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Abstract
The goal of this paper is to propose a fast and reliable method of simultaneous estimation of
conductivity and electrode contact impedances for a homogeneous 2-D disk. Magic Toeplitz
matrix as the Neumann-to-Dirichlet map with finite width electrodes plays the central role in our
linear model, called the gapZ model. This model enables testing of various hypotheses using the
F-test, such as the uniformity of electrode impedances and their statistical significance. The gapZ
model is compared with the finite element approximation, and illustrated and validated with a
phantom tank experiment filled with saline. Further, this model was illustrated with the patient
breast EIT data to identify bad contact electrodes.
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I. Introduction
ELECTRICAL impedance tomography (EIT) aims to reconstruct spatial conductivity and
permittivity within the body by measuring currents and voltages on the periphery of the
body. Basic formulation of EIT and its applications has been published elsewhere [1]–[3].
Several scientific centers, including Rensselaer Polytechnic Institute (RPI) [4] and
Dartmouth College [5] concentrate on clinical application of EIT to breast imaging and
cancer detection [6].

Two features of the EIT breast imaging make the problem of cancer detection challenging.
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1. The presence of a layer of unknown conductivity at the skin–electrode interface.
Due to the natural heterogeneity of the skin and variation of contact pressure the
electrode contact impedance may vary from electrode to electrode. This variation
introduces substantial biases and “contact artifacts” in the reconstruction of electric
properties of the breast and makes detecting abnormalities difficult.

2. Since breast does not have rigid geometry, the boundary of the governing Laplace
partial differential equation (PDE) is not well specified either in the planar design
of RPI in which the breast is compressed between two plates [7], or in the
Dartmouth circular design in which electrodes are configured radially around the
circumference of the pendant breast [8]. An inaccurately specified boundary
geometry results in high reproducibility error [9].

The presence of the surface impedance and its effect on the EIT image reconstruction is a
well-known problem. Today, the varying electrode–skin contact impedance is listed as one
of the most serious limitations of EIT for breast cancer detection [10]. Several techniques to
reduce the unwanted surface impedance have been studied over the years, including
application of skin hydrogel [11], or covering electrodes with a cotton fine grid [12]. A
recent paper [13] compares several electrode–skin interface aids and their dependence on the
current frequency. Despite some improvements the electrode contact impedance remains a
challenging problem in clinical setting especially when it varies from electrode to electrode.
It is, therefore, desirable to estimate the contact impedance at each electrode from the same
data used for reconstruction. Unfortunately, this is difficult to achieve because simultaneous
estimation of contact impedances and spatial conductivity and permittivity increases the ill-
posedeness of the EIT problem. One potential solution is estimating contact impedance at
each electrode by assuming that the tissue is homogeneous and then use those estimates for
the full breast image reconstruction. A similar idea of the two-step EIT reconstruction based
on an approximate solution to the Laplace PDE was pursued in a recent paper [7].
Simultaneous estimation of contact impedances and conductivity in a homogeneous tank
based on the finite element approximation was studied in [14] and [15]. We, however, rely
on the analytical solution of the homogeneous medium.

The analytical solution of Laplace equation in polar coordinates with Neumann boundary
conditions on the plane with finite number of electrodes was derived in [16]. We use the
Neumann-to-Dirichlet matrix that connects currents and voltages at the electrodes in the
form of the generalized Ohm's law with circular geometry used for the EIT breast
measurements. This matrix is called a Magic Toeplitz matrix since it possesses very peculiar
properties [17]. This matrix plays the central role in our gapZ model for the simultaneous
estimation of the background resistivity and contact impedance at each electrode.

The organization of this paper is as follows. In the next section, we review the mathematical
formulation of the forward EIT problem with the two popular electrode models: the gap and
complete electrode models. In Section III, the two electrode models are formulated for a 2-D
homogeneous disk in polar coordinates and the analytical solution for the two versions of
the gap model are derived in the matrix form. The gapZ model for the simultaneous
estimation of the background resistivity and contact impedance is formulated in Section IV.
Finally, the gapZ model is applied to a tank experiment phantom data in Section V.

II. General Formulation of Two Electrode Models
Although the general account of the EIT problem is presented in many papers, we need that
formulation for derivation of the gap model with a finite number of electrodes and for
interpretation of the complete electrode model that explains the voltage drop due to the
contact impedance.
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The goal of EIT is to reconstruct spatial conductivity σ = σ(s) within the body by injecting
currents and measuring voltages (or applying voltages and measuring currents) at the
electrodes located on the periphery of the body. Sometimes, the EIT problem is formulated
in complex domain; in this paper, we restrict our consideration to real values. Here, s is a
spatial coordinate vector; in 2-D we have s = (x, y) and in 3-D we have s = (x, y, z); for a
homogeneous medium σ(s) = const. Throughout this paper boldface is used to indicate
vectors and matrices. In this section, we specify the forward problem when the function σ is
known.

It is assumed that there are L electrodes on the periphery of the body covering
nonoverlapping surface areas Ei, i = 1, 2, . . . , L.

Potentials U1, U2, . . . , UL are applied at the electrodes such that . Within the
body, the potential distribution is governed by the Laplace PDE written in a symbolic terms
as

(1)

The task of the forward model is to find the potential function u = u(s) given σ = σ(s) using
boundary conditions (BC) specified later. In all electrode models, it is assumed that there is
no current flow on the boundary of the body between electrodes

(2)

where n is the normal vector on the surface of the body at point s, and ∂u/∂n denotes the
projection of vector ∂u/∂s on n (a scalar function), or precisely

as the scalar product.

A. Gap Electrode Model
This model assumes that currents are injected into the body and the resulting voltages are
measured at the same electrodes for reconstruction purpose. In the gap model, the BC is
expressed in terms of the current density; namely, it is assumed that current density is
constant over the electrode

(3)

where current Ii is controlled by the experiment. Note that in this model boundary
conditions, (2) and (3) are expressed via the derivative of the solution function u. Such BC
are called Neumann; note that in this case function u can be found up to a constant.

B. Complete Electrode Model
According to the complete electrode model
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(4)

where Zi is the electrode contact (or surface) impedance, i = 1, 2, . . . , L [18]. It is common
to assume that the contact impedance is constant over the area of the electrode but may be
different across electrodes. The supplied potential is constant over the surface of the
electrode because it is made of a highly conductive metal material. That is, the left-hand side
of (4) does not depend on s. Note that

(5)

may be interpreted as the average voltage drop due to the electrode contact impedance,
where |Ei| is the area of the electrode. We will use this interpretation later to recover the
contact impedance from the data.

Model (1) together with BC (2) and (4) correctly reflects most engineering hardware designs
and is the most comprehensive forward model of the electrical impedance problem [19].

The Laplace PDE with complete electrode model belongs to the case of mixed boundary
condition PDE and is the most formidable mathematical problem with no general approach
for solution even for homogeneous medium. On the other hand, the gap model has Neumann
BC and can be solved fairly easy; this model will be used in our further development.

III. Homogeneous 2-D Disk
The analytical solution of the homogenous EIT problem may be used in several ways.

1. To obtain accurate background conductivity, especially useful for an abnormal
mass detection, as deviation from the background conductivity. To improve the
precision in estimating of the background conductivity resulting in increase of the
statistical discrimination power.

2. To test the approximation to the PDE forward problem solution and to help in
choosing the parameter values, such as the number of nodes in the finite element
approximation or the number of terms in the series expansion.

3. To estimate the contact impedance {Zi, i = 1, 2, . . . , L} to be used in the full EIT
reconstruction (see the next section).

4. To compare different electrode models without the complexity associated with the
full EIT image reconstruction leading to an ill-posed inverse model.

5. To check the quality of measurements, especially important for clinical EIT data,
where the homogeneity assumption is adequate as an initial guess.

The potential distribution on a homogeneous disk of radius R and conductivity σ = const
with infinitesimal height is governed by the Laplace equation in polar coordinates, as a very
special case of the general PDE (1)

(6)

where 0 ≤ r ≤ R is the distance from the center and 0 ≤ θ < 2π is the angle. As was
mentioned earlier in this paper, it is assumed that all variables are real. For this case, the L
nonoverlapping electrodes with half-width w (radians) are located on the circle of radius R
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at angle locations {θi, i = 1, 2, . . . , L}. Separation of variables [20] yields the solution
expressed in Fourier series as

(7)

where coefficients an and bn are to be found from the BC, as discussed later. Different
electrode models imply different Fourier coefficients but do not change the general form of
this solution.

A. Gap Electrode Model
Moreover the current density is assumed constant over the electrode, [21]. Since the current
density on the boundary of the domain is

a step function of the angle, the current flowing through the ith electrode is expressed as the
integral

(8)

Note that this expression is true for any electrode model. Then using (7) and elementary
trigonometry, we obtain

so that the current can be expressed as a Fourier series

(9)

The constant current density assumption leads to Neumann-type BC in the form

(10)

Note that since the BC is defined in terms of the derivative, the solution of the PDE is
correct up to an arbitrary constant. As follows from (7), this constant is set to zero. Fourier
coefficients an and bn are found from integration of both sides of (10) over (0, 2π)
premulitiplied by cos(nθ) and sin(nθ). After some trigonometry [16], one obtains
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with the gap solution

(11)

For reconstruction purposes (for conductivity, σ, estimation), the voltages are measured at
the electrodes. We want to express the measured voltages via the injected currents to derive
the Neumann-to-Dirichlet (NtD) map which can be viewed as Ohm's law on the
homogeneous disk. As was mentioned in the previous section, two models regarding
measured voltage may be considered. In the center-gap model, the measured voltage is equal
to the potential function evaluated at the center of the electrode (point value), Ui = u(R, θi),
which leads to the NtD map in the matrix form as

(12)

where A is the L × L symmetric matrix with the (i, j) element

(13)

where I and U are the L × 1 vectors of the injected currents and resulting voltages (we use
boldface for vectors and matrices hereafter); hereafter, ρ = 1/σ is the resistivity of the
medium.

In the ave-gap model, the measured voltage is the average potential over the electrode

which using (9) leads to the NtD map

(14)

where B is the L × L symmetric matrix with the (i, j) element

(15)

When the width of the electrodes becomes indefinitely small, the two matrices converge to

because limw→0 sin(nw)/n = w. This solution matches of that provided in [22] because

In a special case, when the electrodes are located at equal angles
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(16)

which is usually the case, matrices A and B are symmetric circulants [23]. These matrices
have rather remarkable properties and, therefore, were called the Magic Toeplitz matrices
[17]

1. A linear combination of the Magic Toeplitz matrices is a Magic Toeplitz matrix.

2. The sum of elements in each row and column of a Magic Toeplitz matrix is the
same.

3. The inverse of a Magic Toeplitz matrix is a Magic Toeplitz matrix.

4. The product of the two Magic Toeplitz matrices is a Magic Toeplitz matrix.

5. Matrix T is the Magic Toeplitz if and only if Tij = t|i–j and the sum of elements in
each row and column is the same.

6. The n × n Magic Toeplitz matrix is defined by ⌈(n + 1)/2⌉ distinct elements, where
⌈⌉ denotes the closest larger integer.

7. Magic Toeplitz matrices are nonnegative definite, i.e., the eigenvalues are non-
negative.

8. Magic Toeplitz matrices of the same size have the same eigenvectors.

9. Magic Toeplitz matrices commute, namely, if T1 and T2 are Magic Toeplitz
matrices, then T1T2 = T2T1.

Property (2) means that if the sum of injected currents is zero, the sum of the resulting
voltages is zero. Property (3) can be understood after expressing currents through voltages
as I = σA−1U and I = σB−1U as in the Dirichlet-to-Neumann map.

A capacitance matrix connecting the vector of voltages with the vector of charges was
derived in [24] for a general 2-D Laplace equation. It was proven that for an arbitrary
geometry that matrix is symmetric and has properties #2 and #7. For a circular geometry and
equidistant electrodes, this matrix is symmetric circulant.

IV. Statistical Model for Contact Impedance
One of the advantages of the analytical center-gap or avegap solution is that contact
impedance at each electrode may be estimated without solving the forward problem. This
may be especially helpful in medical applications when the contact impedances {Zl, l =
1, . . . , L} are first estimated assuming a homogeneous medium and then used in the full
reconstruction.

As follows from (5), the effective (average) voltage on the 2-D homogeneous disk using (8)
can be expressed as

This gives rise to the following definition.

Definition 1: The voltage drop on a homogeneous 2-D disk due to the ith electrode
impedance is defined as ZiIi/(2Rw) with effective voltage Ui − ZiIi/(2Rw).
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Since Ii/(2Rw) = Ji, the average current density, we can express the voltage drop as ZiJi. The
idea of simultaneous estimation of the medium conductivity and electrode impedance is
based on the substitution of real voltages with effective voltages in Ohm's law using either
the center-gap model (12) or the avegap model (14). These models will be called center-
gapZ and ave-gapZ models, respectively. Later, we describe the statistical models and their
estimation.

Let us assume that K voltage patterns are used. For example, when using the full
trigonometric pattern [25] we have K = L – 1. Then the data on voltage and current densities
are expressed as L × K matrices U and J. If the center-gap model is used we arrive at a
statistical model

(17)

where Z = diag(Z1, Z2, . . . , ZL) is a L × L diagonal matrix, and ε is the L × K matrix of
random noise with zero mean, constant variance, and stochastically independent elements,
and ρ = 1/σ is the resistivity of the medium. Using the least squares solution we can
determine ρ and the contact impedance values simultaneously. Equivalently, model (17) can
be represented as a linear statistical model [26], [27]

(18)

with ρ and Z1, Z2, . . . , ZL estimated from linear least squares as minimizers of the residual
sum of squares

(19)

Model (18) can be represented as a standard linear regression model

where yLK×1 = vec(U), β(L+1)×1 = (ρ,Z1, . . . , ZL)′, the first column of matrix X is vec(AI)
and the (j + 1)th column of matrix X is vec(Ej J), j = 1, 2, . . . , L; here vec is an operator
which represents the matrix in a vector form. The last representation follows from the

equation  which implies .

In the special case, when all contact impedances are the same, Zj = Z we have a linear model
with two unknown coefficients

(20)

where β1 = ρ, β2 = Z, x1 = vec(AI) and x2 = vec(J). In the ave-gapZ model, thematrix B is
used instead of A.

These statistical models, called gapZ models, do not only simultaneously estimate medium
conductivity and electrode surface impedances but also create a framework for addressing
important practical questions from statistical perspective. For example, are contact
impedances statistically different from zero? Are they statistically the same? Do any of the
electrodes have significantly larger contact impedance? In the next section, we explore these
questions with laboratory phantom.
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V. Homogeneous Tank Experiment
In this section, we describe a laboratory experiment with a tank filled with saline of
approximate resistivity 10 Ωm. Our goal is to estimate the contact impedance at each
electrode along with the medium resistivity as a function of 17 frequencies in the range of
10 kHz to 3.3 MHz using the ave-gapZ model and compare the results with the FEM
approximate solution [28]. The empty tank is shown in Fig. 1. The diameter of the tank is
8.6 cm. In our experiment, only 16 electrodes at the bottom were used with the centers at
1.8-cm height. Homogeneous saline was filled to a height of 3.6 cm.

Two models have been used for simultaneous estimation of resistivity and contact
impedance using the least squares criterion separately for each frequency: the ave-gapZ
model with 17 parameters, and an FEM with two parameters assuming that the contact
impedance does not vary from electrode to electrode. We had convergence problems with
the 3-D FEM approximation when all 16 contact impedances were unknown even when the
Jacobian with respect to vector Z was computed exactly. Although the Newton-Gauss
algorithm seemed to converge, for some frequencies we experienced divergency, but more
importantly, different starting values produced different final iterations. This makes us to
believe that previously reported simultaneous reconstruction of electrode impedances and
conductivity based on the FEM approximation [14] may prone to instability.

For each frequency, the FEM forward model was fit with a built-in nonlinear regression
function nls in S+ (TIBCO Spotfire) with two unknown parameters (resistivity and contact
impedance) using the finite difference approach to the Jacobian. The result of the ρ
estimation along with 95% confidence interval is shown in Fig. 2. Sixteen contact
impedances for the avegapZ models as a function of frequency are shown in Fig. 3. As
follows from those graphs: 1) both models give similar results; 2) contact impedances vary
across electrodes; and 3) contact impedances drop with frequency. A decrease of electrode–
skin contact resistivity with frequency increase was also reported in [13]. For each
frequency, we compute the average voltage drop as Z times median value of J/U; the voltage
drop due to contact impedance is estimated to be approximately 11% of the applied voltage.

The statistical significance of the contact impedance of each electrode was tested by the t-
test that is the standard output of a linear model fit (the null hypothesis is that the contact
impedance at electrode i is zero, H0 : Zi = 0). Although small, all contact impedances were
statistically significant with p-value < 0.05.

As was mentioned before, the ave-gapZ model allows for various statistical tests. Perhaps
the most important test is the zero-Z test: H0 : Z1 = Z2 = · · · = Z16 = 0 for each particular
frequency. We use model (18) to test this hypothesis with the F-distribution [26], [27] (this
test in the framework of EIT has been applied previously [16])

(21)

where QLS is the residual sum of squares (19), Q0 is the residual sum of squares under
assumption that all Z are zero, ∥U−ρAI∥2, t is the number of linear equations in the
hypothesis (in our case t = 16), N is the total number of observations, N = LK, and p is the
total number of estimated parameters in the model (18), in our case p = 17. The tilde means
that the random variable at the left-hand side of (21) has F-distribution with the specified
degrees of freedom under the null hypothesis H0. For the 2-D disk tank data the p-values for
all 17 frequencies are much less than 0.05, the threshold. We conclude that even though the
Z-values are fairly small they are statistically different from zero.
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Another important hypothesis to test is whether electrode impedances are the same, H0 : Z1
= Z2 = · · · = Z16 = Z. To test this hypothesis, we compute the residual sum of squares Q0 in
the linear model with two parameters (20). Again P-values for all 17 frequencies were less
than 0.05; we reject the hypothesis that all electrode impedances are the same. We attribute
positive and statistically significant Zs with the presence of polymer buffers, see Fig. 1.

A. Validation of the gapZ Model
In order to validate the gapZ model, we conducted an EIT cylinder tank experiment filled
with saline, similar to that described above, but with electrodes 9 and 14 partially covered by
electrical tape. The goal of that experiment was to verify if the ave-gapZ model can identify
those electrodes. The result of contact impedance estimation by the ave-gapZ model is
depicted in Fig. 4. As we can see, the contact impedance of the covered electrodes is
approximately ten times higher than that of the uncovered electrodes for all frequencies.

VI. Estimation of the Beast Contact Impedance
In this section, we apply our gapZ model to the patient breast measurement data using the
Dartmouth EIT hardware [8]. The woman is in the lying position with 16 electrodes attached
on the periphery of the pending breast. There are up to four levels of electrodes of diameter
1 cm. The first level is approximately 4 cm apart from the chest wall, the second level is at
7.25 cm, the third level is at 10.50 cm, etc. We illustrate the electrodes position in Fig. 5
using the mammogram image of the left breast of the normal patient. The breast is fairly
homogeneous and was classified by the radiologist as “fatty.”

The results of the gapZ model for each of the three levels are presented in Fig. 6. Apparently
there was a bad contact at electrodes 6 and 7 at level #1. Interestingly, the contact
impedance is fairly small and fast approaches zero when current frequency increases. It
makes us believe that image reconstruction with higher frequency is more robust with
respect to the electrode contact impedance.

VII. Summary and Discussion
We have derived Neumann-to-Dirichlet matrices for the center and ave-gap electrode
models as the generalized Ohm's law on a disk. These matrices are symmetric circulants and
possess very peculiar mathematical properties that led to their being called magic Toeplitz
matrices. A new fast and reliable gapZ method for the simultaneous estimation of contact
impedances and conductivity on the 2-D homogeneous disk has been developed using the
magic Toeplitz matrix. This estimation is reduced to a linear statistical model and allows
quick and important statistical hypothesis tests based on the general F-test, such as whether
contact impedances are zero or constant across electrodes. The gapZ model was illustrated
and validated with homogeneous tank data and in vivo EIT breast measurements. The gapZ
linear model is especially convenient when various hypothesis are being tested, such as
statistical significance, testing for bad electrodes, or constant contact impedance. The FEM
approximation to the forward homogeneous EIT problem for simultaneous estimation
conductivity and 16 contact impedances is unstable. Of course it does not mean that it will
fail under other experimental conditions or mesh designs.

An important limitation of our approach is that it is 2-D. However, with Dartmouth design
this limitation is less of an issue because electrodes are located on the same level plane
around the breast.
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We see the major application of the gapZ model in the identification of bad electrodes. Once
the electrode contact impedances are checked, one can proceed with the full 3-D FEM breast
image reconstruction.
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Fig. 1.
Cylinder tank with 16 electrodes in each plane used in homogeneous tank experiments
(shown empty). The diameter of the tank is 8.6 cm. Saline of resistivity 10 m/S was filled at
the height 3.6 from the bottom. The voltages are applied at polymer conductive buffer
cylinders conected to round electrodes of diameter 1 cm at the bottom level, with the center
1.8 cm from the bottom.
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Fig. 2.
Resistivity ρ (Ωm) estimation using ave-gapZ model (18) and comparison with FEM
approximation assuming constant electrode impedance. Verical bars show 95% confidence
intervals.
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Fig. 3.
Estimation of contact impedances Z (Ωcm2 ) using the gapZ model (18). The contact
impedance obtained with FEM assumes that it is the same across electrodes.
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Fig. 4.
Estimation of bad electrode contact impedances using the ave-gapZ model with tank data in
which electrodes 9 and 14 are partially covered by tape.
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Fig. 5.
Dartmouth breast EIT hardware with three levels. There are 16 equidistant electrodes in
each level. The real mammogram is used for this illustration. The gapZ model identified bad
contacts at electrodes 6 and 7 in level 1 near the chest wall.
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Fig. 6.
Estimation of contact impedance of the breast with 16 electrodes in three levels using the
gapZ model. Contact on electrodes 6 and 7 in level 1 is bad.

Demidenko et al. Page 20

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2012 September 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


