2 and its ith iteration
can be summarized as follows: the method first estimates the radius r̃i−1 of the previously
tracked segment (oriented along si−1) and defines the prior on r (over  = {0.5, 1, …, 4}) at
xi such that r ~ (r̃i−1, σ) with σ = 0.4. We assume that l is uniformly distributed over  =
{3, 4}. Next, we form the set of candidate orientations  = {s: 〈s, si−1〉 > 0, s ∈ S2} and
compute the ODF p(s; xi). To improve the accuracy, we detect the modes of the ODF in a

coarse-to-fine fashion. That is, we first compute the ODF, the modes { }, and the number
of branches C at xi using a threefold tessellation of the hemisphere, i.e., | | = 321. We then
refine the set of orientations around each mode using a fourfold tessellation of a portion of

the sphere around the mode, i.e., . The refined mode  is used for locating

the next point on the cth branch as .

IV. Validation and Discussions
The performance of the proposed framework is evaluated via experiments on synthetic data
as well as on the free-running Purkinje fibers in a cardiac MR image. In both cases, the
evaluation is done using the quantitative measures shown in Table I. We denote the true and
estimated value of a quantity u, e.g., width of a fiber segment, orientation of a branch,
centerlines of a fiber, etc., by ut and , respectively, where Q is the mode detection method,
the type of orientation descriptor, or the tracking algorithm, whenever appropriate. The error
in orientation estimation (in degrees) is measured by the angular discrepancy between the

true and the estimated orientation at point x, denoted by , whereas the error in

radius estimation is measured by the rate . The accuracy in fiber extraction is

quantified by two separate measures. The first one is the spatial tracking error  (in
voxels) computed as the symmetrized Chamfer distance between the estimated trajectory

 and the ground truth . The second measure is the smoothness difference

 (in 1/voxels) computed from the symmetrized curvature (κ) difference.

Notice that the tracking error measures are not meaningful when the local geometry is
misidentified. For instance, in the case of an undetected bifurcation, i.e., a false negative
(FN), only a portion of the fiber will be extracted. Thus, no matter how accurate that portion
is tracked, a very large ε will be produced when one or more branches are missing. A similar
situation will be encountered when a point on a nonbranching segment is identified as a
junction, i.e., a false positive (FP). In that case, the effect of detecting spurious branches on ε
is inevitable. These instances should be considered as errors in identifying the local
geometries rather than errors in fiber tracking. Thus, we also compute the rate of
misidentified geometries, i.e., false positives and false negatives. For fibers that are
extracted with missing/spurious branches, we take ε (or τ) as the minimum of

{ } (or dcurv).
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A. Experiments on Synthetic Data
We generate a synthetic dataset comprising 3-D images of 120 single and 120 branching
fibers of radii rt ∈ {1, 2, 3}, on which we perform local orientation analysis, estimation of
fiber widths, and tractography. Each fiber is formed by fitting cubic splines through four
randomly selected points in an 80 × 80 × 80 lattice. In the case of branching fibers,
bifurcations are randomly selected to add further branches and the resulting centerlines are
the true trajectories. To assign intensity values in a realistic manner, two intensity
histograms are calculated from the MR data in Section IV-B: one from the foreground
voxels (fibers) and one from the background voxels. The intensities of the foreground and
background are then generated by sampling from these two histograms. The image
intensities are subsequently corrupted by Rician5 noise to obtain data at five different SNRs.
Fig. 7 shows this corruption on an image slice of the synthetic fiber in Fig. 3(a).

We use the aforementioned dataset to compare the ODF estimator with other well-known
descriptors and our mean shift formulation with the k-means at varying noise levels. We also
test the ODF-guided tracking algorithm and compare it with a minimum-cost path detection
technique on real data.

1) Comparison of Mode Detection Algorithms—We focus on identifying the two
branch orientations (excluding the root) at the bifurcations of 120 branching fibers.
Specifically, after computing the ODF as described in Section II-D, we perform mode
detection via either k-means or mean shift. Recall that the mean shift algorithm finds the
number and locations of the cluster centers, which brings the advantage of avoiding the
model selection problem in the k-means algorithm. It will then be natural to prefer it over k-
means if their performances are comparable. For a fair analysis, however, one should first
ensure that the comparison is solely performed on the geometries that are correctly
identified, i.e., ODFs whose numbers of modes are correctly estimated, by the mean shift
algorithm. Table II(a) presents the average rates (%) of misidentified geometries (false
negatives) at varying levels of noise. The symbol “∞” for the SNR represents the noise-free
case. We observe that the mean shift algorithm fails at identifying less than 2% of the
geometries for SNR ≥ 15 dB, which demonstrates its accuracy in identifying bifurcations at
moderately high amounts of noise.

After eliminating the false negatives, we provide the k-means algorithm with the correct
number of clusters and repeat the mode detection. Table II(b) shows the mean of the angular

discrepancies  with Q ∈ {k-means, mean shift} over the remaining bifurcations at
different SNRs. We observe that the mean shift algorithm achieves discrepancies of around
7.5–11.5°, which are comparable to those of the k-means algorithm. In addition, since
threefold icosahedral tessellation of the sphere provides an angular resolution of around 8°,
these results represent subresolution accuracies for SNR ≥ 20 dB.

2) Estimation of Local Orientations and Fiber Widths—In this experiment, we
compare the proposed ODF estimator with the multiscale versions of the image Hessian
matrix, the optimally oriented flux (OOF) [11], and the cores [19]. These descriptors, unlike
our estimator, are tuned to find the dominant6 orientation at a point of interest. For a fair
analysis, we thereby consider 120 single fibers and apply the descriptors to infer the local

fiber geometry. Specifically, we measure the angular discrepancy  and the width

5Clean data are made “Rician distributed” at different scales and five images having the closest SNRs to {30, 20, 15, 10, 5} are taken
as noisy data.
6For these descriptors, the analysis of more complex local geometries requires separate postprocessing steps.
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estimation error rate  with Q ∈ {Hessian, Cores, OOF, ODF}, at 2,880 points that are
evenly sampled from the centerlines of these fibers.

Estimation of Local Orientation: Here, we first apply the ODF estimator at each point of
interest following Algorithm 1. For a fair comparison, we exclude the points that are
misidentified, i.e., ODFs that do not show both forward and backward orientations. This
corresponds to around 2% of the points when SNR≥10 dB and 12% when SNR= 5 dB. We
then apply other descriptors at the remaining points.

Table III(a) presents the mean of the angular discrepancy δ over the sampled points at
different SNRs. We observe that the image Hessian yields the highest discrepancies ranging
from 9.33° to 14.62° with increasing levels of noise. We also see that the cores are resistant
to noise with a difference of around 1.7° between its highest (8.90°) and lowest (7.16°)
discrepancies. Furthermore, the errors of the OOF descriptor are smaller than those of the
cores and the Hessian when SNR ≥ 10 dB, with values ranging from 6.23° to 7.30°.
However, it is more sensitive to noise than the cores, with a difference of around 3.1° in
discrepancy. Finally, our ODF estimator yields the lowest angular discrepancies ranging
from 6.12° to 7.55° and offers a slightly improved robustness to noise.

Estimation of Fiber Width: It is worth noting that in the case of the Hessian-based and the
OOF descriptors, the local orientation is identified via spectral decomposition. In the
presence of a tubular structure, the eigenvector associated with the smallest eigenvalue gives
the fiber orientation, whereas the other two eigenvectors can be used to measure the
alignment of the (fiber) surface normals with image gradients for width estimation [11]. In
the case of the cores, the measure of medialness is computed for different widths, and hence
the descriptor provides such an estimate by construction. Finally, the ODF estimator infers
the fiber width from (8).

Table III(b) shows the mean of the width estimation error rates ξ over the sampled points at
different SNRs. We observe that while the Hessian and the OOF descriptors achieve
comparable results with error rates of around 25% for SNR ≥ 10 dB, the cores yield lower
rates between 13% and 17%. The ODF estimator, on the other hand, achieves the lowest
errors among all descriptors, with rates ranging from 8% to 12% as the noise increases.
These results justify, along with the values of the angular discrepancy in Table III(a), the
reliability of the ODF estimator under noisy conditions. It is also worth noting that both the
cores and our method employ similar flux-based medialness measures. The low error rates
in Table III(b) indicate that such measures are particularly useful for scale estimation.

3) Extraction of Synthetic Fibers—Finally, we test the ODF-guided tracking method
(following Algorithm 2 with the parameters in Section III-A) on the synthetic fibers. Table
IV(a) shows the average rates (FP and FN) of misidentified geometries over 120 single and
120 branching fibers at different SNRs, whereas Table IV(b) shows the mean of the tracking
errors ε and τ. We consider the misidentification of a bifurcation xt as a false negative if xe is
not identified as a bifurcation or the position of the estimated bifurcation is not correct. We
first observe that the overall FP and FN rates are less than 1% and 3% for SNR ≥ 10 dB,
respectively. In particular, for SNR = 5 dB, only ten bifurcations are mislocated/missed,
which affects tracking of six branching fibers out of 120. More importantly, the method
yields subvoxel accuracies at all SNRs and achieves very low overall errors ε and τ of about
0.4 voxels and 0.04 voxels−1 for SNR≥10 dB, respectively. Finally, Fig. 8 shows the
resulting centerlines of selected fibers to visualize accurate extractions along with a few
erroneous cases.
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B. Experiments on Real Data
To test the proposed tracking method on real data, we conduct experiments on an MR image
of a healthy rabbit heart. The image is acquired [40] on an 11.7 T (500 MHz) MR system
comprising a vertical magnet (bore size 123 mm; Magnex Scientific, Oxon, U.K.), a Bruker
Avance console (Bruker Medical, Ettlingen, Germany), and a shielded gradient system (548
mT·m−1, rise time 160 μs; Magnex Scientific, Oxon, U.K.). Quadrature driven birdcage
coils with an inner diameter of 28 mm and 40 mm (Rapid Biomedical, Wurzburg, Germany)
are used to transmit/receive the NMR signals. An established fast gradient echo technique is
used (TE/TR = 7.5/30 ms) for high-resolution gap-free 3-D MRI, and the fixed heart is
scanned with an in-plane resolution of 26.5 μm × 26.5 μm, and an out-of-plane resolution of
24.5 μm. Following the reconstruction of this unique dataset, which is publicly available
[41], segmentation, denoising, and resizing steps are performed to obtain a 3-D image of
size 512 × 512 × 850. Fig. 1(b) shows a slice of the processed image, where the background
is almost white and the foreground has low and varying intensities. These images are
comparable to the noise-free synthetic images because the intensity histograms of the
foreground and the background are used to generate the data in Section IV-A.

Our algorithm is tested on the free-running Purkinje system, which is composed of 1) single
fibers running from one PMJ to another and 2) branching fibers with at least one PPJ. We
identified 208 Purkinje fibers with 77 PPJs, which correspond to about 80%7 of the free-
running PS reconstructed in [3] and have varying radii (1 to 3 voxels where 1 voxel ≈ 50
μm) and intensities. For quantitative evaluation, we manually annotate the centerlines8 { }
of the fibers and obtain the trajectories { } as explained in Algorithm 2 by using the
parameters in Section III-A. We compare our method with a minimum-cost path detection
algorithm implemented via fast marching [42].

Table V shows the mean and standard deviation of the spatial tracking error  and

smoothness difference  with Q ∈ {minimal path, ODF-guided}, over 208 fibers,
along with the rates (FP and FN) of misidentified9 geometries. Our algorithm yields a
tracking error ε of 0.78 ± 0.37 voxels and a smoothness difference τ of 0.12 ± 0.08 voxels−1,
outperforming the minimal path detection method. In particular, 34 fibers are tracked with
errors (ε) of less than 0.5 voxels, and 176 fibers with errors of less than 1 voxel. In addition,
in the case of identifying the local geometries, the rates of false positives and false negatives
are 6% and 9%, respectively. The algorithm failed at 7 PPJs by either not detecting the
bifurcation or not correctly identifying the branch directions. In those cases, we observe that:
1) the thicker branch affects the ODF estimation and mode detection; 2) some of the fibers
located in the vicinity of the cardiac muscle have very short (and undetected) branches; 3)
some of the fibers have complex local geometries around which the structure is “sheet-like,”
violating our tube model.

Fig. 9(a) shows both the manually delineated and the reconstructed free-running PS. The
extent of overlap demonstrates that the estimated ODFs have sufficient accuracy for
extracting the PS by using a simple tracking algorithm such as ours. We also perform
surface rendering of the image to show some of the resulting centerlines in Fig. 9(b) and the
ODFs in Fig. 9(c).

7Since the PS cannot be discriminated from the myocardium in MRI datasets, fibers can be tracked only while running in the cavities.
8For an unbiased annotation, we form densely sampled centerlines by fitting splines to the manually annotated points.
9The minimal path detection technique, unlike the ODF-guided tracking algorithm, cannot characterize bifurcations, as noted with “n/
a” in Table V.
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V. Concluding Remarks
We have proposed a novel descriptor to find the local fiber orientations and extract sparse
fibrous structures in intensity images. Our method employs a nonlinear filter to estimate the
orientation distribution function (ODF) at a point of interest. The filter is built from multiple
profiles that measure the intensity coherence and medialness of the estimated structures. The
estimation of the ODF is made robust by marginalizing the filter response over multiple
fiber scales (length and width). The local orientations are identified as the modes of the ODF
via the mean shift algorithm and guide the extraction of the fibers.

We observed via experiments on synthetic data that our descriptor provides accurate
estimates of the local orientations and outperforms other well-known descriptors. First,
defining the ODF as a marginal pmf prevents the restricted (fixed-scale) support of the filter
from affecting the identification of local orientations. In addition, by combining different
profiles, the descriptor yields sharp ODFs and is robust to moderate amounts of noise.
Moreover, although our formulation contains multiple parameters, the important ones are
{ , }, whose values are chosen according to the fiber shape, and N, which describes a
tradeoff between the computational load and accuracy. The values of the “concentration”
parameters {σ, β, ν} can be selected from a large spectrum without severely affecting the
performance. In principle, our method can be applied to images of other fibrous structures—
see [43] for the analysis of coronary arteries in MR angiograms. However, this may require
tuning the parameters { , , N}, which are application dependent.

The efficacy of the ODF-guided tracking method is demonstrated on the free-running
Purkinje system, a sparse fibrous network of unique importance in cardiac
electrophysiology. Compared to other stochastic tracking approaches, e.g., [30], [44], the
advantage of our method is its lower computational complexity. However, its performance
may deteriorate due to the accumulation of erroneous local estimates. In the case of the
Purkinje fibers, this occurs around a number of bifurcations at which our tube model is
violated. A promising strategy to resolve such cases would be to preclassify the geometries,
inspired by the descriptors that are capable of identifying “tube-like,” “sheet-like,” or “blob-
like” structures [12]. Nonetheless, the reconstructed PS is very accurate for our ultimate goal
of advancing realistic modeling of cardiac function.
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Fig. 1.
(a) Important stages of the proposed framework. (b) Processed MR slice with manually
delineated fibers (red) as well as PMJs and PPJs (green).
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Fig. 2.
(a) Identifying the fiber geometry at x via oriented cylinders (a few candidate tubes in blue,
optimal ones in red). (b) Support of the pivoting filter.
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Fig. 3.
(a) Top view of the 3-D synthetic fiber (centerline in red and low-intensity regions in blue).
(b) An image slice where 1) specific regions (divided by blue lines) are corrupted at
different levels of noise and 2) eight points (in red) are manually selected for analysis. (c)
Appearance profiles pA (for N = 642) whose values are color coded (blue—low, red—high)
at these eight points.
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Fig. 4.
Value of pD for the true orientation s* as a function of the absolute intensity difference ΔI
and the filter radius rF.
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Fig. 5.
Noisy image slices with fibers of different widths 2r* ∈ {1, 3, 5} and the medialness profiles
pM (for N = 642) at point y.
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Fig. 6.
(a) Top view of the synthetic fibrous region with branching and crossing fibers of different
widths and 14 points of interest at which the local ODFs are estimated. (b) 14 ODFs along
with their modes (black arrows).
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Fig. 7.
Effect of corruption with Rician noise on a synthetic image slice.
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Fig. 8.
Extracted centerlines (yellow) of selected synthetic fibers at SNR = 5 dB with circular
regions (red) showing algorithm failure.
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Fig. 9.
(a) Three-dimensional illustration of the free-running PS: Ground truth fibers (red) and our
reconstruction (blue) with the PMJs and PPJs (green). The centerlines are intentionally
shifted relative to each other to facilitate visualization. (b) Visualization of selected Purkinje
fibers and their reconstruction: 3-D rendering of selected volumes of interest (green) and the
extracted centerlines (red). (c) Purkinje fiber and the ODFs estimated (for N = 2562) at six
points on its centerline.
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TABLE I

Performance Evaluation Measures

Angular discrepancy δ

Width estimation error
rate ξ

Spatial tracking error ε

 where 

Smoothness difference τ

 where 
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Table V

Performances of Different Tracking Methods on the Free-Running Purkinje Fibers

Algorithm
Geometry ID Errors Tracking Errors

FP FN ε τ

Minimal path n/a n/a 1.33 ± 1.07 0.40±0.62

ODF-guided 6 9 0.78 ± 0.37 0.12±0.08
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Algorithm 1

ODF estimation and identification of local orientations

1) Place the filter at the point of analysis x.

2) Consider the uniform priors p(l; x) and p(r; x) over  and , respectively, and define the set of orientations as  = {sn}.

3) Estimate the value of p(sn; x) from (1) using (5), ∀sn ∈ .

4) Perform spherical clustering and identify the local fiber/branch orientations as the modes  of the ODF.
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Algorithm 2

ODF-guided tractography in 3-D images

1) At the i-th step, place the filter at x = xi.

2) Find the radius r̃i−1 of the segment along si−1 from (8).

3) Define the first prior p(r; xi) as  (r̃i−1, σ) over  and the second prior p(l; xi) as uniform over .

4) ODF estimation & mode detection: Using a threefold icosahedral tessellation for discretizing the unit sphere,

• a. Obtain the set i = {s: 〈s, si−1〉 > 0,s ∈ S2}.

• b. Estimate the value of p(sn; xi) from (10), ∀sn ∈ .

•
c. Perform fiber/branch orientation analysis by detecting the modes  of the ODF via spherical clustering.

5) Mode refinement: Having found initial estimates of the C modes, using a fourfold tessellation and for c = 1,…, C,

• a. Obtain the set .

• b. Estimate the value of p(sn; xi) from (10), .

• c. Refine the mode  via spherical clustering.

6) Set  and find , i.e., the next point on the c-th branch, ∀c.

7) Iterate between 1–6 by setting i = i + 1 until a user-defined termination criterion is met, e.g., Σnp(sn; xi) < 0.1.

8) Obtain the tracked fiber as the sequence of points { }, ∀c.
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