Analysis of fMRI Data Using an Integrated Principal Component Analysis and Supervised Affinity Propagation Clustering Approach | IEEE Journals & Magazine | IEEE Xplore

Analysis of fMRI Data Using an Integrated Principal Component Analysis and Supervised Affinity Propagation Clustering Approach


Abstract:

Clustering analysis is a promising data-driven method for analyzing functional magnetic resonance imaging (fMRI) time series data. The huge computational load, however, c...Show More

Abstract:

Clustering analysis is a promising data-driven method for analyzing functional magnetic resonance imaging (fMRI) time series data. The huge computational load, however, creates practical difficulties for this technique. We present a novel approach, integrating principal component analysis (PCA) and supervised affinity propagation clustering (SAPC). In this method, fMRI data are initially processed by PCA to obtain a preliminary image of brain activation. SAPC is then used to detect different brain functional activation patterns. We used a supervised Silhouette index to optimize clustering quality and automatically search for the optimal parameter p in SAPC, so that the basic affinity propagation clustering is improved by applying SAPC. Four simulation studies and tests with three in vivo fMRI datasets containing data from both block-design and event-related experiments revealed that functional brain activation was effectively detected and different response patterns were distinguished using our integrated method. In addition, the improved SAPC method was superior to the k -centers clustering and hierarchical clustering methods in both block-design and event-related fMRI data, as measured by the average squared error. These results suggest that our proposed novel integrated approach will be useful for detecting brain functional activation in both block-design and event-related experimental fMRI data.
Published in: IEEE Transactions on Biomedical Engineering ( Volume: 58, Issue: 11, November 2011)
Page(s): 3184 - 3196
Date of Publication: 22 August 2011

ISSN Information:

PubMed ID: 21859596

Contact IEEE to Subscribe

References

References is not available for this document.