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Abstract

We consider the inverse electrocardiographic problem of computing epicardial potentials from a
body-surface potential map. We study how to improve numerical approximation of the inverse
problem when the finite element method is used. Being ill-posed, the inverse problem requires
different discretization strategies from its corresponding forward problem. We propose refinement
guidelines that specifically address the ill-posedness of the problem. The resulting guidelines
necessitate the use of hybrid finite elements composed of tetrahedra and prism elements. Also in
order to maintain consistent numerical quality when the inverse problem is discretized into
different scales, we propose a new family of regularizers using the variational principle underlying
finite element methods. These variational-formed regularizers serve as an alternative to the
traditional Tikhonov regularizers, but preserves the L, norm and thereby achieves consistent
regularization in multi-scale simulations. The variational formulation also enables a simple
construction of the discrete gradient operator over irregular meshes, which is difficult to define in
traditional discretization schemes. We validated our hybrid element technique and the variational
regularizers by simulations on a realistic 3D torso/heart model with empirical heart data. Results
show that discretization based on our proposed strategies mitigates the ill-conditioning and
improves the inverse solution, and that the variational formulation may benefit a broader range of
potential-based bioelectric problems.

Index Terms

forward/inverse electrocardiographic problem; hybrid finite element method; variational
formulation; regularization

[. Introduction

Electrocardiography (ECG) investigates the relationship between the electrical activity of
the heart and its induced voltages measured on the torso surface. This relationship can be
characterized mathematically as a forward problem in which one estimates the body-surface
potentials based upon cardiac activities represented either by epicardial potentials or current
sources within the heart; or as an inverse problem where the goal is to non-invasively
estimate cardiac electrical activity from voltage distributions measured on the body surface.

This paper studies one type of potential-based inverse ECG problem: to reconstruct
epicardial potentials from recorded body-surface potential maps. This inverse problem is a
basis for some promising clinical applications, such as non-invasive diagnosis [1], [2] and
guidance for intervention [3], [4]. The underlying bioelectric model is a potential-based
boundary value problem [5], [6]. ECG simulation involves solving the mathematical
equations over a geometric domain that approximates the anatomical structure of a human
body. Computational methods are applied to obtain a numerical solution suitable for clinical
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purposes. In order to validate the results obtained, one needs to ensure that the simulation
accurately reflects the actual process concerned, a step often known as Validation and
Verification (V&V) in the engineering literature [7].

The goal of this paper is to develop discretization and refinement strategies to be employed
when solving the inverse ECG problem with finite element methods (FEM). Refinement
decreases discretization errors by increasing the resolution (or fidelity) of the numerical
approximation at the cost of increased computational work. With such strategies in place,
one can specify an acceptable discrepancy between the true and approximate solutions and
can tune (or refine) the numerical and geometric approximations accordingly. Although
refinement methods are widely used in many engineering fields including the ECG
community, they are mostly targeted towards the “forward simulation” [8]-[10], which may
be inappropriate for the inverse ECG problem [11].

The inverse problem requires different discretization considerations from its corresponding
forward problem because of its ill-posed nature, i.e., small input errors may result in
unbounded errors in the solution. However, the literature on discretization specifically for
the inverse problem is limited. Although the impact of discretization of the epicardium and
the body surface has been investigated [12], it still remains an open question as to how
discretization is related to the ill-conditioning, and accordingly how one should develop
discretizations that optimize the problem’s conditioning whilst minimizing the
approximation error. This paper aims to address this gap at a practical level.

To tackle the ill-posedness of an inverse problem, one typically needs “regularization”
techniques, which impose constraints on the original problem so as to yield a better-posed
problem [13]-[17]. While most regularization methods are applied in the problem-solving
phase, it is worth noting that discretization itself is one form of regularization, impacting the
numerical conditioning of the discretized problem [18]. A sensible discretization can be
readily combined with classical regularization methods to achieve additional improvement
to the inverse problem solution.

Using a 2D torso model, our prior study [11] proposed finite element refinement strategies
specifically for the inverse ECG problem and introduced hybrid finite elements in 2D. This
paper extends our finite element discretization study to 3D for simulations based on realistic
human anatomical structures with clinical applications.

Another major contribution of this work is a new formulation of regularizers that facilitates
finite element simulation under multi-scale simulations. Formed by the variational principle
underlying the FEM, the variational-formed regularizers work within the classic Tikhonov
regularization framework but have several advantages over the traditionally implemented
Tikhonov regularizers. First, the variational regularizers keep the connection between the
discretized model and its underlying continuous model, and automatically conform to
certain variational properties inherently assumed by the discrete model resulting from FEM.
Second, the variational regularizers preserve their norms, and thereby maintain consistent
regularization when the inverse ECG problem is computed under multi-scale simulations.
Third, the variational formulation enables easy construction of the discrete gradient operator,
which is traditionally difficult to obtain over irregular mesh. Fourth, it allows efficient
imposition of multiple constraints simultaneously. This formulation may provide new
insights into a broader range of potential-based bioelectric problems.

The paper is structured as follows. Section Il describes the mathematical model of the
forward/inverse ECG problem and its discretization by FEM. Section 111 discusses the ill-
posedness, based on which we propose the discretization strategies for the inverse ECG
problem. Section IV presents the variational-form-based regularization. Section V presents
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our simulation results based on a realistic 3D torso model. Section V1 presents further
discussion and proposed future work.

[l. Problem Formulation of the Inverse Problem

An inverse problem is typically solved within a framework known as model-based
optimization or PDE-constrained parameter estimation [19]. In such a framework, one first
builds a forward model that is able to predict measurement data if the source parameters (in
our case, epicardial potentials) are given. The forward model is often governed by partial
differential equations (PDE). Then the inverse model is formed as an optimization problem
to determine the values of parameters such that their resulting prediction is closest to the
measurements.

In this section we present the mathematical model of the forward/inverse ECG problem. We
then review how to convert the continuous model into a discrete system by using FEM.

A. Mathematical Model
The potential field u within a torso is modeled by the Laplace equation as follows:

V- (o(x))Vu(x)=0, xeQ (1)
u(x)=u,(x), x el )
7 - o(x)Vu(z)=0, =z € I, @)

where Q is the torso volume bounded by the epicardial surface I'y and the torso surface I'y.
Uy is the epicardial potentials (a Dirichlet condition), and o(x) is the conductivity. Eq (3)
means no electric flux leaves the body into the air.

The forward problem estimates the potential field u(x) given uy. The inverse problem aims
to recover uy from u(x) that reside on I't.

B. Finite Element Discretization

Here we describe how to apply the finite element method (FEM) to discretize Eq (1)—(3)
over a realistic 3D torso domain. A comprehensive FEM formulation can be found in our
previous paper [11]. The FEM tessellates the 3D domain Q into a mesh, which is normally
composed of non-overlapping tetrahedral, prismatic or cubic elements. One then builds an
approximate solution that is a combination of certain element-wise basis functions. The
solution is identified by making it satisfy the differential equation in the Galerkin sense.

We consider linear FEM: u(x) = %; Q;pi(x), where (; is the voltage at node i, and ¢;(X) is the
linear hat function associated with node i and is non-zero only on its adjacent elements.
Substituting the expansion into the differential equation (1), applying the Galerkin method
and integrating by parts, one will get a linear system as follows:

( A\ﬂv A\'T )( u, ):( _AVH )ll
Ay Apy u, —Apy " (4)
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where mesh nodes are divided into three groups, indicated by the subscripts: the nodes on
the heart surface (H), on the torso surface (T), and in the interior torso volume (V). uy, urt
and uy denote the vectors of voltages at each group of nodes. The submatrices are given by:

A=V, oVer)ije L ke K;J K e {V,T, H} (5)

where (-, -) means the inner product taken over the domain Q: (Vg;, Vo;) = Jo ViV dQ.
The matrix on the left side is known as the stiffness matrix and the right-side vector is the
“forcing term” induced by the known Dirichlet boundary conditions.

Normally, no element spans from the heart surface to the torso surface, and Aty = 0. From
Eq (4) we derive the relation between the torso potentials ut and the epicardial potentials

Un:

u,=Ku,, K=M"'N. ®6)

Here K is often referred to as the transfer matrix. M=A,, — AT‘,A;‘{A‘,T is well-conditioned
and invertible. N=A,,A'A,, is severely ill-conditioned.
Based on (6), the discretized forward ECG problem can be stated as: calculate uy given uy

and K. Its corresponding inverse problem is: given ut and K, find uy that minimizes the
functional ||Kuy — ug|| in certain appropriate norms.

[1l. Discretization for Inverse Problem

A. lll-posedness of the Inverse Problem

Despite having a unique solution [20], the above inverse ECG problem is severely ill-posed
and its solution is highly unstable. The ill-posedness stems from information of the heart
surface being attenuated when propagating through the body volume conductor. Hence the
inverse calculation is a process of amplification in which both the signal and noise are
magnified. We briefly discuss how the discretization process translates the ill-posedness into
an ill-conditioned numerical model problem, i.e., the transfer matrix. We refer readers to our
previous study [11] for details.

The magnitude of amplification (hence the degree of ill-conditioning) can be estimated by

O((%)"’), where ry and ry are the average distance from the center of the heart to the heart
surface and to the torso surface. It is an exponential function in m, the spatial frequency of
the epicardial potential distribution. In a discrete problem, the spatial frequency bandlimit is
dictated by the resolution on the epicardium, in analogy with the sampling theory about the
bandlimit of a sampled signal with its sampling rate. Therefore arbitrarily refining the heart
surface may not be appropriate for solving the inverse problem.

We evaluate the conditioning of the discrete problem by examining the singular value
decomposition (SVD) of the transfer matrix K. Initially introduced in [21] and further
developed in [11], the SVD analysis reveals how each frequency component of the
epicardial potential contributes to the torso-surface potential, and the contribution is given
by the corresponding singular value. The SVD also builds the concept of the valid space and
the null space. The valid space of K is spanned by its right eigen vectors corresponding to
non-trivial singular values, and the fraction of uy in that space can be recovered. The null
space of K corresponds to near-zero singular values, and the fraction of uy in this space is
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not recoverable. Therefore, a better conditioned transfer matrix can be characterized by a
slowly descending singular value spectrum with a broader range of non-zero singular values,
whereas a poorly-conditioned transfer matrix is characterized by a large portion of near-zero
singular values.

The SVD analysis provides a useful means for estimating the conditioning of an inverse
problem, regardless of regularization methods, regularization parameters, input noise or
other method-specific factors. Different discretization choices lead to different singular
value patterns of the transfer matrix. We use this methodology to evaluate our discretization
strategies below.

B. Discretization Strategy for the Inverse Problem

In [11], we argue that through examining the solution procedure given by FEM, one can see
three factors that jointly dictate the discretization quality for the inverse problem: 1) how
accurate one should represent the cardiac source uy, 2) how to approximate the volume
conductor (the stiffness matrix on the left side of (4)), and 3) how to compute the heart-to-
volume projector Ay H.

Section I11-A has argued that the fidelity on the heart surface determines how much
information of epicardial potentials one seeks to recover. Meanwhile, the discretization of
the torso volume determines how much of that information can actually pass through the
body and be recoverable. The torso volume should be discretized in the same resolution as
the heart surface, otherwise it will cause unnecessary, “artificial” ill-conditioning reflected
as an expanded null space in the transfer matrix. Finally, to better approximate the heart-to-
volume projection, one needs to refine the high potential gradient region around the heart.

Based on these considerations we proposed the following finite element discretization
guidelines for the inverse problem and verified the guidelines on a 2D torso model [11].
This paper extends these guidelines to 3D torso models. Results are presented in Section V.

»  Set the resolution on the heart surface based on the problem of interest, but be
cautious not to add additional fidelity beyond what is needed.

»  While keeping the epicardial surface resolution fixed, increase the resolution in the
normal direction to the heart surface. Such refinement captures the potential field
around the heart where the spatial gradient is high, thereby improving the heart-to-
volume projection Ay n.

»  With the above two items in place, refine the volume conductor to a sufficient level
S0 as to capture both the features of body-surface measurement and the features
implied by the fidelity on the heart surface. For computational efficiency,
exceeding that level is unnecessary.

» Increasing the resolution of the torso surface is desirable, but only when the new
resolutions are associated with measured data.

C. Hybrid Finite Elements

The discretization guidelines mainly require refining the region around the heart while
preserving the discretization of the heart surface. For a tetrahedral element mesh, which is
popular in ECG simulation due to its simplicity, the above requirement will lead to flat
tetrahedra with high aspect-ratios, which may induce numerical instability by themselves
[22].

To overcome this issue, we adopted a hybrid mesh scheme that places layers of prismatic
elements around the heart before filling the rest of the body volume with tetrahedral

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2011 June 7.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Wang et al.

Page 6

elements. Unlike tetrahedral elements, a prismatic element effectively decouples the
resolution in its normal direction and the resolution on its base [23], thus enabling us to
refine the direction normal to the heart without changing the resolution of the heart surface.

The hybrid mesh is simple to implement. Mesh generation starts from triangulated bounding
surfaces for each organ and tissue. Prisms are padded around any organ by extruding its
trangulated surface into the body volume. The layers and the thickness of prisms can be
adapted when the potential gradient is expected to change dramatically. The padded prisms
form a new closed, triangulated surface, upon which standard tetrahedral mesh generation
can be performed to fill the rest of the volume. The prisms and tetrahedra conform well at
their bounding interface.

D. Truncation from High-Order Finite Elements

An alternative to spatial refinement is to use high-order finite elements, which achieve
higher accuracy with more efficiency than linear finite elements. High-order FEM often
increases the resolution uniformly, so we still need to limit the resolution on the heart
surface. The traditional way is to use transitional elements but they are difficult to
implement. Instead, we decompose the discrete model (6) into a hierarchy of an element-
wise linear component, an element-wise quadratic component, and so on. We then extract
and solve only the linear component of epicardial potentials, by truncating the transfer
matrix properly.

The high-order finite elements achieve the goal of refining the volume and the heart/torso
interface, whereas the truncation keeps the epicardial resolution unchanged. Compared to
the method of hybrid mesh, the truncation scheme provides a seamless solution for selective
refinement. Conducted in the polynomial space, the truncation maintains the smoothness of
the solution and circumvent the aspect-ratio problem that obstructs spatial refinement
methods. The details of our truncation scheme can be found in our previous work [24].

IV. Regularization via a New Family of Variational-Form-Based Regularizers

A. Classic Tikhonov Regularization

The most common regularization for an inverse problem is the Tikhonov method given as
follows:

2 2. 2
uH:argmin{”KuH - u7” +A“(”LuHH2)} @)

where || - ||2 is the Euclidean norm. The first term is the residual error and the second term is
the regularizer constraining certain properties of the epicardial potentials. There are three
basic Tikhonov schemes depending on the choice for L. The zero-order Tikhonov (ZOT)
takes L as an identity matrix, constraining the amplitude of epicardial potentials. The first-
order Tikhonov (FOT) takes L as a gradient operator, constraining the spatial gradient. The
second-order Tikhonov (SOT) takes L as a surface Laplacian operator, constraining the
curvature of epicardial potentials.

B. Operators in a Variational Form

1) Motivation—Our study of variational formulation originated from the quest for a
closed-form gradient operator defined over a mesh: given a potential field uy located on
some mesh nodes, find a matrix Lg such that Lguy gives the magnitude of Vuy located on
the same set of nodes. The gradient operator plays an important role in PDE-constrained
optimization as a basis for Newton’s method. For the inverse ECG problem, the gradient
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operator over a heart surface enables gradient-based regularization methods, which have
reported superior results in recovering spatio-temporal characteristics of epicardial data,
such as the first-order Tikhonov [25], [26] or recently total-variation regularization [27].

Although a gradient field is not difficult to compute (by Taylor approximation or Gauss-
Green theorem), it is difficult to derive an accurate discrete gradient operator in an explicit
matrix form, especially on irregular, unstructured meshes. The matrix form requires
representing the gradient at one node by the data at its neighboring nodes, an ill-posed
problem when mesh nodes are irregularly distributed. The study [27] obtains the gradient
operator over the heart surface via the boundary element solution of the Laplace’s equation.
This derivation can be found in Equation (13) in [5].

This method does not work for finite element methods because FEM and BEM treat
boundary conditions differently. BEM includes both the Neumann boundary condition and
the Dirichlet boundary condition on the heart surface, thus enabling a gradient operator
relating the two. FEM only includes the Neumann boundary condition, and applies the
Dirichlet boundary condition later as an external constraint. So a gradient operator of this
form is not available.

2) Variational-Based Formulation—We borrow the name “variational” from the
context of FEM, upon which the formulation is based. The main idea is to consider
epicardial potentials not as a vector, but as a continuous function represented by finite

element expansion: ’7’,,(33)=Zku290k(93), k € H. The potential field is evaluated by the
continuous L, norm, which is defined as:

~ ~ o~ -~ 1/2
[”H| =(”muﬁ)l/2:(fr uHquS) .
Ly H

(8)

Substituting the finite element expansion into (8) yields

@]

2
- t J

where M is the mass matrix over the heart. Similarly, one may evaluate the L, norm of the
potential gradient field by

I[VﬁH|

2 . )
=l Ve Yl Ve p=ulsu,
L2
i J (10)

where S is the stiffness matrix over the heart. Detailed definitions of M and S are given in
Table I. The Euclidean norm || - ||o with an operator L has the property that

2w, [=u) L7 e, (1)
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Hence if L is to describe the magnitude of the field i, it should satisfy LTL = M. Such L
can be computed as the Cholesky factor of M and inserted into (7) for the zero-order
Tikhonov representation, as opposed to the traditional choice of an identity matrix.

If L is to describe Viiy, it should satisfy LTL = S, or equivalently be the Cholesky factor of
S. We name such L the “variational-form” gradient operator because it is equivalent to the
real gradient operator in the variational principle. L can be used in (7) for the first-order
Tikhonov regularization.

Table | compares variational-formed operators with traditional operators up to the second
order (the surface Laplacian). One may extend this formulation to operators regarding even
higher-order Sobolev norms, provided that the finite element formulation maintains stronger
differentiability — the variational Laplacian operator requires C1 continuous finite elements;
higher-order operators may need CP continuous elements. This paper only considers C°
elements and accordingly, constraints up to first-order derivatives.

The Cholesky decomposition always exist because the mass matrix, the stiffness matrix or
matrices formed by higher-order derivatives are symmetric and at least positive-semi-
definite. More discussion of their Cholesky decomposition will be presented in the
Discussion section.

C. Norm Preservation

One advantage of the variational-form operators over conventional discrete operators is that
the former preserves the norms under different resolutions - the continuous Ly norm is
independent of the discretization resolution, and the weights made by FEM basis functions
take mesh spacing into account. Consequently, the variational operators achieve consistent
regularization when the inverse problem is computed under multiple scales. In contrast,
conventional regularizers are evaluated by the Euclidean norm, which heavily relies on the
discretization resolution and cannot effectively relate the discrete model with its underlying
continuous field.

Taking the zero-order Tikhonov for example with the variational regularizer, changing mesh
spacing affects basis functions and then the mass matrix, so the L, norm of epicardial
potentials is preserved. With the conventional identity matrix, however, the regularizer’s
Euclidean norm is sensitive to the mesh resolution.

D. Imposition of Multiple Variational Regularizers

Tikhonov regularization with multiple spatial/temporal constraints [28], [29] is often
desirable. Each constraint imposes its own bias on the inverse solution, so combining several
constraints may moderate the bias and provide a more comprehensive account of the
solution. Inverse solutions are sensitive to the values of regularization parameters, and by
distributing regularization to multiple constraints one may improve the robustness of the
solution to any individual parameter.

The Tikhonov method with multiple constraints is given as

[,

w, :argmin”KuH —u, | )§+Zl?
i (12)
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-1
. 2 .
Its solution is conceptually expressed as UH=(KTK+Zi147(LfTLi)) K", For numerical
stability, in practice, the minimization is achieved by solving a linear least-squares problem
of the form:

2

uH:argminll( Ii )uH—( ?g’ )]] .
Z 2 (13)

Eq (13) can be solved by standard routines such as the QR factorization, or most efficiently
by the bidiagonalization algorithm [30].

With multiple constraints, AL is made by concatenating each A;L;. Note that although (13) is
in the Euclidean norm, if L; is the variational regularizer, ||Luy||» actually gives the value of
the continuous L, norm.

To promote additional efficiency, one may construct a compact constraint, denoted as L~
that is equivalent to the superposition of all constraints:

L7L =Y 2|LTL, i #o.
i=1 (14)

Eq (13) then just takes L™ in place of all Ljs. Moreover, since only the term LT L; is needed,
one may directly use the mass matrix or the stiffness matrix, without factorizing each L;.
The compact operator greatly saves memory when the problem size is large and there are
many constraints. It also improves efficiency when all ;s need to be optimized over a large
number of admissible values.

A. Simulation Setup

We tested our proposed discretization guidelines and the variational-form-based
regularization technique using finite element simulations of a phantom experiment
consisting of a live canine heart suspended in a human torso tank filled with a homogeneous
electolytic medium [31]. This experiment enables simultaneous recording of epicardial and
torso potentials in vivo. Both the heart and torso boundaries are triangulated surfaces
tessellated from MRI scans. Voltages were measured at mesh nodes. The heart mesh
consists of 337 nodes and 670 triangles, and epicardial potentials are recorded at each node
over a complete cardiac cycle. The torso surface consists of 771 nodes and 1538 triangles.
From the surface meshes, we generated the volume meshes in different ways, in order to
identify the impact of discretization on the finite element solution for the inverse ECG
problem. The mesh generation strategies will be given with each test presented below.

With each mesh, we conducted a forward simulation to obtain the torso potentials and the
transfer matrix K. After adding noise to the torso potentials, we inversely calculated the
epicardial potentials, electrograms and isochrones, and compared these reconstructed heart
data with recorded data. Unless otherwise stated, the inverse calculation uses the Tikhonov
method given in (7) and solved in (13), whereas the regularization parameter A was
determined by an exhaustive search. While not optimal, the Tikhonov method enables us to
consistently isolate the impact of changing the discretization.

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2011 June 7.
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The numerical conditioning of the discretized inverse problem is evaluated by examining the
singular value spectrum of the transfer matrix K and its components N and Ay y. Inverse
solutions are measured both quantitatively and visually. Quantitative measures include the
relative error (RE) and the correlation-coefficients (CC) between the reconstructed
epicardial potentials (denoted as () and the measured potentials (denoted as uy). RE and
CC are defined as follows:

”uH - “H”:

Hll (15)

CcC= (an _ﬁM)T(uH B MM)

|

n Uyl g U

[ u

2 (16)

Oy and uy are scalars representing the mean value of Oy and uy, respectively. Visual
assessment of the inverse solutions includes visualizing the reconstructed epicardial
potential map and the activation isochrone map. The activation time at each site is
determined by the time instant with the most negative temporal derivative of its electrogram
(i.e., the minimum du/dt).

B. Regularization via Discretization

1) Resolution of the Pursued Inverse Solution—Here we show how the desired
fidelity of an inverse solution affects the ill-conditioning of the inverse problem. We present
a multi-scale simulation over a model composed of a sphere (approximating the heart)
contained in a torso tank. The spherical geometry made it easier for us to set different
discretization scales for the heart. With the torso mesh unchanged, we tested three sphere
models, each with 134, 236 and 612 nodes on the surface. Fig 1 shows that the ill-
conditioning of the transfer matrix is worsened with the increase of the heart resolution, or
equivalently, the fidelity of the inverse solution.

Fig 1 indicates that arbitrary refinement may be inappropriate for inverse problems —a
discrete heart model of 612 nodes already has singular values of K below double-digit
precision. Considering the extra geometric complexities, the inverse problem with a real
heart is even more ill-conditioned than the sphere model considered here. Therefore we have
good reason to believe that one should cautiously discretize the heart surface based on
practical needs rather than perform arbitrary refinement.

2) Discretization of the Torso Volume—Here we explore the impact of the
discretization of the torso volume. Keeping both the torso surface and the heart surface
unchanged, we set the torso volume mesh in four resolutions. Fig 2 shows the singular
values of the resulting transfer matrix K and its components Ay . Panel A shows that
volume refinement significantly improves the “heart-to-volume” projector Ay H, because
such refinement well represents the high-gradient region around the heart. The improvement
of Ay H subsequently improves K.

The way we interpret the singular value spectra of K in Panel B exemplifies how to evaluate
the conditioning of a discrete inverse problem. With a good discretization (37,444 elements),
the singular values descend slowly, reflecting the intrinsic ill-posedness of the underlying
continuous problem. In contrast, with a coarse discretization (10,454 elements), the singular
values of K abruptly drops to near zero from the position 175 among a total of 337 values,
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enlarging the proportion of the null space of K. This expansion of the null space represents a
supplementary ill-conditioning not stemming from the intrinsic ill-posed nature, but rather
caused by insufficient discretization. As discussed in Section I11-A, the resolution on the
epicardium sets the frequency bandlimit of potentials one seeks to recover, whereas the
resolution of the volume conductor determines the bandlimit that is actually solvable. When
the former exceeds the latter, the formed transfer matrix K cannot hold the relationship of
the two frequency bandlimits, resulting in an artificially introduced null space. This
discrepancy should be and can be avoided, so we regard the smoothing of singular values as
a sign of improvement in the conditioning of the inverse problem.

One may see that refinement from 27,361 elements to 37,444 elements does not noticeably
change the singular value spectra of the matrices concerned. This is because the
improvement brought by discretization is bounded by the ill-posed nature of the continuum
problem. Hence over-refinement beyond a certain level is not cost effective.

To further compare the quality of the numerical systems shown in Fig 2, Fig 3 shows their
reconstructed epicardial potential maps at several representative time instants in a cardiac
cycle. In early activation phase (3 ms after the QRS onset), the refined mesh (Mesh 3) better
reconstructs the amplitude than the coarse mesh (Mesh 1). When epicardial potentials
exhibit diverse pattern (21 ms), the refined mesh outperforms the coarse mesh in recovering
the saddle region in the center of the heart. Also at this instant, the iso-potential contours
from Mesh 2 and 3 outline the negative minimum point located at the center left of the
measured potential map, while the contours from Mesh 1 captures this feature poorly.

Fig 4 presents the activation isochrones derived from the epicardial potentials presented in
Fig 3. It shows that volume refinement improves the recovery of the activation time,
particularly eliminating artifacts in the activation map.

3) 3D Hybrid Mesh Setup—The hybrid mesh was formed by padding layers of prisms
around the epicardium (or the surface of any tissue). Prism elements then form a new closed
triangular surface (like an enlarged heart), from which we used BioMesh3D [32] to generate
tetrahedral mesh for the rest body volume. See Fig 5 for illustration. The refinement in the
normal direction was achieved by making more layers of thinner prisms.

4) Refining the Normal Direction—We explored the impact of the resolution in the
normal direction by refining a region of prism layers around the heart while fixing the rest of
the volume mesh. We set the “prism zone” to be within 10 mm from the epicardium, and
create three hybrid meshes having 1, 2 and 4 layers of prisms within the “10mm prism
zone”. The thickness of prisms are 10mm, 5mm and 2.5mm accordingly. All three meshes
share a coarse tetrahedral mesh in the volume (8106 tetrahedra), which is fixed so as to
isolate the effects of refinement in the normal direction. To isolate the effect induced by
prisms, we compared the hybrid meshes with a pure tetrahedral mesh in approximate
resolution.

Fig 6 presents the singular values of the heart-to-volume projector, Ay 4, and the transfer
matrix, K. Compared to the pure tetrahedral mesh, all three hybrid meshes improve Ay H
significantly and improve K moderately. Panel B shows that refining the normal direction
beyond a certain level may not 7 compares the activation map derived from the
reconstructed epicardial potentials. Hybrid meshes result in better recovery of activation
isochrones.

The effect of the normal-direction resolution is more evident when the inverse problem is
solved by the gradient-oriented first-order Tikhonov (FOT). We implemented the FOT using
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the variational-formed gradient operator. Fig 8 shows the recovered epicardial potentials at a
representative instant, when the potentials exhibit the most diverse spatial pattern. Refining
the normal direction improves RE and CC slightly, but recovers a larger proportion of the
potential gradient field on the epicardium, as indicated by rgraq rising from 76% to 91%.
Igrad IS the ratio of the computed value to the real value of the norm of the gradient field ||
Vuy||- Maintaining sharp gradients is an important goal in inverse calculation, because the
Tikhonov method tends to over-smooth its inverse solution.

Such improvement is achieved in two ways. First, refinement in the normal direction
assumes higher gradients to be represented by discretization, thereby improving the transfer
matrix. Second, the refinement increases the magnitude of the stiffness matrix, which then
enhances the regularizing effect of the variational gradient operator (based on the stiffness
matrix). This test exemplifies how discretization choices may achieve regularization effects
and affect inverse solutions.

5) Volume Refinement with the Hybrid Mesh—This test was meant to be a
comparative study to the volume-refining test presented in Section V-B.2. Because the test
uses tetrahedral elements only, refining the volume inevitably changes the discretization of
the heart-to-volume interface. With the hybrid mesh, we are able to isolate the impact of
volume refinement by fixing the prism mesh around the heart while refining the rest of the
volume. We set two layers of 5mm-thick prisms so as to reasonably approximate the
gradient field around the heart. The rest of the torso volume was filled with 8,106, 13,635
and 23,361 tetrahedral elements respectively, with the torso surface triangulation unchanged.
Fig 9 presents the resulting Ay w4, N and K. It confirms our conjecture that the extension of
singular values N and K are attributed to the refinement of interior volume, not the
refinement of the heart-volume interface. Note that Ay y was intact in this test because the
discretization of the heart-volume interface was fixed by prism elements.

C. Variational-Form Regularizers

1) Variational Gradient Operator in Regularization—Here we demonstrate the
efficacy of the variational gradient operator given by Table | when used in the first-order
Tikhonov regularization(FOT). We compare the FOT with conventional zeros-order
Tikhonov (ZOT) and second-order Tikhonov (SOT). The ZOT uses an identity matrix as
regularizer. The SOT uses a discrete Laplacian operator obtained by solving a least-square
problem arising from second-order Taylor expansion at each point, proposed by [33]. Fig 10
compares the epicardial potentials reconstructed by the three methods. Overall, the FOT and
SOT perform closely, both outperforming the ZOT. The FOT sometimes outperforms the
SOT in capturing local spatial patterns or iso-potential contours: e.g., the contours at 10 ms,
the saddle point at the heart center at 21 ms, and the iso-potential contours at 27 ms. These
observations are reasonable, for the Laplacian regularizer tends to smooth contours whereas
the gradient-based regularizer preserves contours better.

2) Norm Preservation in Multi-Scale Simulation—In multi-scale discretization,
variational-form operators preserve the norm because they consider the continuous Ly-norm
which is irrespective of resolution. In contrast, conventional discrete operators consider the
Euclidean norm, which depends on the size of discretization.

We illustrate this point by comparing the traditional regularizer and the variational one
under the zero-order Tikhonov regularization (ZOT). The traditional regularizer is an
identity matrix, whereas the variational-formed regularizer is derived from the mass matrix
given by Table I. Each regularizer was tested with two discrete models: a coarse Mesh 1 and
a uniformly-refined Mesh 2. On the heart surface, Mesh 2 has four times as many nodes as

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2011 June 7.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Wang et al.

Page 13

Mesh 1, i.e., the discrete problem yielded by Mesh 2 is four times the size of that from Mesh
1.

Fig 11 compares the L-curves resulting from the multi-scale test of each regularizer. Panel A
shows the L-curves from the identity matrix, and Panel B shows the L-curves from the mass
matrix. In Panel A, refinement pushes the L-curve to the upper right, indicating that
refinement increases both the residual error and the constraint (here the solution norm). In
contrast, in Panel B the L-curve is not significantly affected by refinement. Note that Panel
A and B have different axis scales.

Fig 11 marks the value of A associated with the corner of each L-curve, which typically
estimates a reasonable amount of regularization one should apply. In Panel B, both the
residual error and the solution norm at the corner are preserved during refinement. In Panel
A, the residual error and the solution norm at the corner are nearly doubled. Recall that the
size of the inverse solution vector is increased by four times from Mesh 1 to Mesh 2, but ||
unl|, the Euclidean norm of the solution vector, is only doubled. This indicates that the
traditional Tikhonov regularization tends to over-smooth the inverse solution when
discretization is refined, causing inconsistent regularization under multi-scale simulations.

This inconsistency is also manifested in Fig 12, where we compare the inverse solutions at a
time instant when the epicardial potential pattern is the most diverse. When refining Mesh 1
to Mesh 2, the identity-matrix regularizer yields inconsistent potential patterns, increasing
the relative error from 0.50 to 0.53. In contrast, the variational-formed regularizer maintains
the solution pattern over refinement, reducing the error from 0.48 to 0.42.

VI. Discussion

A. Finite Element Discretization

Our primary goal is to explore how the finite element discretization of the ECG model
influences the numerical conditioning of the inverse ECG problem, so as to formulate a
numerical problem optimal for inversion. While there are a large number of research studies
targeted at stabilizing the ill-posedness by various regularization techniques, few studies
concentrate efforts on improving the numerical quality of inverse problems before their
inverse solutions are sought. In fact, proper discretization strategies can be used in
combination with regularization methods so as to achieve additional improvement to the
inverse solution accuracy.

To assess the impact of discretization, our methodology includes testing different finite
element discretization strategies and then evaluating their resulting transfer matrix (the
inverse problem) by singular value analysis. We then evaluate the inverse solutions in terms
of quantitative metrics, epicardial potential patterns, and activation isochrone maps. The
inverse solutions are calculated by a fixed regularization method (mostly second-order
Tikhonov) in order to isolate the effect of discretization and to minimizing the effect of
regularization.

Our experiments based on 3D models obtained consistent results with our previous study in
the 2D case [11]. The results corroborate the inverse-problem discretization guidelines
proposed in Sec 111-B. Fig 1 indicates that the epicardial resolution for which we seek should
be limited based on practical needs lest the discretized inverse problem become overly ill-
conditioned. Meanwhile, refining the volume conductor improves the conditioning of the
transfer matrix (Fig 2), the reconstructed epicardial potentials (Fig 3) and activation
isochrones (Fig 4).
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The use of hybrid meshes enables one to refine the high gradient field around the heart
without incurring aspect-ratio problems. Such refinement improves the accuracy of the
heart-to-volume projection (Fig 6) and the reconstruction of epicardial potential gradients
(Fig 8), which in turn improves the recovery of the activation isochrone map (Fig 7). It is
worth comparing the refinement in the normal direction to the heart to previous studies that
use the potential gradient or current density (from a physical view) as a constraint in
regularizing the inverse ECG problem [26], [27]. The spatial refinement implicitly assumes
that a higher gradient is being sought, so it achieves a similar regularizing effect often
referred to as “regularization by discretization” [14], [34].

The CPU time of our ECG simulation consists of 1) the time for building the FE model and
the minimization problem and 2) the time for solving the minimization. The first time is
dominant and is linear in the number of elements being used. Hybrid meshes enables us to
improve accuracy without dramatically increasing the mesh size and hence the CPU time.
The time for minimizing (13) (for each value of 1) is 1-2 seconds in Matlab with four 2.66-
GHz Intel Xeon cores, given that the size of the linear problem is 771 x 337 (the number of
nodes on the torso and heart surfaces respectively).

B. Variational-Form Regularizers

The central idea of the variational-form-based regularization is to measure the potential field
by the L, norm in place of the Euclidean norm. Because the L, norm is inherently assumed
by common finite element methods (e.g., Galerkin formulation), the variational-formed
regularization automatically conforms to certain variational principles underlying the
discrete inverse problem formulated by finite element methods. Defined over a continuous
domain, the L, norm is independent of discretization resolution, thereby ensuring that the
discretized problem is handled in conformity to its underlying continuous problem. The
Euclidean norm, in contrast, does not reflect the features of the continuous problem.

The preservation of norms is important when applied to multi-scale simulation of inverse
problems, because it ensures regularization be performed consistently among numerical
problems of different scales. Here the consistency means that the balance between the
residual error and the regularizing term is maintained. The requirement of consistency is
based on the understanding that all discrete problems should reflect the nature of their
common continuous origin. The consistency cannot hold when the Euclidean norm is used.
When conventional discrete operators are used Tikhonov regularization, the residual error
and the regularizer may not increase in the same rate under refinement. If the residual error
increases faster than the regularizer, more weight will be put on the residual error and the
inverse problem tends to be under-regularized. Conversely, the inverse problem will be
over-regularized. In our example of testing zero-order Tikhonov method under multi-scale
discretization, Fig 11 shows that the preservation of L, norm leads to consistent
regularization, which consequently leads to consistent reconstruction of epicardial
potentials, as shown by Fig 12. The traditional Euclidean-norm-based regularization does
not exhibit the consistency.

The introduction of resolution-consistent regularization may pave the way for adaptive finite
element methods (FEM) to be used for solving inverse problems. Despite its many successes
in reducing complexity and enhancing efficiency for solving PDE-based forward problems,
adaptive FEM has not yet been widely applied to inverse problems. By taking advantage of
their natural consistency within the FEM Galerkin framework, resolution-consistent
regularization may solve the issues that arise with non-uniform volumetric resolution.

It is straightforward to implement the variational-formed regularization in the L, norm, by
slightly modifying the implementation of traditional Tikhonov methods. The Euclidean
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1/2
,=(uju,) ", whereas the L, norm of

norm of the epicardial potentials uy is given by [[uH
the continuous distribution d is given by ,f(“szM“H ) where the mass matrix M is
given in Table I. Evaluating the L, norm is achieved by adding a weighing matrix that is
based on finite element basis functions. The norm of the residual error defined on the torso
surface, or the norm of any gradient field, can be obtained in a similar way by modifying the
weighing matrix accordingly. The weighing matrix can be precomputed using the mesh
information only.

[“H|

The stiffness matrix and matrices formed by higher-order derivatives are positive-semi-
definite because the derivative of any constant field is always zero. The Cholesky
decomposition for these matrices is not unique, but we do not believe this fact will effect the
outcome of Tikhonov regularization because the Tikhonov method considers the L, norm of
the regularizers. We selected a Cholesky factorization in a systematic way. Assume we
decompose the stiffness matrix S. We take the sequence s, s+ 17, Where I is the identity
matrix. Sy — S when k — oo. Each {Sy} is positive-definite and has a unique Cholesky
factor L. We take L = limy_, 0L as the Cholesky factor of S. The convergence of {L\}
holds because the operators are bounded and their underlying vector space is finite
dimensional.

VII. Conclusion

We investigated how finite element discretization can be constructed specifically for the
inverse ECG problem so as to optimize its numerical conditioning. Extending our previous
2D study to 3D, this paper provides discretization guidelines for practical ECG simulations
and their realization via a hybrid mesh scheme. We also proposed a new family of
variational regularizers based on the continuous L, norm. These regularizers are an
alternative to the traditional Tikhonov regularization but achieve consistent regularization
over multi-scale simulation. The variational formulation also enables a simple construction
of the discrete gradient operator over an irregular mesh, which is difficult to obtain with
traditional discretization techniques. The hybrid mesh scheme and the variational-formed
regularization were validated via simulation based on a realistic 3D torso/heart model with
real heart data.

Future work includes coupling the maximum fidelity allowed for the heart with other
biophysical constraints (such as the distributed current density source within the heart).
Evaluating the impact of tissue conductivity on the inverse ECG will also be valuable, while
the impact on the forward ECG has been reported [35], [36]. Human tissue conductivities
are estimated by electrical impedance tomography, a technique under active research both
mathematically [37] and clinically [38].
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Fig. 1.

200 400 600

Singular Value Index

Singular values of the transfer matrices resulting from the sphere/torso model. The torso
mesh remains unchanged while three sphere meshes are tested. Nh denotes the number of
nodes of on the surface of each sphere.
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Fig. 2.

Fixing the boundary discretization and refining the volume conductor. Ne denotes the
number of elements in each mesh. (A): singular values of Ay . (B): singular values of K.
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Time since the  Measured Value Mesh 1 Mesh 2 Mesh 3
onset of QRS Ne=10,454 Ne=14,417 Ne=27,361

41 -30 -20 -10 0 10 20 33mV

Fig. 3.

Epicardial potentials calculated from the meshes discussed in Fig 2, under 30dB white noise.
Ne denotes the number of elements each in mesh. To effectively visualize the difference in
potential patterns, the view is changed at each instant. Epicardial potentials at 21 ms exhibit
the most diverse spatial pattern in the entire cardiac cycle, and hence is the hardest to
recover.
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Fig. 4.
Activation isochrones derived from reconstructed epicardial potentials in Fig 3. Top row:
anterior view. Bottom row: posterior view.
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Fig. 5.
(A): cross-section of a torso mesh, where the heart is surrounded by 2 layers of prism
elements. (B): the hybrid mesh at the heart-volume interface.
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Fig. 6.
Refining the resolution normal to the heart by prismatic elements. (A): singular values of
Ay H. (B): singular values of K.
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Fig. 7.

Activation time derived from epicardial potentials calculated from the meshes in Fig 6.
Panel A: from measured potentials. B: from the pure tetrahedral mesh. C: from the hybrid
mesh with 1 layer of 10mme-thick prisms. D: from the hybrid mesh with 2 layers of 5mm-
thick prisms. E: from the hybrid mesh with 4 layers of 2.5mm-thick prisms.
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Fig. 8.

Epicardial potentials computed from hybrid meshes. Panel A: exact value. B: pure
tetrahedral mesh. C: hybrid mesh with 1 layer of prisms. D: hybrid mesh with 2 layers of
prisms. E: hybrid mesh with 4 layers of prisms. rgraq is the ratio of the computed value to
the real value of ||Vug||, the norm of the epicardial potential gradient field.
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Fig. 9.

Refining the volume while fixing the meshes around the heart by two layer of 5mm-thick
prisms. Mesh 1, 2 and 3 contain 8,106, 13,636 and 23,361 tetrahedral elements. (A): singular
values of N and Ay y. (B): singular values of K.
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Fig. 10.
Epicardial potentials calculated under 30dB SNR input white noise. ZOT, FOT and SOT

denote the zero, first, and second order Tikhonov regularization. To better show spatial
patterns the view is rotated.
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Fig. 11.

L-curves of the solution norm versus the residual error when zero-order Tikhonov is
performed. The inverse problem is discretized in two scales. Mesh 1 has 27,361 tetrahedral
elements with 670 triangular elements on the heart surface. Mesh 2 has 60,617 volume
elements with 2,680 triangles on the heart surface. Panel A: the regularizer is the identity
matrix, with the residual error and the regularizer evaluated by the Euclidean norm. Panel B:
the variational regularizer derived from the mass matrix given by Table I, evaluated by the
continuous L, norm. 4 indicates the regularization parameter corresponding to the corner of
L-curves.
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Fig. 12.

Epicardial potentials reconstructed under 30dB SNR input noise by ZOT using the
traditional and the variational regularizers, corresponding to the L-curves in Fig 11. For each
inverse solution, relative error (RE) and correlation coefficient (CC) are given.
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TABLE |

The choice of L for Tikhonov Regularization.

Regularization Type | Conventional Regularizer | Variational Regularizer

Z0T Identity Matrix LTL=M
FOT Hard to Define L'L=S
SOT Discrete Laplacian Operator LTL =8

Page 32

Note: L is associated with mesh nodes on the heart surface. The matrices M, S and Q are given by Mj j = (¢i, #j), Si,j = (¥ i, V j), Qi j = (Vz(pi,

v2j),i,j EH.

§Formulating Q requires at least cl elements.

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2011 June 7.



