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Abstract
Activity-dependent variation of neuronal thresholds for action potential (AP) generation is one of
the key determinants of spike-train temporal-pattern transformations from presynaptic to
postsynaptic spike trains. In this study, we model the nonlinear dynamics of the threshold
variation during synaptically driven broadband intracellular activity. First, membrane potentials of
single CA1 pyramidal cells were recorded under physiologically plausible broadband stimulation
conditions. Second, a method was developed to measure AP thresholds from the continuous
recordings of membrane potentials. It involves measuring the turning points of APs by analyzing
the third-order derivatives of the membrane potentials. Four stimulation paradigms with different
temporal patterns were applied to validate this method by comparing the measured AP turning
points and the actual AP thresholds estimated with varying stimulation intensities. Results show
that the AP turning points provide consistent measurement of the AP thresholds, except for a
constant offset. It indicates that 1) the variation of AP turning points represents the nonlinearities
of threshold dynamics; and 2) an optimization of the constant offset is required to achieve accurate
spike prediction. Third, a nonlinear dynamical third-order Volterra model was built to describe the
relations between the threshold dynamics and the AP activities. Results show that the model can
predict threshold accurately based on the preceding APs. Finally, the dynamic threshold model
was integrated into a previously developed single neuron model and resulted in a 33%
improvement in spike prediction.
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I. Introduction
Neurons receive inputs in the form of presynaptic action potentials (APs, or “spikes”) and
transform them into post-synaptic APs. APs are all-or-none electrical events generated by a
neuron that propagate down its axon. Since the amplitude of an AP contains little or no
information, the temporal pattern of APs must play an essential role in encoding neural
information [1]–[6]. Therefore, the characteristics of neuron spike-train to spike-train
temporal transformation is critical to the various functions performed by nervous systems,
such as learning and memory [7], [8]. Unraveling this neuron spike-train temporal
transformation is fundamental to the understanding of the information processing done by
nervous systems [9].

Neuron threshold is the transmembrane voltage level at which any further depolarization
will activate a sufficient number of sodium channels to enter a self-generative positive-
feedback phase (AP initiation). Variation of the threshold may significantly affect neuron
spike-train temporal transformation [10]–[14]. Nevertheless, in many neuron models that
have an explicit threshold term, e.g., integrate-and-fire models, threshold is often assumed to
be a constant [8], [15]–[19]. However, more and more evidence shows that threshold is not
constant but rather is influenced by the AP firing history in a nonlinear dynamical manner
[10]–[12], [14]. The importance of threshold dynamics in affecting spike generation can be
recognized in some recently developed neuron models that adopted more realistic spike
initiation mechanisms to replace constant voltage threshold and showed significant
improvement in spike prediction [13], [20]–[22]. One major possible mechanism for this
history dependence is the voltage-dependent sodium channel which has been shown to
undergo a slow accumulative inactivation process which is modulated by activation history
[23], [24]. This report describes the development of a nonlinear model that is used to
quantify and study the nonlinear dynamics of neuronal threshold as a function of AP firing
history. There are four major stages of the model development: 1) the collection of
synaptically activated subthreshold and suprathreshold intracellular activity driven by a
broadband input; 2) a method to consistently measure threshold; 3) a data-driven modeling
methodology to quantify threshold dynamics as a function of AP activity; and 4) the
comparison of spike prediction performance made by the dynamical threshold model versus
a constant threshold model.

A. Intracellular Responses to Presynaptic Broadband Inputs
The temporal transformation of spike trains between synaptically coupled neurons is a
complex process that involves changes in pre- and post-synaptic conductance, dendritic and
somatic integration, and AP generation [25], [26], among other mechanisms. These
processes affect the activation and inactivation of voltage-dependent ion channels in a
nonlinear manner. In order to study threshold dynamics under the widest range of nonlinear
interactions of the underlying processes, random-interval impulse trains (RITs) of single all-
or-none pulses were delivered to the synaptic region of CA1 stratum radiatum containing
Schaffer collaterals. The all-or-none stimulation pulses mimic APs. The interspike intervals
(ISIs) of the RITs follow a broadband distribution. These stimuli can elicit a broad range of
physiologically plausible responses and nonlinearities resulting from the interactions of the
underlying processes [3], [8], [27].

B. Threshold Measurement
In order to study threshold dynamics, we need an algorithm to consistently measure neuron
threshold in a continuous record of neuron membrane potential. The physiological definition
of neuron threshold is straightforward: the voltage level of membrane potential at which any
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further depolarization will induce a sufficient number of sodium channel to enter a positive-
feedback phase (AP initiation); however, to computationally obtain this voltage level from a
continuous intracellular recording is not straightforward. Different algorithms have been
developed to measure threshold [12], [14], [28]–[33]. Those algorithms aim to find the point
at the base of the AP where the membrane potential increases at its fastest rate, referred to as
the “AP turning point” in this report. Since this turning point is defined phenomenologically
instead of following the physiological definition of threshold, this assumption might be
problematic. This study applies various stimulation paradigms to examine the relation
between the two.

C. Nonlinear Modeling Methodology
A data-driven modeling methodology is needed to capture the nonlinear threshold dynamics
in response to the AP activity. Volterra modeling theory is a data-driven modeling
methodology that canonically describes and quantifies nonlinear dynamical systems using
progressively higher order kernels [5], [34], [35]. A third-order Volterra model was, thus,
developed with AP timings as input, and the resultant threshold values as output (see Fig. 1).
Response functions can be calculated from the Volterra kernels to provide intuitive
physiological explanations of the threshold nonlinearities in terms of single-pulse, paired-
pulse, and triple-pulse effects [36]–[39]. This dynamic threshold model requires minimal
assumptions, which largely avoids errors resulting from incomplete and/or biased
knowledge [5], [37], [38].

D. Comparison of Spike Prediction Accuracy Performed by Constant and Dynamical
Threshold Models

A single neuron model was previously developed based on the principles of signal
generation common to all spike-input spike-output neurons [36]. The signal generation is
implemented by the model in three recurrent steps: 1) the model transforms presynaptic
spikes to postsynaptic potentials; 2) if the postsynaptic potential is higher than the threshold,
an AP is generated; 3) then, a spike-dependent after potential is triggered to modify
subsequent postsynaptic potentials. The original threshold term of the model was a constant
and it is replaced with the dynamic threshold developed in this study. The spike prediction
accuracy performed by the two methods is statistically compared.

II. Materials and Methods
A. Experimental Procedures

Hippocampal slices (400 µm thick) were prepared from two-week-old male Sprague Dawley
rats using standard protocols. A surgical disruption of the connection between CA3 and CA1
was performed on each slice before it was transported to oxygenated bath solution for
maintenance at 25 °C. This disruption was performed to prevent spontaneous activities in
CA1 neurons driven by CA3 neurons. The bath solution contained (in millimolar): NaCl
128, KCl 2.5, NaH2PO4 1.25, NaHCO3 26, Glucose 10, MgSO4 1, Ascorbic Acid 2, and
CaCl2 2; at pH 7.4 and 295 mosmol.

During whole-cell patch-clamp recording, hippocampal slices were perfused with
oxygenated bath solution at 25 °C. Experiments were performed on pyramidal cells of the
hippocampal CA1 system. A bipolar stimulation electrode was placed in the CA1 stratum
radiatum according to visual cues; the stratum radiatum contains many glutamatergic,
excitatory afferents to CA1 pyramidal cells, which are among the strongest and well studied
of the inputs to CA1 from CA3 pyramidal neurons. The stimulation electrode was created
using formvarinsulated Nichrome wire (A-M Systems, Inc., Carlsborg, WA). A recording
micropipette electrode with a 4-MΩ tip resistance was patched on the somatic membrane of
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a CA1 pyramidal neuron to record the intracellular postsynaptic potentials (PSPs) and APs.
The internal solution of the recording electrode contained (in millimolar): Potassium-
Gluconate 110, HEPES 10, EGTA 1, KCl 20, NaCl 4, Mg-ATP 2, and Na3-GTP 0.25; at pH
7.3 and 290 mosmol.

A programmable stimulator (Multi Channel Systems MCS GmbH, Reutlingen, Germany)
was used to deliver Poisson RITs with a 2-Hz mean frequency with the ISIs ranging from 10
to 4500 ms [40]–[44]. Whole-cell, patch-clamp recordings were performed with a HEKA
EPC9/2 amplifier in a 20-kHz sampling rate. The stimulation intensities of spike trains were
adjusted so that approximately 50% of the stimulations induced APs. This study includes 38
cells from 32 animals.

B. Measuring AP Turning Point and Threshold
The AP turning point is phenomenologically defined as that point at the base of the AP
where the membrane potential increases at its fastest rate. The mathematical measurement of
this AP turning point can be accomplished in different ways. We utilized the third-order
derivative method suggested by Henze and Buzsáki in 2001 [12]. They suggested that the
timing of the AP turning point is the same as the first peak of the third-order derivative of
the membrane potential (see Fig. 2). The third-order derivative of the membrane potential is
calculated as follows [45]:

(1)

In (1), V represents membrane potential (in millivolt) and t represents time (in millisecond).

However, this phenomenologically defined AP turning point might not be the same as the
physiologically defined neuron threshold. To examine the relationship between the two, four
stimulation paradigms with different temporal patterns were applied: 1) single pulse, 2)
paired pulse with 25-ms ISI, 3) paired pulse with 90-ms ISI, and 4) triple pulse with 90 and
25 ms ISIs (see Section III-A). Based on the findings, we then propose a two-step method to
estimate the neuron threshold: 1) measure the AP turning point and 2) estimate the offset by
optimizing spike prediction performance.

C. Dynamic Threshold Model
1) Estimation of Dynamic Threshold Model Parameters: In Fig. 1, yh, the input spike trains
(APs) to the dynamic threshold model, can be expressed in delta functions (spikes) as
follows:

(2)

where N is the total number of APs in a given sample and ti is the time of the ith AP. The
threshold value θ is the output of the dynamic threshold model and can be expressed as
follows [5], [34]:

(3)

15where L is the total number of Laguerre basis functions, cθ are Laguerre coefficients
estimated with least squares estimations as in (5), f is the constant offset between the AP
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turning point and the threshold, which is optimized by minimizing spike prediction error rate

(SPER) defined in (19) by scanning through possible voltage ranges [see Fig. 3(a)], and 
are the convolutions of Laguerre basis functions and yh expressed as follows:

(4)

where  represents Laguerre basis functions, and Mθ is a memory window sufficiently
longer than threshold dynamics.

The least squares estimation for Laguerre coefficients cθ in (3) is expressed as follows:

(5)

where Θ̃ represents the measured AP turning points; p is the total number of second-order

convolutions  is the total number of third-order convolutions  is the

concatenated matrix of all  expressed as

(6)

Fig. 3(b) shows the relationship between threshold and ISIs; it reveals that shorter ISIs are
correlated with higher threshold values [11], [12]. Once the parameters of the dynamic
threshold model are estimated, the model can predict the varying threshold values for each
presynaptic input stimulation in x (see Fig. 4), which is expressed as

(7)

A selection of representative threshold prediction made by the dynamic threshold model is
shown in Fig. 3(c).

2) Reconstructions of Volterra Kernels and Response Functions: Volterra kernels were
reconstructed with the estimated Laguerre coefficients cθ, and the constant offset f, as
follows:

(8)

(9)
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where mi are the intervals between current input events and preceding APs within the
memory window.

To examine the threshold dynamics in terms of single-pulse, paired-pulse, and triple-pulse
effects, we utilized response functions r. Response functions r can be calculated from
Volterra kernels k as follows:

(10)

(11)

(12)

In (10), the first-order response function r1 is a scalar, representing the expected threshold
value of the current input (presynaptic stimulation) when there is no preceding AP within
the memory window. In (11), the second-order response function r2 is a curve, representing
the nonlinear effect of threshold dynamics resulting from each preceding single AP with ISI
equal to m. In (12), the third-order response function r3 is a surface, representing the
nonlinear effect on threshold resulting from each preceding pair of APs with ISIs equal to
m1 and m2.

D. Comparison of Spike Prediction Accuracy Produced by Constant and Dynamical
Threshold Models

A single neuron model was previously developed based on principles of signal generation
flow common to all spike-input, spike-output neurons [see Fig. 4(a)] [36]. It has three major
components: 1) a feedforward model K transforming the presynaptic spikes x to PSPs u; 2) a
constant threshold term θ optimized by minimizing SPER, above which APs yh are
generated; and 3) a feedback model H describing spike-dependent after potentials a. The
dynamic threshold model Kθ developed in this study was incorporated into this single
neuron model to replace its original constant threshold term [see Fig. 4(b)]. Once the
dynamic threshold model is estimated, meaning all open parameters are constrained using
the synaptically driven intracellular activities, it predicts a varying threshold value θ for
each incoming input stimulation x as a function of AP activity yh.

The single neuron model shown in Fig. 4(a) and (b) can be expressed as follows:

(13)

(14)

In (13), x is the presynaptic stimulation train, as well as the input to the single neuron model;
u represents PSP, the output of feedforward kernels; a represents spike-triggered after-
potential, the output of feedback kernel; w represents the prethreshold (non-spiking)
membrane potential, which is the summation of u and a. In (14), y is the overall continuous
somatic membrane potential (both sub- and supra-threshold), and is also the output of the
single neuron model; yh represents the all-or-none spikes in y.
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In (13) the PSP u is expressed with Volterra kernels as follows:

(15)

where

(16)

In (15), L denotes the number of Laguerre basis functions; ck0, ck1, ck2, and ck3 are the
Laguerre expansion coefficients of the feedforward kernels k0, k1, k2, and k3 shown in Fig.
4; Mk is the memory window.

In (13), a, spike-triggered after potential, is expressed with Volterra kernels as follows:

(17)

where

(18)

In (17), ch are Laguerre expansion coefficients of the feedback kernel H; Mh is the memory
window.

1) SPERs: SPER is defined as follows:

(19)

30The SPER is used in this study as the spike prediction error measure to optimize the offset
f between neuron threshold and AP turning point, as in (3) and in Fig. 3(a) for in-sample
trainings. Hence, the SPER is used as the performance index for comparing the spike
prediction accuracy performed by a constant threshold [see Fig. 4(a)] and the dynamic
threshold model [see Fig. 4(b)] in out-of-sample predictions.

2) Receiver Operating Characteristic (ROC) Curve: An ROC curve is used in this study to
visualize the significance of the improvement of spike prediction accuracy performed by the
dynamic threshold model comparing to the constant threshold model. The x-axis of the ROC
curve is false-positive rate and the y-axis is true-positive rate; they are defined as follows:

(20)

(21)
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III. Results
A. Consistency of the Third-Order Derivative Analysis of Membrane Potentials With
Different Temporal Patterns and the Relationship Between AP Turning Point and
Threshold

We applied four stimulation paradigms to activate CA1 neurons in order to study: 1)
whether or not the third-order derivative analysis provides a consistent measurement of AP
turning points in response to different temporal patterns of prespike membrane potentials,
and 2) the relationship between the phenomenologically defined AP turning point and the
physiological neuron AP threshold. These four stimulation paradigms are 1) single-pulse
stimulation, 2) paired-pulse stimulation with a 25-ms ISI, 3) paired-pulse stimulation with a
90-ms ISI, and 4) triple-pulse stimulation with 90- and 25-ms ISIs, in which an AP was
evoked by the second pulse. In each stimulation pattern, the last stimulus has an increasing
intensity ranging from 25 to 800 µA. The measurements of the responses to the last stimulus,
either the peak values of PSPs or turning points of APs, are plotted in the right column of
Fig. 5.

In Fig. 5, notice that the AP turning points in each panel on the right remain relatively stable
across different stimulation intensities. This stability shows that the third-order derivative
analysis suggested by Henze and Buzsáki [12] provides reasonably consistent measurement
of AP turning points in response to different temporal patterns of membrane potential
evoked by various input patterns.

Recall the physiological definition of neuron threshold: the voltage level of membrane
potential at which any further depolarization will activate a sufficient number of sodium
channels to enter a positive-feedback phase. Under a certain stimulation intensity, if both
nonspiking PSPs and APs coexist, then the average of the maximum peak values of the
nonspiking PSPs represents the neuron threshold, which is plotted in each panel of the right
column in Fig. 5.

In Fig. 5(a), the single-pulse stimulation paradigm was applied. This paradigm elicits the
first-order PSP dynamics (no preceding presynaptic stimulation) and the first-order
threshold dynamics (no preceding AP). The average normalized AP turning point is 109.8%
(standard deviation (SD) = 5.1%); the average normalized threshold is 100% (SD = 4.23%),
yielding an average of 9.8% difference. In Fig. 5(b), the paired-pulse stimulation paradigm
with a 25-ms ISI was applied. This paradigm elicits the second-order PSP dynamics (one
preceding presynaptic stimulation) and the first-order threshold dynamics (no preceding
AP). Hence, 25 ms is the peak time of a single PSP response. The average normalized AP
turning point is 109.4% (SD = 3.19%); the average normalized threshold is 97% (SD =
2.01%), yielding an average of 12.4% difference. In Fig. 5(c), the paired-pulse stimulation
paradigm with a 90-ms ISI was applied. This paradigm elicits the second-order PSP
dynamics (one preceding presynaptic stimulation) and the first-order threshold dynamics (no
preceding AP). Hence, 90 ms is the time interval at which the strongest paired-pulse
(second-order) PSP facilitation occurs [36]. The average normalized AP turning point is
108.1% (SD = 4.88%); the average normalized threshold is 97.3% (SD = 2.94%), yielding
an average of 10.8% difference. In Fig. 5(d), the triple-pulse stimulation paradigm was
applied with 90- and 25-ms ISIs in which an AP was evoked by the second stimulus. This
pattern elicits the third-order PSP dynamics (two preceding presynaptic stimulations) and
the second-order threshold dynamics (one preceding AP). The average normalized AP
turning point is 135% (SD = 7.94%); the average normalized threshold is 122.5% (SD =
1.44%), yielding an average of 12.5% difference. Notice that the threshold is about 23%
higher than the previous three stimulation paradigms. This elevation in threshold is caused
by the previous AP activity. This phenomenon is congruent with Figs. 3(b) and 6(b).
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The analyses in Fig. 5 show that, in this specific neuron, there is an approximately 10%
offset between AP turning points and thresholds (9.8–12.5% differences across all four
patterns). This offset relationship suggests that there is a relatively constant voltage shift
between the actual potential level at which sufficient sodium channel activation enters the
neuron into the positive-feedback phase (AP initiation) and the potential level at which the
drastic increase in membrane potential can be observed phenomenologically (AP rise).

Among all CA1 neurons collected in this study, AP turning points are always larger than
thresholds. However, the offset value is different from cell to cell, and needs to be optimized
on an individual basis. The offset relationship indicates that AP turning point captures the
nonlinearities but not the linearity of threshold dynamics. From a neuroscience standpoint,
this offset may not be specially significant. However, from a neuroengineering standpoint,
accurate estimation of this offset bears a very significant weight to the spike prediction
accuracy. In recognition of this, we propose a two-step methodology to estimate the neuron
threshold: 1) apply the third-order derivative analysis introduced in Section II-B, to measure
AP turning point, and 2) perform a spike prediction validation to optimize the offset between
AP turning point and neuron threshold.

B. Threshold Dynamics
A set of representative response functions (r1, r2, and r3) are shown in Fig. 6. The first-order
response function r1 is 8.9 mV. The second-order response function r2 is a double-positive-
peak curve and stays positive throughout the memory window. The first peak starts from
amplitude 5.18 mV at the beginning and decays to 0.30 mV at m = 225 ms. The second peak
ranges from m = 225 to 1200 ms with maximum amplitude 0.59 mV at m = 490 ms. The
third-order response function r3 starts from −0.09 mV, symmetrically decays to the first
valley of −1.1 mV at (40ms, 160 ms) and (160 ms, 40ms), rises to the highest peak of 0.31
mV at (160 ms, 160 ms), decays to the second valley of −0.4 mV at (400 ms, 400 ms), and
then slowly rises back to −0.01 mV at (800 ms, 800 ms).

The first-order response function indicates that 8.9 mV is the expected threshold value in the
case when there is no preceding APs within the memory window. The second-order
response function is positive throughout the memory window, and higher value corresponds
with shorter m(ISI); this indicates the general phenomena also observed in Fig. 3(b): the
second AP in a pair requires a stronger driving force, and higher threshold corresponds with
shorter ISI. However, Fig. 6(b) is more informative and conclusive than Fig. 3(b), because
Fig. 3(b) considers only one single spike prior to the second spike, whereas Fig. 6(b)
(second-order response function) considers all possible paring spikes within the memory
window prior to the second spike. Taking a step further, Fig. 6(c) (third-order response
functions) considers all possible triplets within the memory window. In summary, the
response functions in Fig. 6 provide a quantitative description of the linearity and
nonlinearities of threshold dynamics.

C. Improvement of the SPER by the Integration of the Dynamic Threshold Model
Two representative out-of-sample spike predictions performed using either constant
threshold or dynamic threshold are compared in Fig. 7. Fig. 7(a) shows predictions in which
constant threshold accurately predicted the occurrences of APs; the dynamic threshold
worked just as well, i.e., dynamic threshold did not worsen the SPER values. Fig. 7(b)
shows that predictions of the constant threshold made three false-positives errors; however,
the dynamic threshold mode avoided two out of the three errors, notably improving the spike
prediction accuracy.
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Fig. 8(a) shows the ROC curves made using a constant threshold by scanning through the
possible voltage range of threshold and using the dynamic threshold model by scanning
through the possible voltage range of the offset. The difference between the two curves
shows that the dynamic threshold model significantly enhances the spike prediction
performance comparing to a constant threshold. Histograms of out-of-sample SPERs made
using an optimal constant threshold and dynamic threshold with optimal offset are shown in
Fig. 8(b). The mean SPER made using an optimal constant threshold is 24.8%, and using an
dynamic threshold is 14.7%. The average out-of-sample SPER improvement made using the
dynamic threshold model over the constant threshold is 33% [see Fig. 8(c)]. This significant
SPER improvement affirms the importance of the activity-dependent threshold dynamics in
influencing the neuron spike-train temporal-pattern transformations.

IV. Discussion
In this study, we developed a data-driven, high-order, nonlinear dynamic model to quantify
the activity-dependent threshold dynamics induced by presynaptic broadband stimulation.
The developed dynamic threshold model quantitatively describes the transformation from
AP activity (input) to threshold dynamics (output). The input and the output of the model are
common to all spiking neurons, meaning the model is applicable to various kinds of spike-
input, spike-output neurons. All parameters of this dynamic threshold model are
simultaneously estimated using synaptically driven intracellular activity by minimizing
rigorously defined error terms. This data-driven approach provides the following
methodological advantages: 1) avoiding arbitrary manipulation during parameter estimation;
2) requiring minimal assumptions about the model; and 3) considering only fundamental
constraints general to all neurons [9], [36], [38], [39], [46]. Therefore, modeling errors due
to biased knowledge or unknown mechanisms are reduced. In addition, this dynamic
threshold model is computationally efficient. It contains only 11 open parameters (i.e., one
parameter for the first-order Volterra kernel, three for the second-order, six for the third-
order, and one for the offset) and can be easily estimated using a standard PC (AMD
Phenom 9750).

This study affirms the importance of threshold dynamics in neuron spike-train to spike-train
transformation. This can be illustrated by the 33% average SPER improvement by dynamic
threshold versus constant threshold [see Fig. 8(c)]. In other words, this marked improvement
shows that threshold dynamics profoundly influence the input–output properties of neurons.

The single neuron model with the dynamic threshold [see Fig. 4(b)] decomposes neuron
input–output dynamics into three principles: 1) the transformation from presynaptic spike to
PSP; 2) spike generation with dynamic threshold; and 3) the transformation from output
spike to spike-triggered after potential. The nonlinear dynamics of each principle are
described using independent Volterra models. This model structure partitions the overall
neuron input–output transformation according to the fundamental principles of neuronal
signal generation, and, thus, significantly facilitates model interpretation and prediction [36],
[46], [47].

The model is a hybrid, combining mechanistic and nonparametric representations. The
model structure configuration is mechanistic, i.e., the principal underlying neurobiological
processes (synaptic integration, spike generation, and spike-triggered after potential.)
determine the global model structure. On the other hand, the transformations within each
process are described in a nonparametric manner by Volterra models. In principle, including
more mechanisms can make the model more biologically realistic and potentially more
accurate. In practice, however, the availabilities of mechanistic dissection into
nonparametrically modelable segments are dependent on the nature of experimentally
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collected data. For example, we previously developed a single neuron model using
extracellularly recorded unitary spikes as both the model input and model output [8], [47].
Since extracellular spike recording does not provide information about the prespike
membrane potential, direct measurements of threshold cannot be performed and construction
of a dynamic threshold model as reported was not possible. On the contrary, intracellularly
recorded membrane potential provides enough information for direct measurement of
threshold, and, thus, makes the inclusion of threshold dynamics possible. Nevertheless, that
previous neuron model [8], [47] contains a spike-dependent feedback component describing
the effects of spike-triggered after potentials. That feedback component groups the threshold
dynamics and the spike-triggered after-potential dynamics into one entity, because spike-
triggered after potential and threshold dynamics are both AP activity dependent. Obviously,
intracellular recording contains richer neuronal information and allows a more in-depth
decomposition of the system through a more mechanistic (parametric) model structure
configuration [38], [39].

The mechanisms underlying activity-dependent threshold variation are likely to involve
voltage-dependent ion channels. The fast, voltage-dependent sodium channel is one of the
most likely candidates [11], [12], [48]–[51]. It has been reported that sodium channels in the
soma and dendrites of CA1 pyramidal neurons undergo a form of AP use-dependent,
cumulative inactivation that attenuates neuronal excitability [23], [24]. This cumulative
inactivation of sodium channels makes the second AP in a pair more difficult to evoke
within a certain time range than the first one. Thus, a stronger depolarizing force is needed
for the second AP. This is observed in Figs. 3(b) and 6, where higher thresholds correlate
with shorter ISIs. This spike-dependent attenuation in neuron excitability has been proposed
to work as a noise filter that increases information transfer in nervous systems [14], and a
coincidence detector that contributes to the synchronization among neurons [10], [11], [48].
Hence, this attenuation is also proposed to increase the homeostasis of the brain [52].

The reconstructed response functions shown in Fig. 6 describe threshold dynamics in terms
of single-pulse, paired-pulse, and triple-pulse effects. Even though the response functions do
not provide direct explanations of the physiological mechanisms underlying the threshold
dynamics, they do provide valuable information for mechanistic hypotheses. In Fig. 6, the
double-positive-peak curve in the second-order response function and the complex surface
in the third-order response function suggest that at least two or more major processes
interactively contribute to threshold dynamics. We propose that the dominant first peak of
the second-order response function r2, where ISI (m) ranges from 0 to 225 ms, is due to
sodium channel inactivation. Hence, there should be at least one additional process, e.g., an
ionic channel, with a slower time constant that accounts for the second peak of r2 where ISI
(m) ranges from 225 to 1200 ms. Delayed-rectifier potassium channels may be one of the
possible candidates [53]–[60]. Further experimental and modeling studies are required to
identify the contributions of specific biological mechanisms to the overall response
functions. For example, it would be useful to compare the response functions estimated from
intracellular recordings both before and after pharmacologically blocking a specific ionic
channel (e.g., sodium or potassium channel). In addition, we can compare the response
functions estimated from the simulated data generated by a detailed compartmental CA1
neuron model before and after computationally blocking the same ionic channel.
Subsequently, we can cross examine the experiment-derived- and the compartmental-model-
derived response functions to segregate mechanism-specific contributions to the response
functions and overall threshold dynamics.
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Fig. 1.
Dynamic threshold model. The model is constructed using third-order Volterra kernels. The
model canonically quantifies and describes the transformation between APs and thresholds.
This also means that once the model parameters are trained, the model can predict threshold
values as a function of AP firing history.
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Fig. 2.
Third-order derivative analysis of AP turning point. The solid line is the recorded membrane
potential of an AP. The dashed line is its third-order derivative. Arrows indicate the AP
turning point which happens at the same time point as the first peak of the third-order
derivative.
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Fig. 3.
(a) Optimization of the offset f by scanning through possible voltage range to minimize the
SPER. This offset is further discussed in Section III. (b) Measured threshold versus ISI. It
shows that previous spiking activity generally increases the threshold value of the following
spikes, while shorter ISI correlates with higher threshold value. (c) Representative threshold
predictions made by the dynamic threshold model.
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Fig. 4.
Model structure of the single neuron model with (a) a constant threshold and (b) the
dynamic threshold model. In this model, x represents presynaptic stimulations; u represents
PSPs; w represents prethreshold PSP; θ represents either constant threshold in (a) or
dynamic threshold in (b); yh represents APs; a represents spike-dependent after potentials. Σ
is defined as superimposition.
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Fig. 5.
Four stimulation paradigms. (a) Single pulse, (b) pair pulse with a 25-ms ISI, (c) pair pulse
with a 90-ms ISI, and (d) triple pulse with 90- and 25-ms ISIs in which an AP is induced by
the second pulse and applied to examine 1) the consistency of the third-order derivative
analysis in response to different membrane potential temporal patterns and 2) the
relationship between AP turning point and neuron threshold. All data shown in Fig. 5 are
from the same single neuron. All membrane potentials are normalized using the neuron
threshold value (blue line) indicated by the black triangle (◄) in the right panel of (a). In
each panel on the left column, one representative nonspiking PSP response is highlighted
with a blue color, and one representative spiking response is highlighted with a red color;
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both highlighted responses are evoked using the same stimulation intensity. The peak value
of the highlighted nonspiking PSP is labeled as a blue solid dot, and the AP turning point of
the highlighted spiking response is labeled as a red solid dot. Arrows (↑) indicate the
stimulation timings. The star symbol indicates an increasing intensity stimulus ranging from
25 to 800 µA, which is the last stimulus in each paradigm. In each right neighboring panel,
either the peaks (blue circles) of nonspiking responses or turning point values (red circles) of
spiking responses induced by the last stimulus are plotted. The blue line indicates the
average of the nonspiking peaks evoked with the stimulation intensities which also evoke
spikes. Hence, this blue line represents the physiological neuron threshold. The red line is
the average of all AP turning points. The red circles across different stimulation intensities
show little variation. This shows that the third-order derivative analysis (see Fig. 2) provides
consistent measurement of AP turning point in various temporal patterns of membrane
potentials. The gap between the blue line and the red line represents the offset between AP
turning point and neuron threshold. The offset remains relatively constant (10%) across all
four stimulation paradigms. This indicates that the offset affects the first order (linear) but
not the higher order (multiple preceding APs) response functions of threshold dynamics.
Notice that the neuron threshold (blue line) and the AP turning point (red line) in (d) are
roughly 20% larger than they are in (a), (b), and (c). This threshold elevation shows that the
previous AP activity increases the threshold value for the following responses, and this
effect is congruent with Figs. 3(b) and 6(b).
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Fig. 6.
Representative set of response functions of threshold dynamics. (a) First-order response
function r1. (b) Second-order response function r2. (c) Third-order response function r3.
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Fig. 7.
Representative spike predictions performed using constant threshold and dynamic threshold.
(a)When constant threshold worked perfectly, dynamic threshold worked just as well. (b)
When constant threshold made three false-positive spike prediction errors, dynamic
threshold avoided two of them and notably improved the prediction accuracy. In both (a)
and (b), dashed lines in the middle panel indicate the optimal constant threshold; black dots
in the bottom panels indicate varying threshold values predicted by the dynamic threshold
model.
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Fig. 8.
(a) Comparison of ROC curves. The black line is the spike prediction performances made
using the dynamic threshold model with various offset values scanning through possible
ranges. The black dot indicates the performance made using the optimal offset. The gray line
represents the spike prediction performances made by various constant thresholds scanning
through possible ranges. The gray dot indicates the performance made using the optimal
constant threshold value. The gray shadow area indicates the improvement in spike
prediction made using the dynamic threshold versus constant threshold. (b) SPERs made by
the single neuron model with the optimal constant threshold and the dynamic threshold. (c)
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Average of 33.0% improvement in SPER was observed by using the dynamic threshold
model over a constant threshold.

Lu et al. Page 27

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2012 July 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


