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Estimation and Modeling of QT-interval Adaptation
to Heart Rate Changes

Aline Cabasson, Olivier Meste, Member IEEE, Jean-Marc Vesin, Member IEEE

Abstract—This paper introduces a new method for QT inter-
val estimation. It consists in a batch processing mode of the
improved Woody’s method developed in [1]. Performance of this
methodology is evaluated using synthetic data. In parallel, a
new model of QT-interval dynamics behavior related to heart
rate changes is presented. Since two kinds of QT response
have been pointed out, the main idea is to split the modeling
process into two steps: 1) the modeling of the fast adaptation,
which is inspired by the electrical behavior at the cellular level
relative to the electrical restitution curve, and, 2) the modeling
of the slow adaptation, inspired by experimental works at the
cellular level. Both approaches are based on a low-complexity
autoregressive process whose parameters are estimated using
an unbiased estimator. This new modeling of QT adaptation,
combined with the presented QT estimation process, is applied
to several ECG recordings with various heart rate variability
dynamics. Its potential is then illustrated on ECG recorded
during rest, atrial fibrillation episodes, and exercise. Meaningful
results in agreement with physiological knowledge at the cellular
level are obtained.

Index Terms—Electrocardiography (ECG), QT intervals, QT
estimation, Modeling, QT adaptation.

I. INTRODUCTION
Electrocardiographic QT intervals have been widely

considered as heart rate (as expressed by RR intervals)
dependent [2], [3]. Nevertheless, both heart rate and autonomic
nervous activity influence the QT interval dynamics [4]–[6].
The QT interval reflects the overall duration of ventricular
electrical activity, and is often associated in the literature to
the Action Potential Duration (APD) at the cellular level [7],
[8]. The APD adaptation dynamics to abrupt changes in the
cardiac period, consisting of a fast and slow responses [9]–
[12], are reflected at the ECG level with QT-RR adaptation
dynamics. But the combination of these two phases in the
modeling of QT adaptation has been rarely addressed to date
[12], [13].

In the literature, the QT response to changes in the heart
period was studied during pacing-induced sudden changes
[9]. It was described that 90% of QT interval adaptation to
abrupt change in heart rate takes approximately 2-3 minutes.
Considering the influence of preceding RR intervals, the
analysis of the relationship QT/RR has been widely studied:
Porta et al. [14] proposed a model to quantify the dependence
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of the duration of ventricular repolarization with respect to the
cardiac period. This study was however limited to conditions
of rest, and was taken over by Almeida et al. [15]. Considering
only stable heart periods, a different approach was proposed
by Badilini et al. [16]. Various works investigated the case
of fluctuating RR intervals, such as: El Dajani et al. [17],
who proposed a model based on neural networks, Larroude et
al. [18], who studied the QT interval dynamics during atrial
fibrillation episodes, and Pueyo et al. [19], [20], who proposed
a model of the QT response based on the average of previous
RR intervals. This latter method makes it possible to adapt
a specific model for each subject. Indeed, since the QT/RR
relationship is different for each subject [21], it is important
to model this relationship on an individual basis.
When one studies the trends and the variabilities of the

QT and the RR intervals, two kinds of QT response to the
heart period changes can be pointed out [8]–[10]: a fast phase,
which takes place after a few heart beats, and a slower phase,
which occurs on a longer time scale. However, no study
in the literature focuses on these two adaptation phases in
parallel. Most works propose a modeling of the slower phase
by characterizing the evolution of the QT interval trend. In
the present work, a new modeling of the QT adaptation to
heart rate changes is proposed. The QT interval dynamics
is considered as a weighted sum of two contributions: a fast
and a slow adaptation. Both are modeled as a low-complexity
autoregressive process, with unknown initial conditions, whose
parameters are calculated using an unbiased estimator.
However, to perform this modeling, an accurate estimation

of the QT interval is needed. Several algorithms for automated
measurement have been proposed to locate QRS onsets and
ends and QT interval limits. Classical segmentation methods
are based on filtering the derivative of the ECG [22]–[25],
or on wavelet transform [26]–[30]. The advantage of the
methods based on derivative filtering lies in their robustness
to variations in the morphology of the ECG waves. But
the major drawback is the differentiation which is known to
be sensitive to noise. In parallel, the wavelet transform has
emerged as a very good segmentation tool. However when
the heart rate increases, P and T waves tend to overlap and
segmentation becomes impossible because these waves have
similar frequency components. Recently, an indicator related
to the area covered by the T wave has been proposed for the
detection of the T wave [31]. The advantage of this method is
its robustness against variations in the morphology of the ECG
waves, but its major drawback is its sensitivity to noise. All
these reasons led us to develop a new QT-interval estimation
method that is presented in this paper.
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Fig. 1. Synthetic ECG data. This ECG has a time-varying R-T duration. This
duration decreases linearly as the beat number increases. The extreme right-
hand side and the extreme left-hand side T waves correspond, respectively, to
the 1st and the 300th beat. SNR = − 1.1 dB.

This paper is structured as follows. Section II presents a
new method of QT interval estimation in particular when the
T wave undergoes significant continuous changes in shape.
Section III describes the proposed modeling of QT adaptation
to changes in heart rate. In Section IV, firstly the performance
of the QT estimation method is evaluated and compared to
those of other conventional methods using synthetic data.
Secondly, the relevance of the new modeling of QT adaptation
is illustrated on several real ECG recordings with various RR-
trend and RR-variability dynamics: i) resting conditions, ii)
atrial fibrillation episodes, iii) under controlled respiration,
iv) exercise conditions. Meaningful results in agreement with
the physiological knowledge at the cellular level are obtained.
Finally, we conclude and suggest some future work in Section
V.

II. ESTIMATION OF THE QT INTERVALS

Several algorithms for automated measurement have been
proposed to locate QRS onsets and ends and QT-interval
limits. Classical segmentation methods are based on filtering
the derivative of the ECG [22]–[25], on wavelet transform
[26]–[30], or on an indicator related to the area covered by the
T wave [31]. The major drawback of these methods lies in their
sensitivity to noise. A new estimation method for QT interval
is presented and compared to classical estimation methods.
When the signal of interest undergoes significant continuous

changes in shape, such as the T wave during exercise, batch
processing is relevant. In this part, we present a method
to estimate the QT intervals: a batch processing mode of
the previous improved Woody’s method developed in [1].
Actually, typical time delay estimation methods such as the
method developed by Woody [32], which originated from an
empirical basis, has been proven as suboptimal regarding the
likelihood estimation and less efficient when the number of
considered beats is small. Thereby, we presented in [1] an
improved version of the Woody’s method that formalizes and
outperforms the previous one. These methods are based on an
iterative estimation scheme for the analysis of variable latency
signals, and the detection of latency by correlation between the
considered signal and a template. The main difference between
these methods is that the template, which is computed as the
average of all beats, does not contain the considered signal in
the average in the improved version of the Woody’s method. In
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Fig. 2. Batch processing mode of the improved Woody’s method to estimate
QT intervals. After division of the original observations into M batches of 10
beats each, two steps are performed. Step 1 consists in the improved Woody’s
method until convergence on each batch [1]. We obtain the estimated delays
di and a resulting reference wave Wm which is the average of the re-aligned
waves during the improved Woody’s process. Step 2 consists in a re-alignment
stage for each batch of the di. By estimating the shifts Km between the
resulting reference waves Wm of each batch, and adding this shift to those
estimated intrinsically, we get the delays for all the observations, i.e. the QT
intervals up to a constant.

this part, we present a batch processing mode of the improved
Woody’s method which has been proven as more efficient
when the number of considered beats is small.
Successive application of two pre-processing steps provides

us the position of the R waves [33]. A threshold technique
applied to the high-pass filtered and amplitude-demodulated
ECG, refines the estimation of the time occurrences tk of
the R waves, that are roughly the R peaks locations. The
high-pass filter is a 500th order FIR filter designed with
a Hamming window with cutoff frequency equal to 5 Hz.
Segments including each expected T wave and its previous
corresponding R wave in sequence are formed by time locking
the tk . The length of the segments is fixed for all beats and
depends on the subject. For each heart rate, the right boundary
of the segment is adjusted in order to ensure that the whole
T wave is encompassed without P wave involvement. To sum
up, our observations correspond to segments where all beats
are aligned on the left on the R waves (see Figure 1).
Note that the number of beats per batch is chosen arbitrarily

according to the mean variation of the changes of T wave in
shape. If there is no variation, a batch mode is not necessary.
In case of doubt, a batch method with few beats per batch (e.g.
10 beats) will always work with a cost of higher variance but
a better adaptation. In the following, we create batch of 10
beats each, and apply our improved Woody’s method on each
batch independently.
The global method to estimate the QT intervals, presented

in Figure 2, can be split into two steps after the division of
the original observations into M batches of 10 beats each:
Step 1 On each batch, processing of the improved

Woody’s method until convergence [1]. We obtain
the estimated delays di (where i is the index of
the beat in the considered batch) and a resulting
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reference wave Wm (where m is the index of the
batch) which is the average of the re-aligned waves
during the improved Woody’s process.

Step 2 In step 1, given that the batches are treated
independently, the consistency is not warranted from
one batch to the other one. In order to compensate
the estimated delays on all observations, a stage of
re-alignment of the di estimated per batch must be
performed using the resulting reference waves Wm

of all batches after convergence. Indeed, by estimat-
ing the shifts Km between the resulting reference
waves of each batch, and adding this shift to those
estimated intrinsically, we get the delays for all the
observations, i.e. the QT intervals up to a constant
assuming that the QR intervals are stable over time.

Note that the resulting reference waveform can change from
one batch to another, so the estimation of the shift on the
resulting reference waves for each batch must yield an absolute
position. Different approaches can be used for this alignment
step using temporal position of the maximum of the T wave,
of the maximum divided by two in the decreasing part of the
T wave, of the T-wave end based on an indicator of wave
surface as proposed by Zhang et al. [31], of the T-wave end
or peak based on a derivative filtering as proposed by Laguna
et al. [23]. All these approaches for this second step will be
compared in Section IV-A.

III. MODELING OF THE QT ADAPTATION TO CHANGES IN
HEART RATE

In this part, we propose a new model of QT-interval dynam-
ics behavior related to heart rate changes previously introduced
in [34]. The QT interval response to heart period changes can
be considered as a weighted sum of two contributions [10]:

• a fast adaptation, related to the variability of QT and RR
intervals,

• a slow adaptation, related to the trend of QT and RR
intervals.

A. Fast adaptation
The action potential duration represents the time required

for a cardiac cell to achieve repolarization following a depo-
larizing stimulus, and the QT interval recorded at the body
surface is related to the APDs of a large number of cells,
which vary from site to site in the ventricle [10], [35]. The
relationship between the QT interval and the preceding TQ
interval is similar to the well established restitution curve
observed in isolated cells, between the APD and the preceding
diastolic interval (DI) [7], [8], [10], [36]. Note that in the rest
of the paper we focus on the RT and TR intervals, which
correspond to QT and TQ intervals up to a constant assuming
that the QR intervals are stable over time, because the R peak
is easier to determine. The relationship between RT and TR
(corresponding to QT and TQ intervals up to a constant) can
be represented by a restitution curve at the ECG level as in
Figure 3. The definition of the intervals RTn+1, TRn. . . , is

RR increases

RTn+1 interval
(ms)

TRn interval (ms)

RTn+1 = g(TRn)Equilibrium
point

RTn+1 = RR - TRn

RR decreases

Slope a

Fig. 3. Schematic diagram of the restitution curve at ECG level: analogy
between the relationship “Action Potential Duration vs Diastolic Interval” at
the cellular level, and the relationship “RT vs TR intervals” at ECG level.
When an equilibrium point exists, it is possible to make a linear approximation
of the restitution curve with a value a depending on the RR interval and equal
to the slope of the tangent to the equilibrium point.

RRn

RTn RTn+1TRn

Beat n Beat n+1

Fig. 4. Schematic representation of normal sinus rhythm showing standard
waves and definition of the RR, RT and TR intervals on two consecutive
cardiac beats.

presented in Figure 4. By using the restitution curve (Figure 3),
it is graphically possible to put in relation the RT intervals and
the cardiac period (RR intervals). According to the definition
of the cardiac intervals in Figure 4, we have:

RR(n+ 1) = RT (n+ 1) + TR(n+ 1), (1)

or, RT (n+ 1) = RR(n+ 1)− TR(n+ 1). (2)

For a constant heart period, i.e., a fixed RR interval, we can
suppose that the TR interval remains constant. In this case, we
can write equation (2) as follows:

RT (n+ 1) = RR− TR(n). (3)

This latter relationship is represented in Figure 3 by the
diagonal lines. The intersection of these lines with the restitu-
tion curve defined by RT (n + 1) = g(TR(n)) corresponds
to the equilibrium point for a fixed RR. We notice that
from an equilibrium point, increase in the heart period (RR
step like increase) gives rise to a fast migration to a new
equilibrium point, whereas by decreasing the heart period,
the new equilibrium point will be reached much more slowly
since the slope of the restitution curve is greater for small
RR intervals. Also, it is worth noting that if the slope of
the restitution curve is greater than one, there is instability.
However, the minimal and maximal physiological values of
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the restitution curve are bounded by nature, so there will be
emergence of a limit cycle generating alternans. When an
equilibrium point exists (slope sufficiently low), it is possible
to make a linear approximation of the restitution curve with
a value a depending on the RR interval. It is assumed that
around the equilibrium point:

RT (n+ 1) = aTR(n) + b, with a > 0. (4)

By developing this expression and using the definition of
TR(n) in (1), we obtain a relationship between the fast
adaptation of the RT intervals denoted RTf and the preceding
RR intervals:

RTf (n+ 1) = −aRTf (n) + aRR(n) + b. (5)

Neglecting the parameter b in a first step, which will be
included in the slow adaptation process, the filter defined by
relationship (5) is a high-pass filter with Z-domain response:

RTf(z) =
a

a+ z
RR(z). (6)

The step response of this filter is:

RTf(z) =
az

(a+ z)(z − 1)
=

α

(a+ z)
+

β

(z − 1)
, (7)

where the first term of the decomposition, α
(a+z) , stands for

an oscillating part, and the second term corresponds to a one
lag shifted step function.
The expression (7) can explain the cellular behavior de-

scribed by the restitution curve in Figure 3. Indeed, if the value
of heart period (RR intervals) change abruptly, an oscillating
part (related to the first term) will move around a fixed value
(related to the second term). The model (6) is a high-pass filter.
Note that if |a| > 1, the filter is unstable, i.e., it moves to the
left side of the restitution curve and there is divergence. On the
contrary, if 0 < a < 1, it is a stable high-pass filter. Then, RT
intervals will be only sensitive to high-frequency components
of RR intervals, i.e., to the variability of RR. The model (6)
represents the cellular behavior according to the variability of
heart period. Finally, the fast adaptation of the RT (or QT)
response to RR changes can be defined by the relation:

RTHF (n+ 1) = −a RTHF (n) + a RRHF (n), (8)

with a expected positive and less than 1, and RTHF and
RRHF respectively the variability of RT and RR intervals.
The aim is then to estimate the parameter a, observing only

the variability of RR intervals and using this recursive function
on the variability of the RT intervals. We use an a priori range
of values for a (between −0.9 and 0.9 for validation), and
an initial condition RTHF (0) equal to 0. From (8), we can
recursively compute RTHF , named R̃THF , for all values of
n. In fact, the unknown initial condition RTHF (0) modifies
RTHF (n) by adding the term RTHF (0).(−a)n−1 for n > 0.
For each value of a, the estimated initial condition R̂THF (0)
is computed by using a least square approach. Finally, the
optimal value of a is selected in such way that it minimizes
the mean square error between the reconstructed R̂THF (n) =

R̃THF (n) + R̂THF (0).(−a)n−1, and the observed one, that
is:

∑

n

(RTHF (n)− (R̃THF (n) + R̂THF (0).(−a)n−1))2.

Once the optimal value of a is computed, the variability of
the RT intervals, R̂THF , is reconstructed.

B. Slow adaptation
The slow adaptation corresponds to the trend of the RT

intervals, and is noted RTLF . This slow adaptation can be
considered as a low-pass filtering of the preceding RR inter-
vals:

RTLF (n+ 1) = c RTLF (n) +RR(n), (9)

with c, positive, less than, but close to 1. In the Z-domain,
this corresponds to the filter:

RTLF(z) =
1

z − c
RR(z). (10)

This modeling allows to get a slow step response similar to
the one obtained in the work of Franz et al. at the cellular
level [10]. The value of c defines the damping factor of the
exponential response [10].
Similarly to the fast adaptation, we use an a priori range

of values close to 1 for c (between 0.9 and 0.999), and
an initial condition RTLF (0) equal to 0. From (9), we can
recursively compute RTLF , named R̃TLF , for all values of
n. The next step is more complex than for the fast adaptation
because we will account for parameter b defined in equation
(5). In that case the effect of initial condition on observations
is RTLF (0).cn−1. For each value of c, we minimize the
following criterion:

∑

n

(RTLF (n)− (αR̃TLF (n) +RTLF (0).c
n−1 + γ))2,

with respect to α, RTLF , and γ. In this criterion, α stands for a
gain coefficient in the filter (10), and γ accounts for parameter
b, defined in (5), and an offset, i.e., the error between the real
RT interval and the observed one. Finally, the optimal value
of c is selected in such way that it minimizes the mean square
error between the reconstructed R̂TLF (n) = α̂.R̃TLF (n) +
R̂THF (0).cn−1 + γ̂, and the observed one. Once the optimal
value of c is computed, the trend of the RT intervals, R̂TLF ,
is reconstructed.

C. Summary of the modeling methodology
The proposed method can be summarized in a few steps:
• Determination of the RR intervals,
• Estimation of the RT intervals, e.g. using a typical time
delay estimation method such as the method presented in
section II,

• Extraction of the trends of RT and RR intervals, using a
low-pass filtering, e.g. a moving averaging filter with a
Hamming window of 25 beats,

• Computation of the variabilities of RT and RR intervals
by subtraction of the trends from the considered intervals,

• Estimation of the oscillating part R̂THF ,
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• Estimation of the slow part R̂TLF ,
• Addition of the estimated oscillating part of the fast
adaptation, and the estimated slow adaptation in order
to reconstruct the entire signal R̂T .

IV. RESULTS
A. Perfomance evaluation of the QT estimation method on
synthetic data
1) Performance evaluation of the alignment step: In order

to find the best estimator of the shifts between resulting
reference waves (i.e. the Km in the 2nd step of the global
method presented in Figure 2), we compare on synthetic
signals different alignment approaches using:

• the temporal position of the maximum of the T wave
(T-wave peak),

• the temporal position of the maximum divided by two in
the decreasing part of the T wave (see example on the
1st synthetic T wave in Figure 1),

• the position of the T-wave end based on an indicator of
wave surface as proposed by Zhang et al. [31],

• the position of the T-wave end based on a derivative
filtering as proposed by Laguna et al. [23],

• the position of the T-wave peak based on a derivative
filtering as proposed by Laguna et al. [23].

The synthetic ECG data using noisy positive Gaussian func-
tions is presented in Figure 1. These data have a time-varying
R-T duration which decreases linearly as the beat number
increases. The relative shift in the 300 Gaussian functions
follows a linear progression from 0 to -50 ms. A white
Gaussian noise with a standard deviation of 0.02 is added,
which corresponds to a signal-to-noise ratio of −4.7 dB. In
Figure 1, the extreme right-hand side and the extreme left-hand
side T waves correspond respectively to the 1st and the 300th
beat. Parameters of Gaussian functions such as T-width have
been estimated from real values. Due to the shape changes
between the beats, we choose to work with batch of 10 beats
each (like in real conditions). The improved Woody’s method
is then applied until convergence to obtain the intra-batch
delays (defined as di in Figure 2), and the resulting reference
waves (defined as Wm in Figure 2) that will be used in the
second step of shift estimation between each batch, i.e. the
alignment process using the five estimators presented above.
Figure 5 shows the theoretical RTpeak intervals and those

estimated by the global method presented in the previous
section using different alignment approaches for the estimation
of the shifts between resulting reference waves (Step 2 of the
global method presented in Figure 2). Note that the offsets of
the curves are different due to different ways for determining
the interval RT: relative to the T-wave peak position, to the T-
wave end, or to the temporal position of the maximum divided
by two in the decreasing part of the T wave.
In Figure 5, we observe that the estimator of the maximum

position of the T wave is very close to the theoretical RTpeak.
However, the estimator based on the temporal position of the
maximum divided by two presents better performance. Indeed,
it is less sensitive to noisy observations than the maximum
position, and has smaller variance. In parallel, we observe that
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Fig. 5. Comparison of the different alignment approaches (estimation of the
shifts Km between resulting reference waves of each batch: Step 2 of the
global method presented in Figure 2): the temporal position of the maximum,
temporal position of the maximum divided by two in the decreasing part of the
T wave, position of the T-wave end proposed by Zhang et al. [31], positions
of the T-wave end and peaks proposed by Laguna et al. [23].

estimators based on the T-wave end proposed by Zhang et al.
[31] or Laguna et al. [23] yield very noisy estimates of the
RT intervals. The alignment method of the reference waves
by detecting T-wave peak of Laguna et al. [23] has better
performance than the previous ones. However, the estimator
based on the position of the maximum divided by two presents
the least variance.
Table I presents the values of dispersion of different align-

ment approaches. The dispersion is computed as the variance
of the difference between the estimated intervals and the
theoretical ones after compensation of the offsets. From these
values, the estimator based on the temporal position of the
maximum divided by two outperforms the other approaches.
Finally in the second step of the global method, we choose

to estimate the shifts between the resulting reference waves
of each batch using the temporal position of the maximum
divided by two in the decreasing part of the T wave.

Alignment method Dispersion
Maximum 12.50

Maximum/2 4.86

T-wave end of Zhang et al. [31] 100.74

T-wave end of Laguna [23] 50.99

T-wave peak of Laguna [23] 6.20

TABLE I
DISPERSIONS OF DIFFERENT ALIGNMENT APPROACHES (ESTIMATION OF
THE SHIFTS Km BETWEEN RESULTING REFERENCE WAVES OF EACH

BATCH: STEP 2 OF THE GLOBAL METHOD PRESENTED IN FIGURE 2). THE
DISPERSION IS COMPUTED AS THE VARIANCE OF THE DIFFERENCE
BETWEEN THE ESTIMATED INTERVALS AND THE THEORETICAL ONES

AFTER COMPENSATION OF THE OFFSETS.

2) Performance evaluation of the global QT estimation
method: To highlight the performance of our batch processing
mode of the improved Woody’s method, we compare it to
other conventional segmentation methods [23], [26], [31], with
experiments on synthetic signals.
The previous synthetic ECG data are used again (see exam-

ple in Figure 1). Here the white Gaussian noise is added with
a standard deviation of 0.005, which corresponds to a signal-
to-noise ratio of −1.1 dB. This typical value corresponds to a
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23 scale of wavelet-based method of Sahambi et al. [26].

RT intervals estimation method Dispersion
T-wave end using

batch processing mode of the improved Woody’s method 0.31

T-wave end of Zhang et al. [31] 19.86

T-wave end of Laguna et al. [23] 11.23

T-wave peak of Laguna et al. [23] 2.26

T-wave end of Sahambi et al. [26] 3.50

TABLE II
DISPERSIONS OF THE DIFFERENT RT INTERVALS ESTIMATION METHODS.
THE DISPERSION IS COMPUTED AS THE VARIANCE OF THE DIFFERENCE
BETWEEN THE ESTIMATED INTERVALS AND THE THEORETICAL ONES

AFTER COMPENSATION OF THE OFFSETS.

standard noise level for this type of recordings. In this case,
we will determine the RT intervals, but in real conditions,
the QT intervals can be evaluated in the same way. Several
segmentation methods are compared on these synthetic data:

• proposed batch processing mode of the improved
Woody’s method (batches of 10 beats),

• detection of the T-wave end of Zhang et al. [31],
• detection of the T-wave end of Laguna et al. [23],
• detection of the T-wave peak of Laguna et al. [23],
• detection of the T-wave end using the 23 scale of
wavelet-based method of Sahambi et al. [26].

Figure 6 shows the RT-interval estimates for the different
methods cited above. We observe that the variances of seg-
mentation methods based on detecting the end or peak of the
T wave are very important given the high noise sensitivity
of these methods. On the other hand, the proposed batch
processing mode of the improved Woody’s method shows very
little variance.
Table II shows the values of the dispersion of different

methods. The dispersion is computed as the variance of the
difference between the estimated and theoretical RT inter-
vals after compensation of the offsets. We observe the low
dispersion of the proposed batch processing mode of the
improved Woody’s method. It should be noted that if the noise
becomes very important, some methods have a performance
that degrades more quickly than others.

B. Results of the QT modeling method on real ECGs

The methodology proposed in Section III-C was applied to
real ECGs. As the proposed batch processing mode of the
improved Woody’s method has been proven as more efficient
when the number of considered beats is small considering
large variations in shape of the wave of interest, the QT
estimation method described in Section II was applied and
provided the RT intervals. We assume that the QR intervals
are stable over time. Actually, the QR intervals represent
the beginning of the depolarization, and the depolarization
time on potential action is very short. So variability on this
depolarization time is weaker than on repolarization time, and
we hypothesized that the major variability which is observable
on QT intervals comes from variability of RT intervals, i.e. of
the repolarization part. Then assuming that the QR intervals
are stable over time, the QR intervals were computed using an
average template wave of the QR interval, and added to the
RT intervals. The QT intervals were then determined. Note
that in the clinical setting, the QT interval is often measured
and given by the interval RT in healthy subjects. The trends
of QT and RR intervals were computed using MA filtering
with a Hamming window of 25 beats, and the variabilities of
the QT and RR intervals were calculated by subtraction of the
trends to the considered intervals.
The proposed QT modeling method was illustrated on

different real ECGs in which heart rate profiles are various:
• ECG recorded at rest, for which the trend and the
variability of heart rate are weak;

• ECG recorded under controlled respiration, for which the
trend and the variability of heart rate are weak except
during the respiration where the variability of the heart
rate increases;

• ECG recorded during atrial fibrillation episodes, for
which the trend of heart rate is weak while the variability
of the heart rate is important;

• ECG recorded during rest and exercise, for which there
is a important but continuous evolution of the heart rate
with a trend which evolutes slowly then suddenly but
always with a weak variability.

The choice of these different profiles of heart rate permits to
test the proposed QT modeling method in different contexts.
The criterion to check the success of the modeling was chosen
as the Normalized Mean Square Error (NMSE) defined as:

NMSE =
sum((QT − Q̂T )2)

sum(QT 2)
, (11)

where QT and Q̂T represent respectively the observed and
the modeled QT intervals.
Then, the proposed modeling of the QT adaptation to heart

rate changes combining both a fast and a slow response was
applied to real ECGs, the relative parameters a and c are
estimated and the average heart period determined:

• ECG recorded at rest (see Figure 7, healthy subject of
the EUROBAVAR database in supine position [37]). The
trend of the QT intervals is well modeled, while the
variability of the modeled QT tends to the variability of
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the observed one (NMSE = 1.40e−5 and average heart
period = 844ms);

• ECG recorded under controlled respiration in supine
position (see Figure 8). As in the rest recording, the trend
is well modeled, while the variability of the modeled
QT tends to the variability of the observed one (NMSE
= 3.21e−5 and average heart period = 1025ms);

• ECG recorded during atrial fibrillation episodes (see
Figure 9). The trend and the variability of the modeled
QT are very close to those of the observed ones (NMSE
= 6.35e−5 and average heart period = 705ms);

• ECG recorded during rest and exercise on a cyclo-
ergometer (see Figure 10). We observe a large modeling
error when the exercise begins. Indeed, the NMSE which
is equal to = 1.49e−4 is larger than the other cases (factor
of 10). This modeling error is due to the sudden and
significant drop of the RR intervals at the beginning of the
exercise. The average heart period is respectively equal
to 742 and 529 ms for the rest and the exercise phases

In case of weak changes of heart rate trend, such as during
rest or during atrial fibrillation, the heart rate is quite constant
so the diagonal line on the restitution curve does not move (see
Figure 3), and an equilibrium point is reached. The parameter
a relative to the oscillating part in equation (8) is then constant
and the QT intervals are well modeled. In case of a sudden
change in the heart rate such as during exercise, the diagonal
line and parameter a change, so the proposed modeling based
on a constant a is not suitable for this kind of heart rate profile.
In this case, a piecewise modeling process is proposed. The
ECG recorded in exercise is split into two parts: rest (from the
beginning of the record until the 420th beat in this example)
and exercise (after the 450th beat to the end). The transient
zone between the 420th and the 450th beat is excluded. The
result of this piecewise QT adaptation modeling is presented
in Figure 11. The NMSE of the modeling which was equal to
1.49e−4 considering the whole ECG, is reduced to 4.96e−5.
On this example, we observe, especially in the exercise phase,
that the variability of the QT is better preserved. Note that the
estimation of the parameter a is larger for the exercise than
for the resting phase. This observation has been checked on
others subjects (results not provided here).
According to these results, we observe that the values of a,

the slope of the tangent to the restitution curve (see Figure
3), are consistent with the average heart rate values. This
observation is fully in agreement with the analysis of the
restitution curve at the cellular level in Figure 3: the slope
a of the tangent to the equilibrium point in the restitution
curve is higher when the RR intervals decrease as during
exercise. Ploting the a values in function of average RR
intervals highlights a decreasing exponential relation which is
consistent with the restitution curve. Indeed, for little changes
in RR intervals when average RR is high, the slope a moves
slightly. Only the data corresponding to the atrial fibrillation
case does not fit the decreasing exponential relation. This
could be explained by the large and repetitive changes in
RR variability during atrial fibrillation whereas our proposed
modeling assumes an almost stable RR-interval around the

equilibrium point.
In parallel, we observe that the values of the parameter

c, defined in the slow adaption part in the equation (9), are
representative of the low-pass filtering, i.e., close to 1 and
consistent with the work of Franz et al. at the cellular level
[10].

V. DISCUSSION AND CONCLUSION

In this paper, firstly we presented a new QT-interval es-
timation method, a batch processing mode of the previous
improved Woody’s method developed in [1]. Performance
evaluation was performed on synthetic signals, and the pro-
posed method in its batch processing mode outperformed the
other conventional methods based on a segmentation of the T
wave.
Secondly we proposed a new QT-RR adaptation modeling

which provides a characterization of the QT interval adaptation
dynamics in response to heart rate changes. Contrary to the
previous studies, the modeling focuses both on the fast and
slow QT intervals adaptations. Then, a new modeling based
on two processes is proposed: at first, the oscillating part
relative to the QT and RR variabilities, and secondly, the slow
adaptation relative to the QT and RR trends, are modeled. The
proposed fast adaptation modeling is based on the electrical
behavior at the cellular level relative to the electrical restitution
curve. In parallel, the slow adaptation modeling is inspired by
experimental works at the cellular level too. Note that the so-
called QT/RR hysteresis [20], [38] is explained by this slow
adaptation. Indeed it is not only the preceding cardiac cycle
that influences the QT. The history of heart rate variability
contributes to QT variations.
The results on real ECG recordings in Section IV-B illustrate

the feasibility of the modeling of the QT adaptation to heart
rate changes. Excepted in case of an abrupt change of the
heart rate as in the beginning of exercise for instance, the
modeling of both trend and variability of QT intervals are
satisfactory in all examples. In case of large changes in the
heart rate, a piecewise modeling process is proposed, that
assumes two stationary intervals in the cardiac recording.
Future works can tackle this issue: instead of considering the
parameter a relative to the oscillating part as constant, it would
be interesting to consider it as time-varying. With this new
adaptive parameter an, the modeling of the QT adaptation
can be more accurate, in particular the variability. Moreover,
a more realistic representation is very important since the
kinetics of this parameter a has been related in some works
to risk of arrhythmias, in particular to ventricular fibrillation
[39], [40].
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Fig. 7. Example of modeling of the QT adaptation to RR changes on a ECG
recorded at rest. NMSE = 1.40e−5.
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Fig. 8. Example of modeling of the QT adaptation to RR changes on a ECG
recorded under controlled respiration. NMSE = 3.21e−5.
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Fig. 9. Example of modeling of the QT adaptation to RR changes on a
ECG recorded during atrial fibrillation episodes. Note that the trend and the
variability of the modeled QT are very close to those of the observed ones.
NMSE = 6.35e−5.
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Fig. 10. Example of modeling of the QT adaptation to RR changes on a
ECG recorded during exercise. We observe that the modeled QT can not really
reach the observed one when the RR drop is too large in the beginning of the
exercise for instance. NMSE = 1.49e−4.
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