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Abstract
Multi-scale modeling has become a productive strategy for quantifying interstitial cells of Cajal
(ICC) network structure-function relationships, but the lack of large-scale ICC network imaging
data currently limits modeling progress. The SNESIM (Single Normal Equation Simulation)
algorithm was utilized to generate realistic virtual images of small real wild-type (WT) and 5-
HT2B-receptor knockout (Htr2b−/−) mice ICC networks. Two metrics were developed to validate
the performance of the algorithm: (i) network density, which is the proportion of ICC in the tissue;
(ii) connectivity, which reflects the degree of connectivity of the ICC network. Following
validation, the SNESIM algorithm was modified to allow variation in the degree of ICC network
depletion. ICC networks from a range of depletion severities were generated, and the electrical
activity over these networks was simulated. The virtual ICC networks generated by the original
SNESIM algorithm were similar to that of their real counterparts. The electrical activity
simulations showed that the maximum current density magnitude increased as the network density
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increased. In conclusion, the SNESIM algorithm is an effective tool for generating realistic virtual
ICC networks. The modified SNESIM algorithm can be used with simulation techniques to
quantify the physiological consequences of ICC network depletion at various physical scales.

Index Terms
Gastroenterology; image generation; interstitial cells of Cajal; SNESIM

I. Introduction
Contractile behavior in much of the gastrointestinal (GI) tract is coordinated by low
frequency waves of depolarization termed slow waves [1], which are initiated and actively
propagated by networks of specialized pacemaker cells called interstitial cells of Cajal (ICC)
[2]. ICC loss and injury is a major focus of current research interest, as it is now recognized
to be a major histological abnormality in several motility disorders [1], most notably
gastroparesis [3], an increasingly recognized disorder in which gastric emptying is delayed
[4], and slow transit constipation [5].

Although ICC loss is assumed to play a key role in gastric dysmotility, the functional
significance of ICC depletion for tissue and organ function remains uncertain. Experimental
strategies for quantifying ICC network structure-function relationships are limited, and
multi-scale modeling has therefore become a productive strategy [6]. However, a lack of
large-scale tissue volume ICC network imaging data currently limits modeling progress.

This paper presents a novel in silico methodology to generate realistic virtual ICC networks
across a spectrum of ICC depletions by using a modified SNESIM (Single Normal Equation
Simulation) algorithm [7] - a geostatistical algorithm developed in the petroleum industry
for building numerical models of the geological formations which host oil reservoirs [8].
Then, in conjunction with multi-scale simulation techniques, ICC structure-function
relationships can be quantified across multiple physical scales.

II. Methods
A. Virtual Network Generation

The original SNESIM algorithm generates virtual images, of any size, with similar structural
properties to a user-supplied training image that contains the desired image characteristics.
The algorithm generates the virtual image starting from a coarse grid, and then recursively
refines the grid by including all pixels halfway between any two currently adjacent pixels
until all pixels of the virtual image are simulated. The coarseness of the first grid is
determined by a user-defined parameter termed the highest multi-grid level. Each time the
grid is refined the multi-grid level decreases by 1, and the grid that contains all pixels to be
simulated corresponds to multi-grid level 1.

The data template, which is also user-supplied, contains the relative locations of neighbors
with respect to a central pixel that are to be examined to determine the value of that central
pixel. This set of neighbors is termed the data search neighborhood (DSN). At each grid
level, the input training image is scanned by the data template to compute the search tree.
This search tree stores multiple-point statistics, which express the conditional probability of
finding ICC at two or more locations simultaneously, of the training image. Following that,
the virtual image is generated sequentially using a pixel-based technique, where the local
conditional probability density function (PDF) at each pixel is calculated using the
previously computed search tree [8].
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Below is a summary of the specific steps taken by the original SNESIM algorithm. For the
full description, refer to [7], [8].

1. Starting from the highest multi-grid level, the training image was scanned using the
inputted data template to generate the search tree for this multi-grid level. The data
template was centered on each pixel of the training image at the current multi-grid
level and the observed data event defined by the values at the central pixel and at
the locations of the DSN was recorded in the search tree.

2. A random path that visits all pixels in the virtual image at the current multi-grid
level once only was defined.

3. The data template was centered on each undetermined pixel along the random path
and the data event presented by the DSN was retained. The proportions of central
values exhibited by the training image under the current data event was retrieved
from the search tree generated in 1). If the number of occurrences of this data event
in the training image is under the minimum threshold of occurrences defined by the
user, the furthest location of the DSN is dropped from the data event and the
proportions of central values under this new data event was re-retrieved. The
proportions of central values was then used to calculate the local conditional PDF.
If all locations in the DSN were dropped but there were still not enough
occurrences, the local conditional PDF was replaced with the global marginal PDF.

4. The PDF found in 3) was adjusted to account for the local marginal PDF, and a
simulated value for the current undetermined pixel was drawn from this adjusted
PDF. This simulated pixel was added into the virtual image and could be used to
inform subsequently simulated pixels.

5. Steps 3) to 4) were repeated until all pixels in the random path were simulated.

6. The multi-grid level was decreased by 1 and steps 1) to 5) were repeated. All
previously simulated pixels in the higher multi-grid levels were retained to inform
the pixels to be simulated at that multi-grid level. The algorithm was terminated
when multi-grid level 1 was completed.

To validate the capability of SNESIM to replicate ICC networks, two-dimensional (2D)
stacks of small intestinal myenteric ICC confocal images from wild-type (WT) and 5-HT2B-
receptor knockout (Htr2b−/−) mice were used as the training images for the SNESIM
algorithm (Fig. 1A and B). Normally, serotonin acts on 5-HT2B-receptors to increase
proliferation of ICC, and Htr2b−/− mice show ICC depletion [9]. The black pixels represent
ICC, while the white pixels represent the background tissue matrix, which was assumed to
be passively conducting tissue (PCT). The WT and Htr2b−/− network images were both
512×512 pixels in the x-y plane, and represented physical dimensions of 316×316×7 μm and
316×316×8 μm respectively. The degree of similarity between the virtual ICC networks and
their real counterpart was assessed using the following two metrics:

1. Density metric (ρ): This is defined as the proportion of the image that is populated
by ICC:

(1)

where NICC and NTotal are the number of pixels representing ICC and the total
number of pixels in the image respectively. The density of an image can range from
0 to 1, with 0 indicating that no ICC are present, while 1 indicates that only ICC are
present.
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2. Connectivity metric (c): This metric reflects the connectivity of the ICC network.
Each group of immediately connected ICC pixels of an ICC network, termed as an
ICC island, can be visualized as a separate object. Then, the connectivity of the
network can be measured by:

(2)

where Ii is the number of pixels in the ith ICC island, n is the total number of ICC
islands throughout the network, and NICC is as defined in (1). This metric is a
normalized weighted average of the ICC island sizes, where more weight is placed
on larger islands. The connectivity metric can range from 0 to 1, with a larger value
indicating a higher level of connectivity of the ICC network.

Three virtual ICC networks were generated using each of the WT and Htr2b−/− network
images from Fig. 1 as training images. When generating these virtual networks, the highest
multi-grid level was set to 5; the data template employed consisted of 2 concentric circular
search areas: (1) a fine inner 4 pixel radius area with sampling resolution of 1 pixel, and (2)
a coarse outer 100 pixel radius area with sampling resolution of 20 pixels; and the minimum
threshold of data event occurrences was defined as 6. The virtual networks generated were
of the same physical dimensions and pixel resolution as the training image used. The
network assessment metrics described above were calculated for all images in both sets of
real and virtual ICC networks, and the relative error of the virtual network metrics to the real
counterpart metrics were computed to determine the level of similarity between the real and
virtual networks.

Once the SNESIM algorithm was validated via the above metrics, it was then applied to
generate virtual ICC networks throughout a range of depletion severities. Further
modifications were applied to the SNESIM algorithm to allow interpolation of varying
degrees of ICC network depletion severity in these networks. First, two training images were
used to generate the virtual image instead of one, with each training image depicting an
extreme in the ICC depletion spectrum. The two training images used were 300×300 pixel
portions of the WT and Htr2b−/− networks shown in Fig. 1A and B rotated so that the
network orientations of the two images were visually similar. Second, an interpolation factor
(ϕ) was calculated:

(3)

where ρtarget, ρWT, and ρHtr2b−/− were the user defined target network density, WT, and
Htr2b−/− network training image densities respectively. Provided that the target density lies
between the densities of the two training images, the interpolation factor ranges from 0 to 1,
with a smaller value indicating more similarity towards the WT ICC network. It should be
noted that the network density of virtual images generated by the modified SNESIM
algorithm may deviate from the target network density since the algorithm is stochastic.
Third, the search trees for both training images were calculated and then weighted by the
interpolation factor for each multi-grid: the search tree of the WT training image was
weighted by 1-ϕ whereas the search tree of the Htr2b−/− training image was weighted by ϕ.
Finally, these two weighted search trees were summed and the virtual image was generated
using the combined search tree.
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Three virtual ICC networks were generated using the modified SNESIM algorithm at each
of the target densities: 0.35, 0.40, 0.45, and 0.50 (i.e., twelve networks altogether), which
corresponds to interpolation factors of: 0.91, 0.65, 0.39, and 0.14 respectively.

B. Electrical Activity Simulation
The simulation of electrical activity over the virtual ICC networks was conducted using the
bidomain equations, as described by Du et al. [6], [10]. Briefly, the virtual ICC network was
discretized into a single element finite element grid, with each grid point corresponding to a
pixel in the virtual ICC network image. The electrical activity within the ICC and PCT was
modeled by a simplified version of the Corrias and Buist ICC model [6], [11] and a passive
cell model with a zero ion conductance term respectively using the open modeling standard
CellML [12]. The continuum-based bidomain equations were employed in the multi-scale
tissue model, and the models were solved using the finite element technique [6].

Electrical activity was simulated over the twelve networks generated by the modified
SNESIM algorithm for 500 ms with a time step of 1 ms. The average current density
magnitude over the network was used to quantify electrical activation [6].

III. Results and Discussion
A. Virtual Network Generation

One virtual network from both WT and Htr2b−/− categories is shown in Fig. 2A and B. The
metric values and relative errors of the WT real and virtual ICC networks are displayed in
Table I, and those for the Htr2b−/− real and virtual ICC networks are displayed in Table II.

The selection of the data template used by the SNESIM algorithm was critical to the virtual
network generation. With a larger DSN, the appropriate value of the central pixel being
simulated could be more accurately determined. In particular, neighbors far away from the
central pixel were necessary to capture the long-range structural properties of the real ICC
networks. However, a larger DSN also incurred more CPU time and RAM to generate the
virtual networks. Therefore, an accuracy-speed trade-off existed when selecting the data
template to be used.

When using the original SNESIM algorithm to generate virtual ICC networks that replicate
the WT and Htr2b−/− networks, the density of the virtual networks closely mimicked that of
the real networks, with relative errors consistently around 1% in both the WT and Htr2b−/−

networks. The connectivity of ICC networks was accurately replicated when generating
virtual WT networks, with errors under 1%, but variations in the connectivity of virtual
Htr2b−/− networks were present. This was because the virtual Htr2b−/− networks contained
minor gaps that were a few pixels in width between ICC islands. Although these gaps did
not physically separate the islands by a great distance, the connectivity metric implemented
was sensitive to all island separations regardless of separation distance, and hence these gaps
greatly influenced the value of this metric. Overall, the SNESIM algorithm was able to
realistically replicate both WT and Htr2b−/− ICC networks, although the virtual Htr2b−/−

ICC networks lacked some finer structural details.

B. Electrical Activity Simulation
The maximum current density magnitude through time achieved in each of the twelve virtual
networks generated by the modified SNESIM algorithm was plotted against the respective
network assessment metric values (Fig. 3A and B).
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The maximum current density magnitudes of the virtual networks through time were
significantly correlated with the density metric (p<0.05) (Fig. 3A), with a correlation
coefficient of 0.70. An increasing trend in maximum current density was observed as
network density increased.

IV. Conclusion
This study presents a novel in silico methodology to quantify the relationship between
cellular depletion of ICC and the resultant electrical activity at the tissue level. By using
small real images of ICC networks as training images, the modified SNESIM algorithm
presented here can generate realistic virtual ICC networks at varying levels of depletion
severities. Electrical activity over these virtual networks can then be evaluated in a multi-
scale simulation environment. This methodology can be implemented to further investigate
the physiological consequences of ICC network depletion at various different physical
scales.

The connectivity metric revealed minor differences in the simulated Htr2b−/− network
images. For future work, additional modifications to the SNESIM algorithm, such as those
proposed by Stien et al. [13] where the virtual image is iteratively generated so that the
multiple-point statistics of the real images are strictly reproduced, can be implemented to
capture finer structural details of the real ICC networks. Also, although both ICC loss and
injury have been identified in motility disorders such as gastroparesis [3], this study has only
addressed ICC loss. In future, the cellular models utilized could be modified to imitate
injury as done previously in the cardiac field to model myocardial ischemia [14], [15], as
long as the experimental data was available to guide the modeling.

Acknowledgments
The authors would like to thank Sebastien Strebelle and Andre Journel of the Stanford Center for Reservoir
Forecasting for making the original SNESIM algorithm source code available, and Dr. Vivek Tharayil for his
assistance with the immunohistochemistry for detecting ICC.

J. Gao is supported by a University of Auckland Health Research Doctoral Scholarship. This work is partially
funded by grants from the New Zealand Health Research Council, the Riddet Institute, and the National Institutes
of Health (DK57061, DK68055, DK64775).

References
1. Huizinga J, Zarate N, Farrugia G. Physiology, injury and recovery of interstitial cells of Cajal: basic

and clinical science. Gastroenterology. 2009; 137:1548–1556. [PubMed: 19778538]
2. Farrugia G. Interstitial cells of Cajal in health and disease. Neurogastroenterol Motil. May; 2008

20(Suppl 1):54–63. [PubMed: 18402642]
3. Grover M, Farrugia G, Lurken MS, Bernard CE, Faussone-Pellegrini MS, Smyrk TC, Parkman HP,

Abell TL, Snape WJ, Hasler WL, Unalp-Arida A, Nguyen L, Koch KL, Calles J, Lee L, Tonascia J,
Hamilton Fa, Pasricha PJ. Cellular Changes in Diabetic and Idiopathic Gastroparesis.
Gastroenterology. Feb.2011 On-line Ahead of Press.

4. Wang YR, Fisher RS, Parkman HP. Gastroparesis-related hospitalizations in the United States:
trends, characteristics, and outcomes, 1995-2004. Am J Gastroenterol. Feb.2008 103:313–322.
[PubMed: 18047541]

5. He C, Burgart L, Wang L, Pemberton J, Young-Fadok T, Szurszewski J, Farrugia G. Decreased
interstitial cell of cajal volume in patients with slow-transit constipation. Gastroenterology. 2000;
118(no 1):14–21. [PubMed: 10611149]

6. Du P, O’Grady G, Gibbons SJ, Yassi R, Lees-Green R, Farrugia G, Cheng LK, Pullan AJ. Tissue-
specific mathematical models of slow wave entrainment in wild-type and 5-HT(2B) knockout mice

Gao et al. Page 6

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



with altered interstitial cells of Cajal networks. Biophys J. May.2010 98:1772–1781. [PubMed:
20441740]

7. Strebelle S. Conditional simulation of complex geological structures using multiple-point statistics.
Math Geol. 2002; 34:1–21.

8. Strebelle S, Journel A. Reservoir Modeling Using Multiple-Point Statistics. Proceedings of SPE
Annual Technical Conference and Exhibition. Sep.2001

9. Tharayil VS, Wouters MM, Stanich JE, Roeder JL, Lei S, Beyder a, Gomez-Pinilla PJ, Gershon
MD, Maroteaux L, Gibbons SJ, Farrugia G. Lack of serotonin 5-HT2B receptor alters proliferation
and network volume of interstitial cells of Cajal in vivo. Neurogastroenterol Motil. Apr.2010
22:462–469. e109–e110. [PubMed: 19941613]

10. Du P, O’Grady G, Davidson J, Cheng L, Pullan A. Multi-scale modeling of gastrointestinal
electrophysiology and experimental validation. Crit Rev Biomed Eng. 2010; 38:1–30.

11. Corrias A, Buist ML. Quantitative cellular description of gastric slow wave activity. Am J Physiol
Gastrointest Liver Physiol. Apr.2008 294:G989–G995. [PubMed: 18276830]

12. Lloyd CM, Halstead MDB, Nielsen PF. CellML: its future, present and past. Prog Biophys Mol
Biol. 2004; 85:433–450. [PubMed: 15142756]

13. Stien M, Kolbjørnsen O, Hauge R, Abrahamsen P. Modification of the snesim algorithm. 2007
14. Jie X, Trayanova N. Mechanisms for initiation of reentry in acute regional ischemia phase 1b.

Heart Rhythm. 2010; 7(no 3):379–386. [PubMed: 20097623]
15. Shaw R, Rudy Y. Electrophysiologic effects of acute myocardial ischemia: a theoretical study of

altered cell excitability and action potential duration. Cardiovasc Res. 1997; 35(no 2):256.
[PubMed: 9349389]

Gao et al. Page 7

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Gao et al. Page 8

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 1.
Two dimensional stacks of WT (A) and Htr2b−/− (B) mice small intestinal myenteric ICC,
which represent physical dimensions of 316×316×7 μm and 316×316×8 μm respectively.
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Fig. 2.
Virtual ICC networks replicating structural properties of the WT (A) and Htr2b−/− (B) ICC
networks from Fig. 1A and B. These virtual networks are at the same pixel resolution and
represent the same physical dimensions as that of their real counterpart from Fig. 1A and B.
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Fig. 3.
Maximum current density magnitudes of the twelve virtual ICC networks generated by the
modified SNESIM algorithm against the network density (A) and connectivity (B) metrics
of the respective networks.
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