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Cross Validation for Selection of Cortical Interaction
Models From Scalp EEG or MEG
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Abstract—A cross-validation (CV) method based on state-space
framework is introduced for comparing the fidelity of different
cortical interaction models to the measured scalp electroencephalo-
gram (EEG) or magnetoencephalography (MEG) data being mod-
eled. A state equation models the cortical interaction dynamics
and an observation equation represents the scalp measurement of
cortical activity and noise. The measured data are partitioned into
training and test sets. The training set is used to estimate model pa-
rameters and the model quality is evaluated by computing test data
innovations for the estimated model. Two CV metrics normalized
mean square error and log-likelihood are estimated by averaging
over different training/test partitions of the data. The effectiveness
of this method of model selection is illustrated by comparing two
linear modeling methods and two nonlinear modeling methods on
simulated EEG data derived using both known dynamic systems
and measured electrocorticography data from an epilepsy patient.

Index Terms—Cross-validation (CV), effective connectivity,
Granger causality, model selection, state-space model.

I. INTRODUCTION

E FFECTIVE and functional connectivity are of great in-
terest for study of functional integration in the brain [1].

Determining effective connectivity requires identification of a
model describing cortical signals in the brain. A wide variety
of models have been proposed, including linear multivariate au-
toregressive (MVAR) models [2]–[4] and nonlinear models such
as local autoregressive (AR) models [5], nonlinear AR models
based on polynomial or Gaussian kernels [6], and differential
equation models [7]–[9]. Furthermore, different methods for
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estimating cortical model parameters from scalp EEG or MEG
(E/MEG) have been proposed, e.g., the authors in [10]–[12]
describe different approaches for estimating MVAR model pa-
rameters in order to measure cortical interactions from scalp
recordings of electric or magnetic fields. The true functional or
effective connectivity in human data is unknown, so it is very
difficult to establish whether one model or estimation method
is better than others. Typically simulated data are used to es-
tablish model efficacy, while the knowledge of brain anatomy
and function is employed to support cortical connectivity con-
clusions derived from human data (see, e.g., [13] and [14]).

In this paper, we introduce a cross-validation (CV) methodol-
ogy for quantitative comparison of state-space cortical interac-
tion models using measured scalp E/MEG data. Our approach
employs a state-space framework consisting of an observation
equation representing the scalp measurement of cortical signals
and a state equation describing the cortical interaction model of
interest. The innovations sequence is defined as the difference
between the measured data and that predicted by the state-space
cortical interaction model. To apply CV, the dataset is partitioned
into training and test sets and model parameters are estimated
using the training data. Next, a model quality metric, such as
the normalized mean-squared error (NMSE) or log-likelihood
(LL), is computed for the test data using the innovations.

Existing model selection methods include the asymptotic
methods such as Akaike information criterion [15] and Bayesian
information criterion (BIC) [16], bootstrapping [17], and Bayes
factors [18]. Asymptotic methods employ the maximized like-
lihood of a candidate model with a penalty proportional to the
number of model parameters as the selection criterion. How-
ever, the optimality properties of asymptotic methods apply
only when the data are generated from the same class of models
as those being evaluated, an assumption that is certainly violated
with E/MEG data. Given the complexity of the brain and physics
of E/MEG, it is extremely unlikely that any mathematical model
exactly represents the true nature of cortical interactions. Boot-
strapping may be used to perform model selection, but is very
computationally expensive. The Bayes factor approach selects
the candidate model with the highest integrated likelihood, but
requires prior probability density assumptions for the unknown
parameters to compute integrated likelihood. Our CV method
involves no priors and does not rely on the true model being in-
cluded within the set being compared. Instead, the CV approach
chooses the model that best predicts the data. CV techniques
have been widely applied in statistics [19]–[21] and are known
to have asymptotically optimal risk performance and conver-
gence [22], [23].
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The value for mathematical models of cortical interactions
lies in their ability to predict behavioral, disease related, or other
attributes of brain function. CV directly evaluates the predictive
power of a model and thus is well matched philosophically to
the end goal of cortical interaction modeling. Estimated cortical
signals do not provide a common baseline for evaluating predic-
tive ability—different estimation methods give different signal
estimates due to the ill-posed nature of the inverse problem
and typically low signal-to-noise ratio (SNR) of measured scalp
E/MEG data. Our innovations approach employs the observed
data as a common baseline.

Our CV approach to model comparison is demonstrated by
comparing two different model estimation methods: 1) a two-
stage estimation method wherein cortical signals are first esti-
mated from scalp EEG using a nulling beamformer [11] and
then an interaction model is fit to the estimated signals; and 2) a
maximum likelihood approach that estimates the models di-
rectly from EEG data using an expectation-maximization (EM)
algorithm [12]. Both linear MVAR and nonlinear radial ba-
sis function (RBF) interaction models are employed with each
model estimation approach. We show that our CV approach
correctly identifies the correct cortical interaction model in four
simulated data scenarios. We also show that the integrated EM-
based maximum likelihood estimation method consistently out-
performs the two-stage approach.

This paper is organized as follows. Section II introduces our
CV method for selecting state-space cortical interaction models
from scalp E/MEG. Section III reviews the MVAR and RBF
interaction models, as well as the two-stage and integrated EM
parameter estimation methodologies used to illustrate the CV
method. We apply CV to these models and estimation meth-
ods using simulated cortical signals in Section IV and measured
electrocorticography (ECoG) data in Section V. This paper con-
cludes with a discussion in Section VI. Boldface lower and upper
case symbols represent vectors and matrices, respectively, while
superscript T denotes matrix transpose. Subscripts n, j denote
time sample n from trial j, while integer superscripts index
matrix or vector elements.

II. CROSS VALIDATION OF STATE-SPACE MODELS

Any parametric model of cortical interactions for E/MEG
data can be expressed in state-space form. A state-space model
consists of a state equation representing the time evolution of
cortical signals originating from predefined cortical regions of
interest (ROIs) and a linear observation equation describing
the transformation of cortical signals to observed scalp E/MEG
signals. The physics relating cortical activity to E/MEG data
are very well approximated as linear and normally described in
terms of the leadfield matrix [24]. On the other hand, the cortical
interactions modeled by the state equation may be approximated
as a linear or nonlinear dynamical system.

Let xn,j = [x1
n,j , . . . , x

M
n,j ]T , n = 1, . . . , N, j = 1, . . . , J be

the jth trial of an M by 1 state vector representing samples
of cortical signals from M ROIs at time n. Define xm

n−,j =
[xm

n−1,j , . . . , x
m
n−P,j ]T as a P by 1 vector containing the past P

samples of the cortical signal from the mth ROI and let Xn−,j =

[x1
n−,j , . . . ,x

M
n−,j ] be a P by M matrix of P past samples from

all M regions being modeled. Let the model of cortical dynamics
be f(Xn−,j ;Γ), where Γ represents the parameters describing
the cortical dynamics. Examples for f() include MVAR, local
AR, and RBF models. The L by 1 E/MEG measurement data
yn,j are then represented by the following dynamical state-space
model:

xn,j = f(Xn−,j ;Γ) + wn,j (1)

yn,j = CΛxn,j + vn,j . (2)

Here, the vectors wn,j and vn,j are M by 1 and L by 1 state
and observation noise vectors, respectively, C = [C1 , . . . ,CM ]
is an L by MF matrix with the F columns of Cm containing
basis functions describing how a signal from the mth corti-
cal ROI appears in the scalp E/MEG, and Λ is an MF by M
block diagonal matrix with F by 1 vectors λλm on the diago-
nal representing any unknown parameters describing the spatial
distribution of activity in the mth ROI. In the case of a dipolar
source model with unknown moment, Cm has F = 3 columns,
each representing the leadfield due to a dipole oriented in the
x-, y-, and z-directions, and λλm is the unknown dipole moment.
Patch and multipole source models are obtained by choosing
Cm as patch or multipole bases [25], [26] and λλm represents
the corresponding patch or multipole coefficients describing the
spatial distribution of activity in the mth ROI. This observation
model implies that the measured signal due to the mth ROI
is Cm λλm xm

n,j , so the spatial attribute of the source, e.g., dipole
moment or spatial activity distribution, is assumed constant over
time. Time-varying spatial models are easy to incorporate in this
framework by assigning multiple source time series to each ROI,
but are not considered here for notational and practical reasons.
Both the state and observation noise vectors are assumed in
this paper to be independent and identically distributed Gaus-
sian noise processes with zero mean and covariance matrices
Q (M by M ) and R (L by L), respectively. We further as-
sume that the PM by 1 initial state vec{X1−,j} is a Gaussian
distributed random vector with mean µ0 and covariance Σ0 .
Let Θ = {Γ,Λ,Q,R,µ0 ,Σ0} be the set of state-space model
parameters. Other parameterizations may also be used with our
CV framework.

Our goal is to develop a CV procedure that uses the measured
data yn,j to quantify the predictive quality of a given state-space
model parameterized by Θ and, thus, provides a basis for objec-
tive, data-driven comparison of different models. The proposed
approach is inspired by Stoffer and Wall’s [27] method for using
innovations to bootstrap the mean and standard deviation of pa-
rameter estimates in state-space models. Here, we perform CV
using innovations. Given a state-space model parameterized by
Θ and observed data yn,j , the innovations sequence en,j (Θ) is
the difference between the observed data and the data predicted
by Θ using data prior to time n of the jth trial [28]. That is

en,j (Θ) = yn,j − CΛx̂n |n−1,j (Γ,Q) (3)

where x̂n |n−1,j (Γ,Q) is a one-step prediction estimate of the
state xn,j . The innovations sequence is computed using a
Kalman filter [29] for linear state-space models, while nonlinear
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state-space models may approximate innovations using an ex-
tended Kalman filter [29] or other nonlinear estimation methods
such as particle filtering [30].

In general, some or all of the model parameters are un-
known, so CV is performed by partitioning the available data
into training and test sets. Any unknown model parameters are
estimated using the training data. Then, the estimated model
is used to compute the innovations for the test data, and a CV
score is computed from the test data innovations. Formally,
we perform K-fold CV by partitioning the J trials of mea-
sured data yn,j , j = 1, . . . , J into K sets Dk, k = 1, . . . , K of
Jk trials each, where the Jk are approximately equal. Define
Dk = {D1 , . . . , Dk−1 , Dk+1 , . . . , DK } as the training data—
all data except Dk , and let ΘDk

be the parameter values of
a state-space model estimated using the training data. We de-
fine two CV metrics that can be obtained from the innovations
sequence. The CV NMSE is defined by

CV-NMSE

=
1
K

∑K
k=1

1
Jk N

∑
j∈Dk

∑N
n=1 eT

n,j (ΘDk
)en,j (ΘDk

)
1

J N

∑J
j=1

∑N
n=1 yT

n,jyn,j

(4)

while in light of [31], the CV LL is written as

CV-LL =
1
K

K∑

k=1

1
JkN

(
− 1

2

∑

j∈Dk

N∑

n=1

ln |Pen , j (ΘDk
)|

+ eT
n,j (ΘDk

)P−1
en , j

(ΘDk
)en,j (ΘDk

)

)
(5)

where Pen , j (ΘDk
) = E{en,j (ΘDk

)eT
n,j (ΘDk

)} is the inno-
vations covariance matrix

Pen , j (Θ) = CΛΣn |n−1,j (Γ,Q)ΛT CT + R. (6)

Here, Σn |n−1,j (Γ,Q) is the state prediction error covariance
matrix at time n of the jth trial given data up to time n − 1.

Confidence intervals or other measures of precision may be
calculated using the innovations to assess the significance of
differences in the CV scores. We report the standard error of the
mean based on the CV values for each training/test data partition.
If the CV values for each partition are Gaussian distributed,
then the 90% confidence interval is obtained from 1.64 times
the standard error. More sophisticated procedures could be used
to obtain confidence intervals or distributions if desired.

III. EXAMPLE CORTICAL INTERACTION MODELS AND

ESTIMATION METHODS

The CV approach is illustrated in this paper using linear
MVAR state-space models and nonlinear RBF network state-
space models. We also consider two different previously pro-
posed model parameter estimation methods: a two-stage ap-
proach in which cortical signals are estimated by solving the
observation equation (2), and then, estimated cortical signals
are used to estimate the state model parameters Γ and Q [11];
and an integrated maximum likelihood approach based on joint
solution of state (1) and observation (2) equations using an EM
algorithm [12], [32]. In both cases, the ROIs are assumed known

and thus C is known. This section introduces these cortical sig-
nal models and estimation methods.

A. State Model for Cortical Signals

Two types of state models are considered to describe the dy-
namics of cortical signals. The first one is the linear MVAR
model. This type of model has been widely applied to the
recorded local field potential data (see [33] and references
therein). A P th-order MVAR model for representing the cor-
tical signals xn,j is described as

xn,j =
P∑

p=1

Apxn−p,j + wn,j (7)

where Ap , p = 1, . . . , P is a set of M by M MVAR model co-
efficient matrices describing the influence of the past P samples
of cortical signals (xn−1,j ,xn−2,j , . . . ,xn−P,j ) from all ROIs
on the present sample xn,j .

The second type of cortical signal model considered here
is the RBF network. We choose the RBF network because it
satisfies the invariance property required to evaluate Granger
causality [34]. Also, the universal approximation theorem for
RBF networks [35] states that an RBF network is capable of
approximating any smooth function to an arbitrary degree of
accuracy. Thus, it is capable of modeling nonlinear dynam-
ics of cortical signals with different nonlinear characteristics.
An application of RBF networks to measure nonlinear Granger
causality for intracranial EEG signal analysis is reported in [36].
The state equation for estimating cortical connectivity between
M cortical ROIs using the RBF network is written as

xn,j = ΨΦ(Xn−,j ) + wn,j (8)

where Ψ is an M by MI matrix of RBF weights, and
Φ(Xn−,j ) = [φ1(x1

n−,j )
T , . . . ,φM (xM

n−,j )
T ]T is an MI by

1 vector of nonlinear real functions of P variables, where
φm = [φm

1 , . . . ,φm
I ]T is an I by 1 vector of RBF kernels, each

with center cm
i and covariance matrix Si = σ2I

φm
i (z) = exp

[
−1

2
(z − cm

i )T (Si)−1(z − cm
i )

]
. (9)

The elements of Ψ reflect the coupling between ROIs.

B. Model Parameter Estimation Methods

The two-stage approach first estimates the cortical signals of
interest from the measured E/MEG data using methods such
as weighted minimum norm [10] or linear constrained mini-
mum variance (LCMV) beamforming [37]. Next, a state model,
e.g., MVAR or RBF, is fit to the estimated cortical signals to
obtain model parameter estimates for connectivity analysis. Re-
cently, Hui et al. [11] have proposed a nulling formulation of
the LCMV beamformer for handling coherent E/MEG sources
when studying cortical interactions. This method has significant
advantages over other two-stage methods [11] and is employed
to obtain the two-stage results presented in later sections. Given
estimated cortical signals, the MVAR model coefficients are ob-
tained by solving the Yule–Walker equations [38]. Assuming
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the RBF kernel centers cm
i are known or identified separately,

the RBF coupling weights Ψ are estimated from the cortical
signals by solving a system of linear equations [39]. The val-
ues of observation equation parameters Λ and R are estimated
for the two-stage method similarly to those for the integrated
EM approach as described in [12]. That is, the cortical sig-
nal statistics—mean and covariances—are obtained from the
nulling beamformer.

The integrated approach seeks ML estimates of the state-
space model parameters using the relationships implied by both
the state (1) and observation (2) equations. Closed-form esti-
mates are not available, so EM algorithms that are guaranteed to
find local maxima of the likelihood surface have been proposed.
In particular, Cheung et al. [12] extended the EM algorithm
developed by Shumway and Stoffer [40] for linear state-space
models to structured observation equations of the form (2). Sim-
ilarly, Cheung and Van Veen [32] extended the EM algorithm
of Roweis and Ghahramani [41] for estimating RBF state mod-
els to the structured observation equation (2). These algorithms
are employed to obtain the results in later sections and are now
briefly summarized here.

Let {Y,X} denote the so-called complete data,
where Y = {y1,1 , . . . ,yN,1 , . . . ,y1,J , . . . ,yN,J } and X =
{x0,1 , . . . ,xN,1 , . . . ,x0,J , . . . ,xN,J } are the observed and hid-
den data, respectively. The EM algorithm computes the ML
estimates of Θ = {Γ,Λ,Q,R,µ0 ,Σ0}, where Γ = Ap , p =
1, . . . P for the MVAR (linear) state-space model and Γ = Ψ
for the RBF (nonlinear) state-space model. We assume for sim-
plicity that cm

i and σ of the RBF network parameters are known
or identified separately. The EM algorithm [42] iteratively max-
imizes the conditional expectation of the LL of the complete
data using two steps in each iteration. The conditional densities
needed in the EM algorithm for the MVAR state-space model
can be computed using the fixed interval smoother [43]. How-
ever, for the RBF state-space model, these conditional densities
cannot be evaluated analytically. Numerical integration meth-
ods based on sequential Monte Carlo simulation can be used to
approximate them [30], but are computationally intensive so we
approximate the nonlinear dynamics with the extended Kalman
smoother [29]. Updates for Θ are found in [12] for MVAR
state-space models and [41] for RBF state-space models.

IV. SIMULATION RESULTS

A. Simulated Data

Three examples of simulated state-space time-series are pre-
sented to illustrate the effectiveness of our CV approach for
state-space model selection when the true state model is known.
All of them involve two cortical signals, x1

n,j and x2
n,j , with

unidirectional cortical interaction from x1
n,j to x2

n,j .
Scenario 1 (Coupled Bivariate AR System): The following

linear first-order (P = 1) system is used to generate cortical
signals x1

n,j and x2
n,j

x1
n,j = 0.6x1

n−1,j + w1
n,j

x2
n,j = −0.3x1

n−1,j + 0.7x2
n−1,j + w2

n,j . (10)

Here, the variances of w1
n,j and w2

n,j are 0.2.
Scenario 2 (Coupled Logistic System [36]):

x1
n,j = ax1

n−1,j (1 − x1
n−1,j ) + w1

n,j

x2
n,j = 0.3ax1

n−1,j (1 − x1
n−1,j )

+ 0.7ax2
n−1,j (1 − x2

n−1,j ) + w2
n,j . (11)

Here, a = 3.8 and both the variances of w1
n,j and w2

n,j are 1 ×
10−4 .

Scenario 3 (Coupled Henon System [44]):

x1
n,j = a − (x1

n−1,j )
2 + 0.3x1

n−2,j + w1
n,j

x2
n,j = a −

(
0.3x1

n−1,j + 0.7x2
n−1,j

)
x2

n−1,j

+ 0.3x2
n−2,j + w2

n,j . (12)

Here, a = 1.4 and both the variances of w1
n,j and w2

n,j are 1 ×
10−4 .

For each example, we use N = 150 samples, J = 10 trials,
and L = 56 EEG channels. Each cortical signal is assumed to
be associated with a patch of cortex of radius 5 mm and has a
raised cosine spatial pattern. The leadfields are computed using
a four-shell spherical head model. The patch for x1

n,j is located
in the temporal lobe and x2

n,j in the parietal lobe. Hence, the
observed data are generated as

yn,j = β1x1
n,j + β2x2

n,j + vn,j (13)

where β1 = H1α1 and β2 = H2α2 . Here, H1 and H2 are the
collection of leadfields associated with each source patch and
α1 and α2 are the corresponding weights for the raised cosine
spatial pattern. The observation noise vn,j is spatially white.
We define

SNR =
tr

{∑J
j=1

∑N
n=1

∑2
m=1(β

m xm
n,j )(βm xm

n,j )T
}

tr
{∑J

j=1
∑N

n=1(vn,j )(vn,j )T
} (14)

as the ratio of observed power due to cortical activity to that due
to noise. Each scenario is evaluated at SNR of 10 and 0 dB.

B. Cortical State-Space Models

CV is used to compare the predictive ability of MVAR and
RBF state-space models (sMVAR and sRBF, respectively) esti-
mated using both the two-stage nulling beamforming and EM
methods described in Section III-B for all three scenarios. The
memory P , number of RBF kernels I , and kernel centers are
kept the same for both two-stage and EM estimation methods
and are chosen as follows. The memory P for the MVAR mod-
els is chosen using the BIC criterion [12] applied to the sMVAR
model estimated with the EM approach and all of the data. That
is, we choose the value P that minimizes

BIC(ϕ) = −2 ln p(Y|Θ) + ϕ(P ) log(T ) (15)
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TABLE I
STATE-SPACE MODEL PARAMETERS FOR THE THREE SIMULATION SCENARIOS

where T = NJ , ϕ(P ) is the number of free variables of the
sMVAR model, and

ln p(Y|Θ) = C − 1
2

J∑

j=1

N∑

n=1

ln |Pen , j (Θ)|

+ eT
n,j (Θ)P−1

en , j
(Θ)en,j (Θ). (16)

The constant C does not affect the P that minimizes the BIC.
The RBF kernel center locations are chosen using cortical

signals estimated by the EM-based sMVAR model that has the
minimum BIC. For each RBF network, we varied P from 1 to
4 and I from 2 to 12 for Scenarios 1 and 2, and 10 to 80 for
Scenario 3. The ranges of P and I are chosen such that the min-
imum BIC is covered within these ranges for each scenario. At
each P and I , we use the estimated cortical signals and the fuzzy
c-means clustering algorithm [39] to locate the kernel centers
assuming a kernel radius of σ = 0.5. Next, we use the EM algo-
rithm to estimate an sRBF model from all of the measured scalp
data for each set of P , I , and kernel centers and compute the
BIC value using (15) with ϕ(P ) replaced by ϕ(I), the number
of free variables of the sRBF model. Finally, the values of P
and I that minimize the BIC are selected.

The values of P for the sMVAR model and P , I for the sRBF
model selected using these procedures are shown in Table I.
Unless we note otherwise, F = 3 spatial basis vectors are as-
sociated with each source and the basis vectors are chosen as
described in [26] assuming knowledge of the patch locations and
spatial extent. Note that the true observation model—a raised
cosine distribution within each patch—is not described exactly
by the cortical patch basis vectors, even with F = 4, so the
assumed observation equation is only an approximation to the
actual source forward model.

C. Cross-Validation Results

EM and two-stage methods for estimating sMVAR and sRBF
models are compared using tenfold CV on the simulated mea-
sured data for each scenario and SNR. In each scenario, we
also compute reference CV scores for an sMVAR (Scenario 1)
or sRBF (Scenario 2 and 3) model by fitting either an MVAR
or RBF model to the true cortical signals and computing the
innovations (3) and innovations covariance (6) using the true
observation vectors β1 and β2 and observation noise covariance
matrix R. We call this the “omniscient sMVAR” or “ominiscient
sRBF”model as it represents an interaction model derived from
the true cortical signals and exact observation equation param-
eters. All CV scores are reported as the score ± standard error.

Scenario 1 (Coupled Bivariate AR System): The CV scores
for the four state-space models with the first-order AR system of
(10) are provided in Table II. The best model for each SNRs and
CV metric is depicted in boldface type. Independent of SNR and
CV metrics, the models are ranked by CV from best to worst
as 1) EM sMVAR, 2) EM sRBF, 3) two-stage sMVAR, and
4) two-stage sRBF. The underlying cortical dynamics are linear,
so the sMVAR model is expected to fit the data better than the
sRBF model. Note that the nonlinear EM sRBF model is a better
fit than the linear two-stage sMVAR model. As expected, CV-
NMSE increases and CV-LL decreases as the SNR decreases.

Scenario 2 (Coupled Logistic System): The CV scores for
EM and two-stage sMVAR and sRBF models are depicted in
Table III. Both metrics and SNRs rank the models from best to
worst as 1) EM sRBF, 2) EM sMVAR, 3) two-stage sRBF, and
4) two-stage sMVAR. The standard errors imply that the differ-
ences between models are significant. The underlying cortical
system is nonlinear, so the sRBF model is expected to better
fit the data than the sMVAR model. Interestingly, the linear
(sMVAR) model estimated with EM is a better fit to the data
than the nonlinear (sRBF) model estimated with the two-stage
approach. Also, the EM sRBF model slightly outperforms the
omniscient sRBF model in the CV-NMSE score at low SNR.

Note that the cortical signals for Scenario 2 are much more
predictable than those for Scenario 1 due to the reduced vari-
ance of w1

n,j and w2
n,j and the more persistent dynamics of the

logistic system. Hence, the CV-NMSE values at high SNR are
also much smaller. In fact, at SNR = 10 dB, the simulated EEG
contains ten parts (power) due to cortical activity and one part
due to observation noise. Thus, perfect prediction of the cortical
signal would lead to an CV-NMSE of 1/11 = 0.091, which is
slightly less than the omniscient sRBF score.

Scenario 3 (Coupled Henon System): Table IV depicts the CV
scores for EM and two-stage sMVAR and sRBF models for this
scenario. At SNR = 10 dB, both metrics rank the models from
best to worst as 1) EM sRBF, 2) two-stage sRBF, 3) EM sM-
VAR, and 4) two-stage sMVAR. There is a significant difference
in the CV scores of these models for the SNR = 10 dB case. At
SNR = 0 dB, CV-NMSE ranks the models in the same order, but
CV-LL ranks the EM sMVAR model ahead of the two-stage
sRBF model. In this case, the difference between EM sMVAR
and two-stage RBF models may not be significant. Overall pref-
erence of the EM sRBF model is consistent with the nonlinear
nature of the underlying cortical signals generated by the Henon
system.

V. APPLICATION TO EEG DATA SIMULATED

FROM ECOG RECORDINGS

In this section, we apply CV to simulated EEG data derived
from ECoG signals recorded in an epilepsy patient and compare
model fitting and connectivity analysis of the ECoG data to that
on the corresponding simulated EEG signals.

A. ECoG Data

Data from a surgery candidate with typical mesial temporal
lobe epilepsy were collected at the Comer Children’s Hospital
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TABLE II
TENFOLD CROSS-VALIDATION SCORES WITH STANDARD ERRORS FOR BIVARIATE AR SYSTEM

TABLE III
TENFOLD CROSS-VALIDATION SCORES WITH STANDARD ERRORS FOR LOGISTIC SYSTEM

TABLE IV
TENFOLD CROSS-VALIDATION SCORES WITH STANDARD ERRORS FOR HENON SYSTEM

at the University of Chicago. The clinical neurophysiologist
determined seizure onset times and leading channels using vi-
sual analysis of the EEG/ECoG and the audiovisual record-
ing. The EEG and ECoG time series were recorded with a
bandwidth of 0.5–100 Hz, and digitized at 400 samples/s with
a 12-bit analog-to-digital converter using a BMSI 6000 unit
(Cardinal Health, Dublin, OH). All channels used a common
scalp reference. As part of the preoperative evaluation, the ac-
tivity of 128 channels was recorded as a combination of in-
tracranial (Radionics Medical Products, Inc., Burlington, MA)
and scalp electrodes. Intracranial electrodes were placed on the
cortical surface in locations dependent on expected seizure on-
set location. We selected 60 s of ECoG data from each of three
seizures beginning well after seizure onset from five intracranial
electrodes. A channel located in the temporal lobe is identified
as the source channel by the clinician. The other four channels
we selected are located in the parietal lobe and are identified
by the clinician as channels to which the seizure activity propa-
gates. The signals are filtered with passband 1–20 Hz (−40 dB
net stopband attenuation at 25 Hz) and downsampled to a
50-Hz sampling rate. The 60 s of data from each seizure are
segmented into twenty 3-s epochs. Following [45], a single-
channel Kolmogorov–Smirnov test with P > 0.05 is applied to
exclude epochs that contain obvious nonstationary activity. The
first ten 3-s epochs that pass the test are selected to represent
each of the three seizures. Fig. 1 shows an example 3-s epoch of
ECoG signals from these five channels. The cortical interaction
analysis assumes the activity is stationary across the ten epochs
representing each seizure.

Fig. 1. Example 3-s epoch of seizure ECoG signals from five channels.
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TABLE V
TENFOLD CROSS-VALIDATION NMSE SCORES WITH STANDARD ERRORS FOR

SEIZURE ECOG DATA

Fig. 2. Mean cGC over three seizures calculated from the MVAR models of
the ECoG data computed over 0 to 25 Hz. Error bars denote the standard error
of the mean.

B. Modeling of ECoG Signals

Distinct MVAR and RBF models are fit to each of the three
ECoG seizure datasets to obtain a performance baseline for our
analysis of the corresponding simulated EEG signals. The BIC
is applied to all ten epochs for each seizure to identify MVAR
model order P , RBF memory P , and the number of kernels I .
We varied P for the RBF model from 1 to 4 and I from 2 to 20.
The kernel centers are chosen using the fuzzy c-means clustering
algorithm assuming a kernel radius of 0.5. The MVAR memory
was selected as P = 24 for seizures 1 and 2, and P = 22 for
seizure 3. The RBF parameters were selected as P = 2, I = 10
for seizures 1 and 2, and P = 2, I = 8 for seizure 3 following
the procedure described in Section IV-B.

The results of tenfold CV on the ECoG data are given in
Table V. We only calculate CV-NMSE since, in the absence
of an observation equation, LL is proportional to NMSE [46].
The results indicate that the MVAR model has much greater
predictive power than the RBF model for all three seizures
and that the difference between models is significant. Fig. 2
depicts the mean conditional Granger causality (cGC) between
the temporal source channel and each parietal channel, averaged
over the three seizures. The cGC is calculated by integrating
the spectral representation over frequency using the partitioned
matrix technique of [47]. The cGC suggests a dominant flow
from the temporal lobe source to the sources in the parietal
lobe, consistent with the clinical information.

C. Simulated EEG

EEG data are simulated by associating each ECoG signal
with a source represented by a 5-mm radius cortical patch as
shown in Fig. 3. The goal is to obtain a physiologically realistic
scalp EEG, not mimic the EEG signals of this patient. The
following observation equation is used to simulate 56-channel

Fig. 3. Five cortical sources for simulated EEG signals representing seizures
of temporal origin. The red patch in the temporal lobe represents the leading
source. The activity propagates to the four blue patches in the parietal lobe.

EEG signals:

yn,j =
5∑

m=1

Hm αm xm
n,j + vn,j ,

n = 1, . . . , 150,
j = 1, . . . , 10

(17)

where Hm is the collection of leadfields in the mth ROI, αm is
the corresponding spatial activity distribution, xm

n,j is the mth
ECoG signal, and vn,j is white Gaussian noise. The spatial
distribution αm is chosen as a raised cosine for each source.
The SNR is set to 10 dB.

D. Cross-Validation Analysis of Simulated EEG

MVAR and RBF state-space models are fit to the simulated
EEG signals from each seizure using both EM and two-stage
estimation methods. The procedure described in Section IV-B
is employed to determine the MVAR model order P , the RBF
memory P , and the number of RBF kernels I . MVAR order
P = 6 was selected for all seizures. The RBF parameters were
P = 2, I = 8 for seizures 1 and 2, and P = 2, I = 10 for
seizure 3. The presence of observation noise leads to a significant
reduction in MVAR model order, while the RBF parameters
remain comparable to the ECoG case.

The results of tenfold CV for both metrics and all three
seizures are shown in Table VI. These results assume that F =
3 spatial basis vectors are used to represent each cortical source.
As previously, the omniscient sMVAR results provide refer-
ence CV scores and are obtained by fitting an MVAR model
to the ECoG signals and computing the innovations (3) and
innovations covariance (6) using the true observation equation
source distributions αm ,m = 1, . . . , 5 and noise covariance
matrix. Both CV-NMSE and CV-LL indicate that the best to
worst model performance is: 1) EM sMVAR, 2) EM sRBF,
3) two-stage sMVAR, and 4) two-stage sRBF.

The differences in CV scores between models are gener-
ally significant, especially for CV-NMSE. Identification of the
sMVAR model as the best model is consistent with the analy-
sis of the ECoG data given in Section V-B. Note that the EM
approach produces results that are significantly better than the
two-stage approach in each seizure and the sRBF estimated us-
ing EM performs much better than the sMVAR model estimated
with the two-stage approach. The mean cGC estimated with the
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TABLE VI
TENFOLD CROSS-VALIDATION SCORES WITH STANDARD ERRORS FOR SIMULATED EEG SEIZURE DATA

Fig. 4. Mean cGC over three seizure datasets computed over 0 to 25 Hz.
(a) EM sMVAR model applied to simulated EEG. (b) Two-stage sMVAR model
applied to simulated EEG. Error bars denote the standard error of the mean.

EM and two-stage sMVAR models is depicted in Fig. 4. The
EM-based results are consistent with the ECoG analysis de-
picted in Fig. 2 and show dominant flow from the temporal
source to the parietal ROIs. In contrast, the two-stage results do
not show such dominant flow and are not consistent with the
ECoG analysis.

Next, we use CV on the simulated EEG to evaluate the number
of basis vectors employed in the observation equation. The EM
sMVAR method is compared for F = 1, 2, 3, and 4. The best CV
scores result for F = 3, with F = 2 and 4 having comparable
scores. The score for F = 1 is significantly worse than those
for F = 2, 3, and 4, suggesting more than one spatial basis
vector is needed to represent the cortical signal contribution to
the measured data. Fig. 5 depicts cGC for F = 1, 2, 3, and 4. The
need for more than one spatial basis vector in the observation
equation is apparent. The mean cGC values for F = 2, 3, and 4
are nearly identical, consistent with the similarity in CV scores
and are similar to the cortical cGC values depicted in Fig. 2.
However, the cGC for F = 1 is much different than the others and
the ECoG-based cGC and has much greater variability across
the three seizures.

VI. DISCUSSION

We have introduced a CV methodology for evaluating the pre-
dictive ability of state-space cortical interaction models using
measured scalp E/MEG data. It is applicable to any cortical time
series model—linear or nonlinear—coupled with an observation
equation describing the relationship between cortical and mea-
sured scalp signals. An observation equation is always present,
either explicitly or implicity, when cortical signals or interaction
models are estimated from scalp E/MEG measurements. Our CV
method is based on the innovations sequence that is the predic-
tion error between the measured data and the data predicted by
the state-space cortical interaction model. The predicted scalp

Fig. 5. Mean cGC over three seizure datasets calculated over 0 to 25 Hz using
EM sMVAR model with different spatial basis dimension (F ) in the observation
equation (a) F = 1, (b) F = 2, (c) F = 3, and (d) F = 4. Error bars denote
the standard error of the mean.

signal sample is based on the one-step, minimum mean-squared
error prediction of the current cortical signal sample given the
past cortical and measured scalp signal samples. CV cannot be
correctly performed at the cortical level using estimated cortical
signals since then the conclusions depend on the method used
to estimate the unknown cortical signals. The state-space model
selection problem must be formulated using measured data and
the use of innovations computed by the Kalman filter satisfies
this constraint. We have demonstrated two innovations-based
CV metrics—NMSE and the observed data likelihood. Both of
these have sound motivation for model selection.

In our examples, CV-NMSE leads to greater distinctions be-
tween models than does CV-LL with respect to the standard
errors. CV-NMSE also has the potential to indicate how well
the cortical activity is predicted. Assuming independent noise
samples, a value of 1/(SNR+1) is the best possible NMSE, while
a value of unity is the practical maximum1 and results from set-
ting the cortical interaction model to zero. The CV-NMSE scores
for the logistic and Henon systems at SNR = 10 dB are much
closer to the theoretical lower bound than the bivariate AR sys-
tem due to the large contributions of w1

n,j and w2
n,j in the AR

1Values greater than one are possible if the estimated state is the nega-
tive of the true state, but this is extremely unlikely because the Kalman filter
could then obtain better prediction by changing the sign of the estimated state
x̂n |n−1 ,j (Γ, Q) in (3).
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TABLE VII
TENFOLD CROSS-VALIDATION SCORES WITH STANDARD ERRORS FOR EM SMVAR MODELS WITH DIFFERENT NUMBERS OF SPATIAL BASIS VECTORS IN THE

OBSERVATION EQUATION

system, which are not predictable. On the other hand, CV-LL
identifies the most likely model. Note that other metrics could
be used with the CV approach to emphasize other aspects of
model selection.

Predictive ability is a natural criterion for model selection,
since the fundamental purpose of modeling is to predict or de-
scribe a phenomenon. CV thus offers significant advantages
over other model selection methods. In particular, AIC and BIC
assume the data are generated by a model within the class of
models under comparison, an assumption that is certainly vio-
lated in EEG and MEG. In contrast, CV has been proposed as
a surrogate for maximizing expected utility in model selection
when the data are not believed to be generated by a model in the
class of models being compared [48]. The primary limitation
of CV approaches is computational complexity, as they require
evaluation over multiple partitions of the data.

The results provide clear evidence for the effectiveness of our
proposed CV approach. In particular, the results in Section IV-C
demonstrate that our CV approach correctly distinguishes be-
tween linear and nonlinear cortical interactions at both high and
low SNRs (see Tables II–IV). We show that CV can be used
to select the best number of basis vectors in the observation
equation (see Table VII). The ECoG-derived EEG simulations
in Section V show that the CV score predicts the quality of
estimated effective connectivity measures, such as cGC. If the
number of basis vectors is such that the CV metrics are near opti-
mum, the cGC (see Fig. 5) agrees with the “true” cGC calculated
using the ECoG signals (see Fig. 2). In contrast, the relatively
poor CV scores for the F = 1 case result in poor cGC estimates.
Similarly, the relative poor CV scores for the two-stage sMVAR
model result in poor cGC estimates (see Fig. 4).

The CV scores clearly indicate that the integrated approach to
estimating cortical interaction models using the EM algorithm
results in higher quality models than two-stage estimation ap-
proaches. The EM approach results in consistently better CV
scores when the underlying system is linear or nonlinear, and
when human ECoG seizure data are used to simulate EEG. In
both the bivariate AR system (see Table II) and simulated seizure
EEG data examples (see Table VI), the EM sRBF model has bet-
ter CV scores than the two-stage sMVAR model, even though
the cortical data are better described by an MVAR model. That
is, the “wrong”model estimated with EM has better predictive
ability than the “correct” model estimated with the two-stage
method in these examples.

The proposed CV approach can also be used to select model
complexity, as illustrated in Fig. 5 and Table VII, because it

naturally discriminates against under- or overfitting of models
by using predictive quality as the selection metric.

The examples employed tenfold CV. We choose K = 10 to
balance computational complexity and estimation precision of
the CV metrics. Given a fixed amount of data, increasing K
reduces the number of data values in the test set, but increases
the number of test sets. If the number of data values in the test
set is too small, then the startup transient of the state-estimation
filter (e.g., Kalman or extended Kalman) may dominate the
CV metric. Startup transients result because the initial state
is unknown. The state-estimation filter needs to evolve from
a given initial state to the state sequence in the data. In our
examples, we used the mean initial state estimated from the
training data as the state-estimation filter initial state and found
that it converged visually to a steady-state tracking condition
within five samples. Five out of 150 samples are a small fraction
in our test data partitions, so we used the entire innovations
sequence to compute our CV metrics. If the number of samples
required for the state-estimation filter to converge to a steady-
state tracking is a significant fraction of the test partition, then
these initial samples should be excluded from the CV metric
computation to avoid biasing the results by the assumed initial
state.

The CV approach quantifies the performance of a model us-
ing the data. Hence, it is imperative that the data describe the
phenomenon of interest. If, for example, the data are dominated
by artifacts, the CV approach will prefer the model that best
describes artifacts.

The CV method proposed here is sensitive to both the cortical
interaction model and any unknown parameters in the observa-
tion equation. This endows it with the ability to identify the best
observation equation parameters, such as the number of spatial
basis vectors. In principle, our CV methodology can be used to
compare models that assume different source locations. How-
ever, the computational cost of doing so escalates rapidly as the
number of sources with uncertain location increases. Note that
it is also theoretically possible that a lower quality cortical inter-
action model could have the best CV score given a fortuitous set
of observation equation parameter estimates. This possibility is
somewhat lessened by the fact that the dynamics of interaction
are represented only in the cortical interaction model while ob-
servation noise samples are assumed temporally independent.
Errors in assumed cortical source locations or models are po-
tentially more problematic. If the observation equation assumes
incorrect source locations or forward model physics, then in-
correct conclusions may result. This issue is endemic to cortical
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analysis of E/MEG data and not limited to the proposed CV
approach.

In human data, the true cortical interactions are never quanti-
tatively known a priori. Consequently, performance comparison
of different models or estimation methods is typically performed
using simulations that cannot replicate the complexity of the
human brain. Although the CV methodology presented here
cannot establish that a given model captures the true cortical
interactions in a quantitative sense, it does offer a principled
and quantitative means for comparing the predictive ability of
different models using only measured data.
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