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Abstract

Real-time pattern recognition control is frequently affected by misclassifications. This study 

investigated the use of a decision-based velocity ramp that attenuated movement speed after a 

change in classifier decision. The goal was to improve prosthesis positioning by minimizing the 

effect of unintended movements. Non-amputee and amputee subjects controlled a prosthesis in 

real-time using pattern recognition. While performing a target achievement test in a virtual 

environment, subjects had a significantly higher completion rate (p < 0.05) and a more direct path 

(p < 0.05) to the target with the velocity ramp than without it. Using a physical prosthesis, subjects 

stacked a greater average number of 1” cubes (p < 0.05) in three minutes with the velocity ramp 

than without it (76% more blocks for non-amputees; 89% more blocks for amputees). Real-time 

control using the velocity ramp also showed significant performance improvements above using 

majority vote. Eighty-three percent of subjects preferred to control the prosthesis using the 

velocity ramp. These results suggest that using a decision-based velocity ramp with pattern 

recognition may improve user performance. Since the velocity ramp is a post-processing step, it 

has the potential to be used with a variety of classifiers for many applications.
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I. Introduction

Pattern recognition control has been proposed for control of multifunctional myoelectric 

prostheses [1, 2]. In pattern recognition, a computer program identifies an individual’s 

intended movements by looking at the patterns produced by several channels of surface 

electromyography (EMG) signals [3]. This method of control relies on the assumption that 

EMG signal patterns are repeatable for the same movement and distinct for different 

movements [4]. With myoelectric pattern recognition control, motions can be voluntarily 

elicited by the user in any order, and if classification is performed on successive windows of 

data, users can smoothly transition from one class to another.

A great deal of research has been applied to pattern recognition algorithms to find 

techniques that result in the highest correlation between a user’s intended movement and the 

algorithm’s predicted movement. Movement is decoded through a series of steps including 

windowing, feature extraction, dimensionality reduction, and classification (Fig. 1). Feature 

extraction involving time-domain [5, 6], frequency-domain [7], or time-frequency feature 

sets [8] is an important step that significantly influences classifier performance [9]. When 

provided with a good feature set, various classifiers such as linear discriminate analysis [2, 

9], Bayesian statistical methods [10, 11], artificial neural networks [4, 5, 12], and fuzzy 

logic [13, 14] have demonstrated offline accuracies ranging from 92% to 98%. Post-

processing methods applied after classification, such as majority vote, can further improve 

accuracy [15] but at the expense of a longer control delay. An intensity calculation 

performed on the same data window, in parallel with classification, can decode movement 

speed (Fig. 1A) [16, 17]; this provides a proportional output signal [18]. By varying muscle 

contraction levels, users are able to perform fast or slow prosthesis movements.

Another significant step towards multifunctional prosthesis control is the development of a 

new surgical technique, called targeted muscle reinnervation (TMR), for individuals with an 

amputation [19, 20]. In TMR surgery, residual nerves that originally innervated muscles of 

the amputated limb are transferred to alternative muscles that are no longer biomechanically 

functional. Surface electrodes can record EMG signals from the reinnervated muscles, and 

these signals can be used to control physiologically appropriate functions in a prosthesis 

[21]. The combination for TMR and pattern recognition has recently been demonstrated as 

useful for real-time control of an upper limb prosthesis with a mean classification accuracy 

of 88% across eleven movements [21].

No pattern recognition system has yet been found to be 100% accurate. Additionally, the 

reported classification accuracies are only an offline measurement of the percentage of 

correctly predicted decisions, as real-time performance metrics have only recently been used 

to assess the control of multifunction prostheses [21, 22]. Therefore, even during a feed-

forward movement, a state-of-the-art pattern recognition system will have misclassifications. 

In order for myoelectric pattern recognition control to be a viable option for individuals with 

an amputation, the effects of these misclassifications need to be mitigated. Otherwise, 

unintended prosthesis movements may cause users to become frustrated, drop items they are 

manipulating, and/or be unsuccessful at a task they are trying to complete.
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We developed a way to minimize the effect of unintended movements during myoelectric 

pattern recognition control of multifunctional prostheses. Based on previous work described 

by Hudgins et al [5], we implemented a decision-based velocity ramp as a post-processing 

step after the intensity calculation (Fig. 1A). The decision-based velocity ramp limited the 

speed of any motion after a change in the classifier decision. Only the movement speed was 

altered; the decision stream remained unchanged (no additional control delay). The speed 

then increased to 100% of the desired speed when the decision stream remained constant 

(Fig. 1B). The velocity ramp increased quickly to full desired speed if only a few 

misclassifications occurred within a continuous stream of correct classifications.

We assessed users’ closed-loop prosthesis control using a myoelectric pattern recognition 

system with the decision-based velocity ramp. In the current study, subjects moved a virtual 

prosthesis into a target posture and/or used a physical prosthesis to complete a task. We 

hypothesized that prosthesis control performance using myoelectric pattern recognition 

would improve with the velocity ramp compared to a control condition in which the velocity 

ramp was turned off. The results suggested that subjects had less frustration, improved 

prosthesis positioning, and improved overall control while using the velocity ramp.

II. Methods

A. Decision-Based Velocity Profile

In the experimental condition, a decision-based velocity ramp was added to the pattern 

recognition system and applied after the intensity calculation (Fig. 1A). Ramp output speed, 

Vout, was calculated by multiplying the ramp gain, RG, for each class, i, by the desired 

speed, Vin, according to (1):

(1)

The velocity ramp attenuated speed following a change in the class decision by applying a 

gain that varied between 0 and 1. The ramp gain was calculated by a linear function (2):

(2)

where C is the value of a counter associated with the current class and L is the ramp length 

defined by the experimenter. With each decision, the value of the associated counter 

increased by one, and the value of all other class counters decreased by two. The minimum 

of each counter was zero and the maximum was equal to the ramp length.

When a new class decision was made, the movement would initially be performed very 

slowly, due to the low value of the associated counter. The ramp output speed increased as 

continuous, same-class decisions were made (Fig. 1B). The decision-based velocity ramp 

allowed the output speed to increase more quickly if the misclassifications occurred within a 

continuous stream of correct classifications. The ramp had no effect on the termination of a 

movement (i.e. no additional control delay when transitioning to the no motion class).
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For this experiment, the desired speed was calculated by averaging the mean absolute values 

(MAV) of all channels, k, of EMG signals for a given data window and multiplying by a 

class boost factor, B [16, 17].

(3)

This equation is similar to a previously proposed proportional speed calculation [16]; 

however, MAVs were used instead of root mean square (RMS) signal values because they 

were already computed as part of the feature set. We confirmed that using MAV instead of 

RMS values resulted in no detectable change in speed during pilot experiments. The boost 

settings were configured for each class during the control condition such that a moderate 

force contraction resulted in a nominal speed (i.e. 50 degrees per second for the virtual 

prosthesis). Subjects could achieve a minimum speed with a lower force contraction and 

maximum speed with a higher force contraction. The outputs were scaled so that the 

maximum EMG amplitude approximately corresponded to the maximum motor speeds (100 

degrees per second).

B. Subjects

The study participants included 12 non-amputee control subjects (8 men and 4 women). Six 

subjects were naive users and six had previous experience with pattern recognition. Six 

individuals with an amputation who had undergone TMR surgery also participated in this 

study: a man with a bilateral transradial amputation (TR1), a woman (TH2) and a man 

(TH3) with a left transhumeral amputation, a man with a right transumeral amputation 

(TH4), a woman with a left shoulder-disarticulation amputation (SD5), and a man with a 

right shoulder-disarticulation amputation (SD6). All TMR subjects were myoelectric users 

and had previous experience with pattern recognition. The study was approved by the 

Northwestern University Institutional Review Board. All subjects gave written informed 

consent to participate.

C. Virtual Prosthesis

Experiment 1—Ten non-amputee subjects (NA1–10) and six TMR subjects (TR1, TH2–4, 

SD5–6) controlled a virtual prosthesis with and without the decision-based velocity ramp. 

Six self-adhesive bipolar surface EMG electrodes were used to record muscle activity. For 

non-amputee subjects, electrodes were placed in a ring on the proximal portion of the 

forearm around the apex of the muscle bulge (2 to 3 cm distal to the elbow crease). For TR1, 

two electrodes were placed over the reinnervated muscles and four additional electrodes 

were placed in a ring around the proximal portion of the forearm. For TH2–4 and SD5–6, 

electrodes were placed over the reinnervated muscles: four electrodes were placed on the 

clinical sites [23] used for each patient’s myoelectric prosthesis, and two additional 

electrodes were placed over the remaining reinnervated muscle area. EMG signals were 

amplified and high-pass filtered with a cutoff frequency of 20 Hz. Data were sampled at a 

frequency of 1 kHz and processed in real-time using custom software [21].
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The control algorithm was trained to recognize seven motions. For non-amputee subjects 

and TR1, the classes included wrist flexion, wrist extension, forearm supination, forearm 

pronation, hand open, one hand grasp, and no movement. All other TMR subjects used 

elbow flexion and extension to a replace wrist motion, based on their choice: subjects TH2, 

SD5, and SD6 replaced wrist flexion and extension, and subjects TH3 and TH4 replaced 

forearm supination and pronation. Subjects were prompted with a demonstration of each 

movement and asked to perform the movement at a comfortable level of effort. Each 

contraction was held for 3 s and repeated eight times.

The data were split into two groups, with 12 s of data from each class used to train a linear 

discriminate analysis (LDA) classifier [2] and 12 s of data from each class used to test the 

classifier. The pattern recognition system segmented the EMG data from each channel into a 

series of 150 ms analysis windows with a 50 ms window increment. Four time-domain 

features (mean absolute value, number of zero crossings, waveform length, and number of 

slope sign changes [5]) were extracted from the EMG data in each analysis window. After 

the LDA classifier was trained, it was used to predict user commands and control a virtual 

and/or real prosthetic arm. The desired speed of the selected class was extracted from the 

same analysis window as the data used for the class decision and was calculated by (3).

Subjects performed the Target Achievement Control (TAC) Test within a virtual reality 

environment to quantify performance with and without the decision-based velocity ramp 

[24]. Prior to testing, they were given 5 to 10 min. of practice to become familiar with the 

virtual environment. Subjects were informed that when the velocity ramp was turned on, 

movement speed would start out slowly and then increase as they continued to perform the 

motion. During the test, subjects were required to move a virtual prosthesis into a prompted 

target posture. To provide visual feedback, the virtual hand changed color when it reached 

the target within an acceptable tolerance (± 5 degrees for each degree of freedom). Trials 

ended successfully when subjects were able to keep the virtual hand in the target for 2 s. In 

order to remain in the target subjects needed to relax their muscles and elicit the ‘no 

movement’ decision from the classifier. The subjects were only required to perform a single 

motion (e.g. wrist flexion) to achieve each target posture, but all other trained motions were 

active. The maximum speed of each degree of freedom was 100 degrees per second. Tests 

were completed more quickly if the subjects were able to control the virtual arm without 

producing unwanted motions. Overshooting the target posture or producing an incorrect 

class decision would force the subject to correct the unnecessary movement. Trials ended 

unsuccessfully if the subject did not reach the target position or sustain the 2 s dwell time 

within 15 s.

Subjects performed four sets of the TAC Test for each conditions: no ramp (Control), and 

the ramp with ramp lengths of 10 (Ramp 10), 20 (Ramp 20) and 30 (Ramp 30). With a 50 

ms frame increment, output speed increased to 100% of the desired speed in 0.5 s, 1.0 s, and 

1.5 s, respectively, with the three ramp conditions. The order of conditions was randomized. 

Each set consisted of two repetitions of six target postures for a total of 12 trials. The first 

set was used as practice and the last three sets were used for data analysis. Target postures 

corresponded to the trained motions.
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Upon completion of each condition, subjects qualitatively described their level of control 

with the prosthesis. Subjects ranked their level of frustration using a 7-point scale where “1” 

indicated subjects were very frustrated and “7” indicated subjects were not frustrated. Other 

performance metrics included completion rate, completion time, and path efficiency [24]. 

Completion rate was the percentage of successfully completed postures. Completion time 

was the time from the start of the trial to the successful achievement of the target posture or 

trial timeout, not including the 2 s dwell time. Path efficiency was calculated as the shortest 

path to the target divided by the total distance traveled by the virtual hand [25].

We performed a one-way ANOVA with repeated measures to test for differences in 

completion rate, completion time, path efficiency, and frustration levels across the four 

conditions. Significant ANOVAs were followed by a planned contrast to locate the 

differences between the control and velocity ramp conditions.

Experiment 2—Five non-amputee subjects (NA11–15) completed an experiment to 

compare the performance of the velocity ramp to majority vote. Experimental protocol was 

the same as Experiment 1 except a ring of four electrodes, instead of six electrodes, was 

used. Conditions tested were: no post-processing (Control), majority vote queue of lengths 

of 3 (MV 3), 5 (MV 5), and 10 (MV 10) decisions, and velocity ramps lengths of 10 (Ramp 

10) and 20 (Ramp 20). User frustration levels were not recorded. We performed a repeated 

measures ANOVA to determine to test for differences in completion rate, completion time, 

and path efficiency. A planned contrast was used to determine if there were differences 

between the majority vote and ramp conditions. The MV 10 condition was not included in 

the statistical analysis since it was only included as a time-matched comparison to the Ramp 

10 condition and likely exceeded the optimal controller delay.

D. Physical Prosthesis

Experiment 3—Four non-amputee subjects (NA9–10, NA16–17) and five TMR subjects 

(TR1, TH2–4, SD5) completed a challenging performance test in which they stacked one-

inch wooden blocks using an experimental multifunctional prosthesis with and without the 

velocity ramp. Non-amputee subjects wore an upper-limb able-body adaptor which 

consisted of a socket that allowed for the attachment of the prosthesis at the shoulder and 

constrained movement of one arm and hand (Fig. 2). For non-amputee subjects, six bipolar 

EMG electrodes were placed in a ring on the proximal portion of the forearm, one on the 

biceps, and one on the triceps. For TMR subjects, electrodes were placed on the clinical sites 

used for each patient’s myoelectric prosthesis (two electrodes for TR1 and four electrodes 

for TH2–4 and SD5). Four additional electrodes (TR1, TH2–3) or eight additional electrodes 

(SD5) were placed over the remaining reinnervated muscle area. For TR1, three degrees of 

freedom were included in the pattern recognition classifier: wrist flexion and extension, 

forearm supination and pronation, hand open and close, and no movement (for a total of 

seven classes). For TH2–4 and SD5, elbow flexion and extension was added to the pattern 

recognition classifier for a total of four degrees of freedom (nine classes). Methods for 

collecting and training the classifier were the same as described for the virtual prosthesis 

experiment. Subjects used a prosthetic arm with six degrees of freedom developed at the 

Rehabilitation Institute of Chicago [26]. The prosthesis was capable of powered shoulder 
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flexion/extension, humeral rotation, elbow flexion/extension, wrist rotation, wrist flexion/

extension, and hand control.

All subjects were familiar with operating a multifunctional prosthesis and were given 5 to 10 

min. of practice prior to testing. Testing with the physical prosthesis involved stacking as 

many 1” cubes on top of one another as possible during a 3 min. trial (Fig. 2). This task 

required increased fine motor control as the tower grew (e.g. unintended wrist or elbow 

motion during block placement had the potential to collapse the tower). For trials using the 

velocity ramp, one ramp length per subject was tested based on their preference during the 

practice period. TMR subjects All TMR subjects used a ramp length of 10. Non-amputee 

subjects used a ramp length of 20. Subjects performed three trials with the velocity ramp and 

three trials without it, in a randomized order. Data was analyzed for the best two out of three 

trials per condition.

Performance metrics included the number of blocks stacked, the tallest tower height, and the 

number of blocks dropped. A stacked block was counted if it was successfully placed on the 

tower. A dropped or misplaced block was counted if it was dropped at any point after it was 

lifted from the table and prior to being successfully placed on the tower. The tallest tower 

was the highest number of blocks stacked one on top of another within the three minutes. 

Within a trial, the number of stacked blocks was sometimes greater than the tallest tower 

height, indicating that blocks (other than the one being manipulated) had been knocked off 

the existing tower.

III. Results

A. Virtual Prosthesis

Experiment 1—Average classification accuracy was 97.2% ± 3.2% (mean ± standard 

deviation) for non-amputee subjects and 91.4% ± 8.6% for TMR subjects.

Non-amputee subjects reached significantly higher completion rates during the velocity 

ramp conditions than during the control condition (ANOVA, p < 0.02) (Fig.3, Fig. 4A). 

TMR subjects completed significantly more trials during the two shortest ramp conditions 

than during the control (ANOVA, p < 0.04) (Fig. 4A). Path efficiency significantly 

increased during the ramp conditions compared to the control condition for both groups 

(ANOVA, non-amputee group: p < 0.001; TMR group: p < 0.002) (Fig. 4B).

For non-amputees, completion times were significantly shorter during all ramp conditions 

compared to the control condition (ANOVA, p < 0.01) (Fig. 4C). For non-amputee subjects, 

completion times were significantly shorter during the Ramp 10 and 20 conditions compared 

to the control condition (ANOVA, p < 0.001).

Using a 7-point scale (where “1” indicated that subjects were very frustrated), non-amputee 

subjects reported significantly less frustration while controlling the virtual prosthesis with 

the velocity ramp (5.1 ± 1.4 for Ramp 10; 5.7 ± 1.2 for Ramp 20; and 5.2 ± 1.5 for Ramp 

30) compared to without it (3.1 ± 1.4) (ANOVA, p < 0.005). TMR subjects also reported 

significantly less frustration during the Ramp 10 condition (5.2 ± 1.9) compared to during 
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the control condition (3.0 ± 1.9) (ANOVA, p = 0.049). TMR subject frustration levels for 

the Ramp 20 and Ramp 30 conditions were 5.6 ± 2.0 and 4.6 ± 2.4, respectively.

Experiment 2—Average classification accuracy with no-post processing was 94.9% ± 

3.3%. Accuracy significantly increased for all majority vote conditions (95.9% ± 2.8% for 

MV 3; 96.8% ± 2.3% for MV 5; and 98.3% ± 1.2% for MV 10) (p < 0.05).

There were no significant differences between the control, MV 3, and MV5 conditions for 

all performance metrics (p = 0.73 for completion rate; p = 0.30 for completion time; and p = 

0.67 for path efficiency) (Fig. 5) even when the MV 10 condition was excluded from the 

analysis due to its poor performance. While using the velocity ramp, subjects completed 

significantly more trials than with the control (p = 0.04) or majority vote (p = 0.002). 

Subjects significantly increased their path efficiency with the velocity ramp compared to the 

majority vote (p < 0.001) or control (p = 0.02) conditions. A separate analysis confirmed 

that 500 ms majority vote condition performed significantly worse (p<0.05) than the control 

condition.

B. Physical Prosthesis

Experiment 3—Across all nine trained movements, classification accuracy was 99.0% ± 

1.4% for non-amputee subjects and 90.7% ± 4.2% for TMR subjects. Subjects stacked 

significantly more blocks using the velocity ramp compared to the control condition (paired 

t-test, non-amputee group: p =0.035; TMR group: p = 0.004) (Fig. 2 and 6). All subjects had 

less dropped blocks in three minutes during the ramp condition compared to the control 

condition (paired t-test, non-amputee group: p = 0.011; TMR group: p = 0.053). All subjects 

created significantly higher towers using the velocity ramp compared to the control 

condition (paired t-test, non-amputee group: p = 0.002; TMR group: p = 0.022)

IV. DISCUSSION

The goal of myoelectric pattern recognition systems is to provide reliable multifunction 

control to users. One measure of success is pattern recognition accuracy. A well-planned 

combination of feature set and classifier can result in a pattern recognition algorithm that has 

offline accuracies of 92% to 98% [2, 9, 13, 27]. In the current study, the combination of time 

domain features and linear discriminant analysis resulted in an average classification 

accuracy of 97% for non-amputee subjects and 91% for TMR subjects. Similar accuracies 

have previously been reported with amputees who had undergone TMR surgery [21]. With 

accuracies less than 100%, pattern recognition control will have mismatches between the 

user’s intended movement and the classifier’s predicted movement. This study presented the 

use of a decision-based velocity ramp that improved prosthesis control by minimizing the 

effect of misclassifications.

Since the velocity ramp did not change the classifier’s decision, it was presumed that the 

percentage of misclassifications did not change between conditions. The velocity ramp 

relied on the assumption that misclassifications occur intermittently with a properly 

functioning classifier, often at the beginning and end of intended motions [28]. These 

misclassifications still occurred with the ramp, but their effect on prosthesis movement was 
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attenuated. Accurate motion classifications were also affected by the ramp, with the initial 

speed of intended motions similarly attenuated. Decreasing initial speed of all movements 

did not adversely affect users’ performance and may have lead to more fine control of the 

multifunctional prosthesis.

For Experiments 1 and 3, five of the six TMR subjects and ten of the twelve non-amputee 

subjects preferred to control the physical and/or virtual prosthesis using the velocity ramp 

compared to control without it. Four subjects openly voiced this preference after only one or 

two prosthesis movements. Subjects reported less frustration and finer positioning for small 

adjustments while using the velocity ramp. One amputee subject commented that she felt 

like she had “fewer false starts” with the velocity ramp. The prosthesis more closely 

followed her initial intended motion. One non-amputee subject described his ability to trust 

the prosthesis more while using the velocity ramp to stack blocks. He had more confidence 

that the prosthesis was not going to do something unexpected, like quickly open the hand 

before he was positioned correctly.

The two non-amputee subjects and one TMR subject who favored the control condition 

stated that they preferred the increased initial speed of the prosthesis when the velocity ramp 

was turned off. During the velocity ramp conditions, these subjects tended to produce very 

large muscle contractions in attempts to increase initial movement speed. This strategy did 

not produce the desired effect since initial speed was limited by the ramp. Even though these 

subjects preferred the control, they had improved performance (increased completion rate 

and path efficiency) during the velocity ramp conditions.

Comparing subjects’ performance and preference between the three ramp lengths revealed 

that the longest ramp length may have required too long of a consistent decision stream. 

Although non-amputee subjects showed similar performance improvements while using any 

of the velocity ramps, several subjects reported that the Ramp 30 condition felt very slow. 

For TMR subjects, the two shortest ramp length conditions (Ramp 10 and Ramp 20) had 

consistent improved performance over the longest ramp length (Ramp 30) and control 

conditions. While using a physical prosthesis, only subjects’ preferred ramp length was 

tested. Subjects were able to stack more blocks with less dropped blocks with the velocity 

ramp than without it.

Post-processing techniques, such as majority vote [15] and EMG mean/median filter, have 

previously been suggested as ways to improve pattern recognition controllability. Important 

distinctions should be made between the velocity ramp and these techniques. Majority vote 

outputs the class decision with the greatest number of occurrences over a given analysis 

window but does not alter the desired speed (Fig. 6A). Majority vote removes spurious 

misclassifications; however, it adds an additional controller delay as decisions propagate 

through the majority vote queue [29, 30]. A simple EMG mean or median filter outputs the 

current decision to the actuator, but will smooth out fluctuations in the velocity control (Fig. 

6B). Misclassified movements still have the potential to have an associated large velocity 

signal. The velocity ramp outputs the current decision to the actuator but with a potentially 

attenuated actuation velocity (Fig. 1).
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Our results demonstrated a significant increase in classification accuracy with majority vote, 

but our real-time tests show no significant difference in performance compared to the 

control condition. The MV 3 and MV 5 conditions (corresponding to 150 ms and 250 ms 

majority vote windows, respectively) were chosen based on the literature investigating the 

optimal controller delay for pattern recognition systems [31] and the relationship between 

controller delay and majority vote window length [15, 30]. Qualitatively, we observed that 

there were no spurious misclassifications when using majority vote, but the users 

consistently overshot the target position. Therefore, the benefit of having fewer 

classification errors with majority vote is most likely offset by the additional controller 

delay. The 50 ms window increment used in the current study may have affected the results. 

A smaller increment might improve performance, but this remains to be tested. Regardless 

of the window increment used, these results highlight an important finding that methods that 

have been shown to reduce errors during offline analysis may not improve real-time control.

The results of the majority vote study emphasize another advantage of using the decision-

based velocity ramp. With this method, a longer data history can be used. The longer ramp 

lengths of the Ramp 10 and Ramp 20 conditions (500 ms and 1000 ms, respectively) did not 

adversely affect users’ performance. In fact it significantly improved performance above the 

control and above majority vote conditions which used shorter data histories. The time-

matched majority vote of 500 ms, which added a controller delay longer than what the 

literature suggests is reasonable, significantly impaired performance.

The decision-based velocity ramp described in this study had some limitations. It required a 

level of consistency in the decision stream to allow movement speed to ramp up to the 

desired speed. If the decision stream for a particular movement never stabilized on the 

motion class, adding the velocity ramp most likely hindered performance. In this case, 

motion speed would continuously be attenuated, making movement slow in any direction. 

While stacking blocks, subject TH2 did not have a consistent stream of hand open decisions 

when she wanted to release a block. Other motions were fairly consistent and benefitted 

from the velocity ramp, but hand opening was hindered. Overall, she created a taller tower 

of blocks without the ramp because she was able to open the hand using intermittent hand 

open decisions with higher speeds. With the velocity ramp, she spent more time trying to 

release each block on the top of the tower, a task that often result in the tower being knocked 

down. Subject TH2 may have benefited from customization of the ramp for each degree of 

freedom, much like the customization of gains and thresholds for current myoelectric 

prostheses. If a user has difficulty eliciting some movements, it may be beneficial to alter the 

ramp lengths for those movements, allowing them to speed up more quickly. Furthermore, 

this modification would allow subjects to use a velocity ramp with movements where they 

desire finer control (e.g. hand open/close) but not with movements they prefer to perform 

quickly (e.g. elbow flexion/extension).

With the current configuration, the velocity ramp reduced the amplitude of unintended 

motions and allowed for finer positioning and improved control of multifunctional 

prostheses (both virtual and physical). The improved control was immediate, with subjects 

needing little to no adjustment time. Majority vote did not improve the real-time 

performance. In fact, long majority vote queues (>500 ms) significantly impairs users’ 
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ability to control the prosthesis in real-time. Finally, since the decision-based velocity ramp 

is independent of the decision stream, it has the potential to be used with a wide variety of 

classifiers for a variety of applications to improve user performance.
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Fig. 1. 
(A) Myoelectric pattern recognition algorithm using a decision-based velocity ramp. The 

velocity ramp kept the original class decision and altered only the movement speed. (B) 

Desired speed and ramp output speed versus time shown for three classes. As the subject 

flexed her wrist, the first class decision was hand open (i.e. a misclassification). The desired 

speed, 77°/s, was attenuated to 3.9°/s using the velocity ramp. The next decision was an 

accurate wrist flexion classification. The desired speed, 88°/s, was attenuated to an output 

speed of 4.4°/s. With ramp length equal to 20, the output speed increased to 100% of the 

desired speed (55–65°/s) after 1 s of continuous wrist flexion decisions.
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Fig. 2. 
(A) A non-amputee subject wearing a bypass prosthesis and (B) a subject with a 

transhumeral amputation who had undergone TMR surgery stacking blocks while using the 

velocity ramp.
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Fig. 3. 
Completion rates for a typical non-amputee subject. This subject had a higher completion 

rate for the ramp conditions compared to the control.
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Fig. 4. 
Experiment 1: TAC Test performance metrics. (A) Compared to the control condition, 

completion rate significantly increased for all ramp conditions for non-amputee subjects and 

for the Ramp 10 and Ramp 20 conditions for TMR subjects. (B) Path efficiency increased 

during the ramp conditions compared to the control for both the non-amputee group and the 

TMR group. (C) Non-amputee subjects showed a significant decrease in completion time for 

the all ramp conditions compared to the control condition. TMR subjects showed a 

significant decrease in completion time for the Ramp 10 and Ramp 20 conditions. Error bars 
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denote standard deviation and * denotes a significant difference (p < 0.05) from the control 

condition.
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Fig. 5. 
Experiment 2: TAC Test completion rates. Error bars denote standard error and * denotes a 

significant difference (p < 0.05) between conditions. The MV 500ms condition was not 

included in the statistical analysis.
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Fig. 6. 
Experiment 3: Block-stacking performance metrics. (A) Non-amputee and (B) TMR 

subjects showed significantly better performance during the ramp condition compared to the 

control. Error bars denote standard deviation and * denotes a significant difference (p < 

0.05) between conditions.
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Fig. 6. 
Post-processing comparison between (A) majority vote and (B) EMG mean filter as a 

subject flexed the wrist then opened the hand. Majority vote removed spurious 

misclassifications but led to onset delay of movements and position overshoot. EMG mean 

filter smoothed out fluctuations in the velocity control but misclassified movements still had 

the potential to have an associated large velocity signal.
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