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Abstract
Multi-modal, multi-scale data synthesis is becoming increasingly critical for successful
translational biomedical research. In this paper, we present a large-scale investigative initiative on
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glioblastoma, a high-grade brain tumor, with complementary data types using in silico approaches.
We integrate and analyze data from The Cancer Genome Atlas Project on glioblastoma that
includes novel nuclear phenotypic data derived from microscopic slides, genotypic signatures
described by transcriptional class and genetic alterations, and clinical outcomes defined by
response to therapy and patient survival. Our preliminary results demonstrate numerous clinically
and biologically significant correlations across multiple data types, revealing the power of in silico
multi-modal data integration for cancer research.

Index Terms
Glioblastoma; multi-modal data process; in silico; cluster analysis; translational integration

I. Introduction
With rapid technological advances in acquiring data from diverse platforms in cancer
research, numerous large scale datasets have become available, providing high resolution
views and multi-faceted descriptions of biological systems. Such efforts include those in
brain tumor research by The Cancer Genome Atlas (TCGA) [1], and the Repository of
Molecular Brain Neoplasia Data (REMBRANDT) [2], which have collected large volumes
of multi-modal data from complementary platforms on patients with diffuse glioma. As
manual processing of this large-scale data is both error-prone and intractably time-
consuming, recent investigations have either primarily focused on in silico experiments that
interrogate these datasets or use them to generate or corroborate hypotheses.

In the In Silico Brain Tumor Research Center (ISBTRC), one of the six National Cancer
Institute (NCI) funded In Silico Research Centers of Excellence1, we explore novel
approaches and develop tools for integrative multi-scale, multi-modal data analysis of
diffuse gliomas. Our current research has focused on potential relations across tumor
genomic and gene expression profiles, complex nuclear morphometric features, neuro-
imaging, and clinical outcomes. By conducting complementary, multi-scale in silico
experiments, we aim not only to improve prognostic capabilities, but also to develop a better
understanding of biological underpinnings that drive the rapid progression of these
devastating diseases [3].

As a first step towards seamless data integration for improved diagnosis and stratification,
we describe our methodology for correlating nuclear morphometric features derived from
digitized microscopic images of glioblastoma with 1) genetic alterations, 2) transcriptional
subtypes, and 3) treatment response and patient survival.

We hypothesize that digitized pathology images contain rich and as yet untapped biological
information trapped in morphologic features that can be resolved by image analysis to
provide correlations with genetic alterations and patient prognosis. In this paper, we present
results correlating computer-generated nuclear morphometry from large-scale microscopic
images with survival, treatment response, and clinically relevant molecular
characterizations. The results demonstrate the potential of multi-modal data integration
within the setting of large-scale in silico research.

1https://wiki.nci.nih.gov/display/ISCRE
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II. Data set and analysis infrastructure
The overall framework for data analysis, management, integration, and computation
infrastructure is illustrated in Fig. 1, where nuclear morphometric features from microscopic
images, molecular signatures, clinical outcomes, and neuroimaging annotations from the
same cohort of patients are stored in a database for large-scale multi-modal data query,
integration, and analysis.

A. Microscopy Imaging Data
Digital microscopy is rapidly emerging as a tool for establishing pathologic diagnosis,
evaluating treatment efficacies and performing morphologic research. In distinction to
traditional visual review of histological sections, which introduces human bias and remains
largely qualitative [4], a computer-based analysis of virtual microscopic slides can be
systematic, objective, efficient, and complete [5][6][7]. Moreover, many features in a
microscopic image can be identified and analyzed by computer algorithms but not by human
observers. Thus, imaging data from histologic slides contains rich phenotypic information
that can potentially be exploited to yield clinically meaningful results.

In our research, we have used the microscopic images from TCGA project on glioblastomas
(GBMs), which are WHO grade IV astrocytic neoplasms that are rapidly progressive and
ultimately fatal. All digitized slides are Haematoxylin and Eosin (H&E) stained permanent
sections that were formalin-fixed and paraffin-embedded. In aggregate, 428 whole slides
associated with 162 patients are included. All were scanned at 20x magnification with a
high-resolution, high-throughput digitized scanner. The overall storage size of the complete
image data set for study is about 175Gbytes with JPEG compression ratio of 5.11. The
image resolution is up to 63922 × 45753 pixels.

B. “Omics” Data
Phenotypic data derived from digitized images was correlated with TCGA molecular data,
providing insight to underlying biological mechanisms and potentially uncovering
therapeutic targets within a morphologic class. Each TCGA sample was characterized by
multiple molecular platforms including gene (mRNA) and microRNA expression, DNA
copy number variation, DNA sequence and DNA methylation.

A recent study of TCGA GBMs defined four transcriptional subtypes: proneural (PN),
neural (NR), classical (CL) and mesenchymal (MS) [8]. Each subtype is defined by a
characteristic gene expression profile and genetic alterations, including mutations and
chromosomal changes (amplification/deletion). For our study, transcriptional subtypes were
either obtained from the supplementary information in an earlier work [8] or determined
with Prediction Analysis of Microarray (PAM) software version 2.21 using RMA
normalized Affymetrix HT-HGU133 mRNA expression platform data. A sample expression
average was computed for samples with multiple corresponding arrays. Unlogged
expression was filtered to remove probes with a fold change less than 1.5 or an expression
range less than 20.

Somatic mutations and chromosome alterations (amplification or deletion) for genes
CDKN2A, EGFR, IDH1, NF1, PDGFRA, TP53, and PTEN, have been provided by the
Memorial Sloan-Kettering Cancer Center (MSKCC)2. Mutational status from 205 samples
was available. Copy number variation data from the same set consists of a consensus derived
from a combination of platforms (Agilent, Affymetrix SNP 6, Illumina) together with

2Memorial Sloan-Kettering Cancer Center, http://www.mskcc.org/mskcc/, last access in Mar, 2011

Kong et al. Page 3

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2012 March 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.mskcc.org/mskcc/


methods (RAE[9], GISTIC[10], GTS[11]) for identifying regions of genomic aberration
likely to drive cancer pathogenesis. Copy number alterations are represented by
homozygous deletion, hemizygous deletion, neutral change, gain, and high-level
amplification.

C. Clinical Outcomes
Clinical data on patient age, chemo- and radiotherapies, and survival was downloaded from
the TCGA portal3.

D. Computational Infrastructure
High resolution digitized pathology images are extremely large, with some occupying
several gigabytes even in compressed form. The TCGA dataset include hundreds of
pathology images and presents a significant computational challenge for analysis. To
expedite processing, we partitioned each whole slide image into non-overlapping regions of
4096 × 4096 pixels to permit parallel analysis. This choice balances between memory
requirements and the loss of microanatomy due to tiling. Larger regions have physical
memory constraints. Smaller ones place a greater fraction of nuclei on region boundaries
resulting in their loss during analysis. To scale up the analysis component of the
architecture, we process images with a large-scale, high-performance computation
infrastructure where a cluster of computer nodes executes jobs simultaneously. This
configuration currently consists of seven Dell 1950 1U rack mount units. Each unit is
configured with Dual Xeon E5420 CPUs running with four cores at 2.5Ghz for a total of
eight cores per node.

E. Pathology Image Data Representation and Management
Digital microscopy images contain a tremendous array of micro-anatomic structures, which
collectively characterize specimens phenotypically. In a study with hundreds or thousands of
high-resolution images, millions of nuclear morphometric features need to be represented
and curated in a systematic manner such that they can be efficiently queried for correlative
investigations. In addition, image analysis using either multiple algorithms or multiple
parameter sets can further increase the size of data to be recorded. As a result, information
models are needed to organize and represent virtual slide-related image, annotation, mark-up
and feature information. To address these challenges, we developed the Pathology
Analytical and Imaging Standards (PAIS) model to support flexible, efficient, and
semantically enabled data representations for pathology image analysis and
characterization4. We also implemented a relational database realization of PAIS using IBM
DB2 Enterprise Edition 9.7.3 with its spatial extender. The current database runs on
PowerEdge T410 Linux server with four quadcore CPUs, 16GB memory, and a 7200 rpm
hard drive.

PAIS makes it possible to represent and share data generated from pathology images. More
importantly, it is useful tool for scientific discovery through its powerful query support,
including those that are metadata-based, spatially based or semantically based [12][13].
Further, we incorporate related molecular data and clinical information into PAIS database
to provide integrative queries.

3TCGA portal, http://cancergenome.nih.gov/, last access in Dec 2010
4PAIS wiki: - https://web.cci.emory.edu/confluence/display/PAIS/
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III. Integrated multi-modal data analysis
We next present our methodologies for high throughput microscopic image analysis and
multi-modal data integration.

A. Microscopy Imaging Analysis
We developed a suite of image analysis tools for segmenting and characterizing nuclei. To
reliably identify nuclei, we applied the fast hybrid grayscale reconstruction algorithm to
images for normalizing background regions degraded by artifacts arising from tissue
preparation and scanning [18]. This operation substantially separates the foreground from
the normalized background and allows recognition of nuclei by simple thresholding.
Overlapped nuclei were subsequently separated with the watershed method.

We then extracted a complementary set of features for each identified nucleus to obtain
phenotypic signatures of GBMs. These features fall under four primary headings: nuclear
morphometry, region texture, intensity and gradient statistics, as summarized in Fig. 2 (a)
[14]. Since specific nuclear features have traditionally been used to distinguish types of
gliomas, morphometric features (such as the degree of elongation, and size) are included.
Nuclear texture information is captured by multiple descriptors, as it varies across nuclei due
to the content and clumping of chromatin. Features relevant to nuclear intensity and
intensity gradient are included as well. All nuclear features are computed with the grayscale
image channel converted from the original color image. Additionally, we applied the same
set of texture and gradient features to “cytoplasm” regions surrounding nuclei. Since the true
cellular borders of glioma cells cannot be resolved on H&E stained images, cytoplasm refers
to a fixed-distance radius surrounding a nucleus. In practice, we dilated the nuclear regions
with an eight-pixel margin to identify this space. Fig. 2 (b) presents a small image region
where glioma nuclei and cytoplasm regions are depicted. Features derived from cytoplasm
are computed with the grayscale image channel as well as the isolated channels for H&E
stain signals separated by a color deconvolution algorithm [15]. As the cytoplasm space is
obtained by dilating the nuclear regions, its morphologic features are not calculated.
Cytoplasm features are then combined with nuclear features for better representation. In
aggregate, 74 features extracted from nuclei and proximal cytoplasm describe the
morphology and texture characteristics of each nucleus and its neighboring area.

All nuclear and cytoplasmic features associated with a GBM were then summarized into a
single vector to represent each patient. To this end, we calculated the first moment of each
feature and the second moments of all possible pairs of features [16]. The first moment
represents the average value for a specific feature, whereas the second order statistics define
relationships between features regarding 1) nuclear morphology, 2) nuclear morphology and
nuclear staining, or 3) nuclear morphology/staining and cytoplasmic staining for each
patient. The summarization step produces an N(N+3)/2-dimensional feature vector to
represent the morphology of each patient in a high dimensional space, where N is equal to
74 in our case. Thus, each patient is represented by a 2849-dimensional imaging signature
vector derived by aggregating the features of machine-identified nuclei in the associated
microscopic whole-slide images.

This is followed by a consensus clustering procedure to compute the probabilities that
signatures of pairwise cases are grouped in the same cluster over 100 independent trials of
K-means experiments. This analysis is aimed at uncovering the existence of intrinsic
morphological clusters defined by nuclear feature signatures. We set the number of clusters
as K=3.
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B. PAIS Query Support
Segmentation results and features are stored in the PAIS database. To correlate micro-
anatomic morphometry with molecular profiles and clinical outcome, summary statistics on
image features need to be computed for each patient. This process involves calculating the
mean feature vectors and the feature covariance values of all possible feature pairs over all
nuclei in images of each patient. The PAIS database is queried to search for feature pairs and
retrieve corresponding feature values. The summary statistics for each image are combined
in a separate program to create a single-feature vector for a patient. Queries for the mean,
standard deviation, and covariance of feature calculations are supported through IBM DB2
Structured Query Language (SQL) queries with DB2’s built-in aggregation functions: the
AVG, STDDEV, and COVARIANCE functions, respectively. An example of PAIS
database query for the mean and covariance of three morphometry features, i.e. area,
perimeter, and eccentricity, is shown in Fig. 3 where calculation_flat, and patient are two
tables storing nuclear morphometry features and patient-slide relationships; pais_uid is the
primary key that joins these two tables.

With the efficient and expressive database query support on morphological signature
computation, we are able to correlate nuclear morphometry with clinical outcomes and
molecular characterizations and to produce results suggesting a possible relationship across
nuclear morphometry, patient survival, and molecular data.

C. Multi-modal Data Correlation
Two methods are used for multi-modal data correlation. The first uses consensus cluster
labels to partition patients into three groups and correlate nuclear morphometry signatures
with response to treatment and patient survival. This analysis potentially reveals the clinical
significance suggested by nuclear morphometry features. The second analysis investigates
the relationship of consensus clusters with gene expression subtypes and genetic alterations.
The hypergeometric distribution is used to calculate the probability of either a given
expression subtype or genetic alteration group being enriched/depleted in a given consensus
cluster. This analysis allows us to find those expression subtypes and genetic alteration
groups significantly enriched or depleted in a cluster, suggesting a possible relationship
between the phenotypic and genomic data of GBMs [16]. We present the hypergeometric
probability density function f(x|T,S,K) as in Eq. (1) for x samples of a tumor subtype/genetic
alteration group in a consensus cluster with K samples when S out of T samples are
expected:

(1)

where T is the total population size; S is the number of samples in a given tumor type/
genetic alteration group; K is the size of the samples in a given consensus cluster; and x is
the number of samples of a given tumor type/genetic alteration group in the given consensus
cluster containing K samples. The resulting over- and under-representation p-values can be
computed as:

(2)

where X is the observed number of samples of a given tumor type/genetic alteration group
within the given consensus cluster containing K samples.
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IV. EXPERIMENTAL RESULTS
With the consensus clustering process, we grouped patients based on the patient-level
nuclear morphometry signatures into three clusters, consisting of 70, 10, and 82 patients,
respectively. More than 22 million neoplastic nuclei in 428 whole slides from 162 patients
were analyzed with the aforementioned image-processing pipeline. We excluded nuclei
crossing the tile borders from further analysis, as the number of such nuclei is so small when
compared with the enormous number of nuclei completely contained by partitioned regions.

A. Response to Therapy and Survival Analysis
Summary nuclear feature vectors are computed with slides grouped by patients. These
patients are further grouped into three consensus clusters based on nuclear morphometry. In
Table 1, we present the p-values of the Log-Rank test [17] comparing patient survival to the
three consensus clusters. The Log-Rank test between cluster two and three yields
statistically significant difference in survival, with longer survivals for patients in cluster
three. Additionally, the Kaplan-Meier plot for the three clusters of patients is shown in Fig.
4, where Area Under Curve (AUC) for cluster two (AUC = 296.06) is much smaller than
that for clusters one (AUC = 2441.81), and three (AUC = 1302.79). This suggests that
patients in cluster two have worse prognosis than those in cluster one and three, although
this observation needs to be further validated with a larger number of samples. In Fig. 5, we
present the Kaplan-Meier plots of three clusters of patients showing surivals of those treated
with either standard and aggressive therapy. The resulting p-values of the Log-Rank tests
with patient survivals with regard to response to therapy from cluster one, two and three are
0.00705, 0.158, and 0.000640, respectively. The results suggest that patients in cluster one
and three show significantly favorable response to aggressive therapy compared to standard
therapy. Cluster two contains a small number of patients and conclusions regarding response
to therapy are limited.

B. Correlation with Phenotypic and Genotypic Data
We also investigated whether any of the morphometric clusters was characterized either by a
specific gene expression subtype or genetic alteration. We therefore studied the enrichment/
depletion relationship between phenotypic and genotypic data. After computing the p-values
for over- and under-representations with tumor subtypes in the three consensus clusters, we
find that mesenchymal samples are enriched in cluster one with an over-representation p-
value of 0.0372. In Fig. 6, the genetic alteration profiles of samples in three clusters are
presented for genes of interest for GBMs. With copy number variations, we observe that
cluster one is enriched with EGFR amplification (p-value 0.0211) and CDKN2A deletion
samples (p-value 0.00586). Cluster two is enrched with PTEN deletion samples with p-value
of 0.0244. Additionally, CDKN2A deletion samples are depleted in cluster three with p-
value of 0.00958. However, no specific mutations are found to be significantly correlated
with the nuclear morphometry clusters.

V. Conclusions
In this letter, we present a large-scale multimodal data correlation study of GBM.
Morphological characteristics derived from whole-slide microscopic images are correlated
with clinical and molecular data. Results from these analyses revealed a significant survival
difference between GBM patients based on the nuclear morphometry cluster of their tumor.
This observation suggests a potential for predicting patient outcome based on nuclear
morphometry. Our results also suggest that patients within specific nuclear morphometry
clusters demonstrate differential therapeutic responses, as the patients in clusters 1 and 3
showed favorable response to aggressive therapy. In a future work, we plan to investigate
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morphometric features that are most predictive of molecular subtype and clinical behavior.
These phenotypic features could then be incorporated into clinical diagnostics.
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Fig. 1.
The overall architecture for the In Silico brain tumor research is presented. All data sources,
i.e. microscopy imaging features, molecular data, and clinical outcomes are captured by
PAIS database with which scientific researchers can query for multi-data integration results.
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Fig. 2.
(a) Features computed from nuclear and “cytoplasm” regions are summarized; (b) A typical
image region is overlaid with nuclear (red) and “cytoplasm” (green) boundaries identified by
computer algorithms.
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Fig. 3.
A SQL example is presented to query for mean and covariance nuclear feature vector for
each patient in PAIS database.
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Fig. 4.
Kaplan-Meier plot for patients of three consensus clusters is presented with AUC values and
95% lower and upper confidence bounds.
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Fig. 5.
Kaplan-Meier plots for patients treated with aggressive (blue) and standard (red) therapy
from (a) cluster 1, (b) cluster 2, and (c) cluster 3, are presented with 95% lower and upper
confidence bounds.
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Fig. 6.
The genetic alteration profiles for three consensus clusters of samples are presented. For
copy number data (denoted as CNV), light green, dark green, black, dark red, and light red
represent homozygous deletion, hemizygous deletion, neutral change, gain, and high-level
amplification. For somatic mutation data (denoted as Mut), red represents mutant.
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TABLE I

We present P-values from log-rank test with survival data from patients of different nuclear morphometry
clusters

Consensus Cluster Consensus Cluster(s) P-value of Log-rank Test

1 (2, 3) 0.322

2 (1, 3) 0.0719

3 (1, 2) 0.131

1 2 0.156

1 3 0.222

2 3 0.0437
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