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 

Abstract—There has been much recent research into the 

connection between Parkinson’s disease (PD) and speech 

impairment. Recently, a wide range of speech signal processing 

algorithms (dysphonia measures) aiming to predict PD symptom 

severity using speech signals was introduced. In this paper, we 

test how accurately these novel algorithms can be used to 

discriminate PD subjects from healthy controls. In total, we 

compute 132 dysphonia measures from sustained vowels. Then, 

we select four parsimonious subsets of these dysphonia measures 

using four feature selection algorithms, and map these feature 

subsets to a binary classification response using two statistical 

classifiers: random forests and support vector machines. We use 

an existing database consisting of 263 samples from 43 subjects, 

and demonstrate that these new dysphonia measures can 

outperform state of the art results, reaching almost 99% overall 

classification accuracy using only 10 dysphonia features. We find 

that some of the recently proposed dysphonia measures 
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complement existing algorithms in maximizing the ability of the 

classifiers to discriminate healthy controls from PD subjects. We 

see these results as an important step towards non-invasive 

diagnostic decision support in PD. 

 
Index Terms—Decision support tool, feature selection, 

Parkinson’s disease, nonlinear speech signal processing, support 

vector machines, random forests 

I. INTRODUCTION 

EUROLOGICAL disorders affect people‟s lives at an 

epidemic rate worldwide. Parkinson‟s disease (PD) is one 

of the most common neurodegenerative disorders with an 

incidence rate of approximately 20/100,000 [1] and a 

prevalence rate exceeding 100/100,000 [2]. Moreover, these 

statistics might underestimate the problem because PD 

diagnosis is complicated [3]. Given that age is the single most 

important factor for PD and the fact that the population is 

growing older, these figures could further increase in the not 

too distant future [4]. 

 Identifying the causes of PD onset remains elusive, 

although genetic and environmental factors may be implicated 

[1]; hence the disease is often referred to as idiopathic. In 

those cases where particular factors can be identified that 

cause PD-like symptoms (for example drugs), the disease is 

termed Parkinsonism. PD symptoms include tremor, rigidity 

and loss of muscle control in general, as well as cognitive 

impairment. 

 The difficulty in reliable PD diagnosis has inspired 

researchers to develop decision support tools relying on 

algorithms aiming to differentiate healthy controls from 

people with Parkinson‟s (PWP) [5-7]. Although this binary 

discrimination approach does not form a differential diagnosis 

(a differential diagnostic tool should be able to distinguish PD 

subjects amongst a variety of disorders that present PD-like 

symptoms), it is a promising first step towards that long-term 

goal. 

 Research has shown that speech may be a useful signal for 

discriminating PWP from healthy controls [5], [7], building on 

clinical evidence which suggests that the vast majority of PWP 

typically exhibit some form of vocal disorder [8]. In fact, 

vocal impairment may be amongst the earliest prodromal PD 

symptoms, detectable up to five years prior to clinical 

diagnosis [9]. In our own research, we have also presented 
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strong evidence linking speech to average Parkinson‟s disease 

symptom severity [5], [10-13]. Collectively, these findings 

reinforce the notion that speech may reflect disease status, 

after appropriate processing of the recorded speech signals. 

The range of symptoms present in speech includes reduced 

loudness, increased vocal tremor, and breathiness (noise). 

Vocal impairment relevant to PD is described as dysphonia 

(inability to produce normal vocal sounds) and dysarthria 

(difficulty in pronouncing words). We refer to [14] for a more 

detailed description of speech disorders. The extent of vocal 

impairment is typically assessed using sustained vowel 

phonations, or running speech. Although it can be argued that 

some of the vocal deficiencies in running speech (such as 

combinations of consonants and vowels) might not be 

captured by the use of sustained vowels, the analysis of 

running speech is more complex due to articulatory and other 

linguistic confounds [15], [16]. Therefore, the use of sustained 

vowels, where the speaker is requested to sustain phonation 

for as long as possible, attempting to maintain steady 

frequency and amplitude at a comfortable level, is 

commonplace in clinical practice [15]. Research has shown 

that the sustained vowel “ahh…” is sufficient for many voice 

assessment applications [15], including PD status prediction 

[5] and average PD symptom monitoring [10], [11]. 

 The study of speech disorders in general and in the context 

of PD in particular has prompted the development of many 

speech signal processing algorithms (henceforth dysphonia 

measures), for example see [5], [7], [11], [15] and references 

therein. In [5] it was shown that the most commonly-used 

speech signal processing algorithms could discriminate PWP 

from healthy controls with approximately 90% overall 

classification accuracy, using four dysphonia features. That 

study included traditional measurement algorithms focusing 

on fundamental frequency perturbation (jitter measures), 

amplitude perturbation (shimmer measures), and signal to 

noise ratios (harmonics to noise ratio measures). Moreover, 

that study included three novel nonlinear dysphonia measures, 

complementing the classical measures (see Section II. A). 

 Subsequently, the dysphonia measures of [5] were applied 

to the study of the related problem of mapping speech 

impairment to average PD symptom severity [10]. Very 

recently, additional nonlinear dysphonia measures were 

proposed for that application [11], which (coupled with some 

classical algorithms) significantly improved on previous 

results [10]. Hence, we hypothesized that applying the 

dysphonia measures of [11] to the problem of discriminating 

PWP from healthy controls might bring additional insight, and 

improved results [5]. 

II. DATA 

The National Center for Voice and Speech (NCVS) 

database comprises 263 phonations from 43 subjects (17 

females and 26 males, 10 healthy controls and 33 PWP), an 

extension of the database used in [5] (the extended database 

includes all the voice recordings from the earlier study). The 

10 healthy controls (4 males and 6 females), had an age range 

of 46 to 72 years with (mean ± standard deviation) 61 ± 8.6 

years, and we processed 61 healthy phonations. The 33 PWP 

(22 males and 11 females), had an age range of 48 to 85 (67.2 

± 9.3), time since diagnosis 0 to 28 years (5.8 ± 6.3); there are 

202 PD phonations. This database comprises six or seven 

sustained vowel “ahh…” phonations from each speaker, 

recorded at a comfortable frequency and amplitude. 

The phonations were recorded in an IAC sound-treated 

booth with a head mounted microphone (AKG C420), which 

was placed at 8 cm distance from the subject‟s mouth. The 

voice signals were sampled at 44.1 kHz with 16 bits 

resolution, and were recorded directly to computer using CSL 

4300B hardware (Kay Elemetrics). 

III. METHODS 

The aim of this study is to analyze the speech signals, 

extracting features, and to attempt to map these features to the 

response (PD versus healthy control). 

 

A. Extracting features from the speech signals 

We use the dysphonia measures rigorously defined in [11]. 

The rationale, background and algorithms used to compute 

these features are also explained in detail in that paper. Here, 

we summarize these algorithms. For convenience, Table I lists 

the extracted features, grouped together into algorithmic 

“families” of features that share common attributes, along with 

a brief description of the properties of the speech signals that 

these algorithms aim to characterize. 

Typical examples of features are jitter and shimmer [14], 

[15]. The motivation for these features is that the vocal fold 

vibration pattern is nearly periodic in healthy voices whereas 

this periodic pattern is considerably disturbed in pathological 

cases [15]. Therefore, PWP are expected to exhibit relatively 

large values of jitter and shimmer compared to healthy 

controls. Different studies use slightly different definitions of 

jitter and shimmer, for example by normalizing the measure 

over a different range of vocal fold cycles (time interval 

between successive vocal fold collisions). For that reason, 

here we investigate many variations of these algorithms which 

we collectively refer to as jitter and shimmer variants [11]. 

Building on the concept of irregular vibration of the vocal 

folds, earlier studies have proposed the Recurrence Period 

Density Entropy (RPDE), the Pitch Period Entropy (PPE), the 

Glottis Quotient (GQ), and F0-related measures [5], [11]. GQ 

attempts to detect vocal fold cycle durations [19]. Then, we 

work directly on the variations of the estimated cycle 

durations to obtain the GQ measures. RPDE quantifies the 

uncertainty in estimation of the vocal fold cycle duration using 

the information theoretic concept of entropy. PPE uses the 

log-transformed linear prediction residual of the fundamental 

frequency in order to smooth normal vibrato (normal, small, 

periodic perturbations of the vocal fold cycle durations which 

are present in both healthy and PD voices [15]), and measures 

the impaired control of fundamental frequency (F0) during 

sustained phonation. The F0-related measures (such as the 

standard deviation of the F0 estimates) include the difference 

in the measured F0 with the expected, healthy F0 in the 

population for age- and gender-matched controls [15]. 
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The second general family of dysphonia measures 

quantifies noise, or produces a signal to noise ratio (SNR) 

estimate. The physiological motivation for these measures is 

that pathological voices exhibit increased aeroacoustic noise, 

because of the creation of excessive turbulence due to 

incomplete vocal fold closure. Such measures include the 

Harmonic to Noise Ratio (HNR), Detrended Fluctuation 

Analysis (DFA), Glottal to Noise Excitation (GNE), Vocal 

Fold Excitation Ratio (VFER), and Empirical Mode 

Decomposition Excitation Ratio (EMD-ER). GNE and VFER 

analyze the full frequency range of the signal in bands of 500 

Hz [11]. Additionally, we have created signal to noise ratio 

measures using energy, nonlinear energy (Teager-Kaiser 

energy operator) and entropy concepts whereby the 

frequencies below 2.5 kHz are treated as „signal‟, and 

everything above 2.5 kHz treated as „noise‟ [11]. EMD-ER 

has a similar justification: the Hilbert-Huang transform [20] 

decomposes the original signal into components, where the 

first components are the high frequency constituents (in 

practice equivalent to noise), and the later components 

constitute useful information (actual signal). 

Finally, Mel Frequency Cepstral Coefficients (MFCC) have 

long been used in speaker identification and recognition 

applications, but have shown promise in recent biomedical 

voice assessments [11], [21], [22]. They are aimed at detecting 

subtle changes in the motion of the articulators (tongue, lips) 

which are known to be affected in PD [23]. 

 Overall, applying the 132 dysphonia measures to the 263 

NCVS speech signals, gave rise to a 263×132 feature matrix. 

There were no missing entries in the feature matrix. 

 

B. Preliminary statistical survey of dysphonia features 

In order to gain a preliminary understanding of the statistical 

properties of the features, we computed the Pearson 

correlation coefficient and the mutual information       , 

where the vector   contains the values of a single feature for 

all phonations, and   is the associated response. As in [11], we 

normalize        by dividing through with        for 

presentation purposes. The larger the value of the normalized 

mutual information, the stronger the statistical association 

between the feature and the response. We used the KDE 

Toolbox by A. Ihler and M. Mandel for the computation of the 

mutual information [24]. The mutual information is computed 

via the evaluation of the marginal entropies           and 

the joint entropy       . The entropies are computed by 

evaluating the mean log-likelihood of the density estimates 

(the densities are computed using kernel density estimation 

with Gaussian kernels) [24]. 

 

C. Feature selection 

With the large number of dysphonia features of this study, 

we cannot expect the feature space to be uniformly populated 

by only 263 phonations, and the risk of overfitting arises.  

Many classification algorithms are fairly robust to the 

inclusion of potentially noisy or irrelevant features, and their 

predictive power may or may not be severely affected; 

however, reducing the number of features often improves the 

model‟s predictive power for hold-out data. A reduced feature 

subset also facilitates inference, enabling one to gain insights 

into the problem via analysis of the most predictive features 

[25], [26]. 

Exhaustive search through all possible feature subsets is 

computationally intractable, a problem which has led to the 

development of feature selection algorithms which offer a 

rapid, principled approach to reduction of the number of 

features. Feature selection (FS) is a topic of extensive 

research, and we refer to Guyon et al. [26] for further details. 

Here, we have compared four efficient FS algorithms: (a) 

Least Absolute Shrinkage and Selection Operator (LASSO) 

[27], (b) Minimum Redundancy Maximum Relevance (mRMR) 

[28], (c) RELIEF [29], and (d) Local Learning-Based Feature 

Selection (LLBFS) [30]. LASSO penalizes the absolute value 

of the coefficients in a linear regression setting; this leads to 

some coefficients which are shrunk to zero, which effectively 

means the features associated with those coefficients are 

eliminated. The LASSO has been shown to have oracle 

properties (correctly identifying all the „true‟ features 

contributing towards predicting the response) in sparse 

settings when the features are not highly correlated [31]. 

However, when the features are correlated, some noisy 

features (not contributing towards predicting the response) 

may still be selected [32]. Moreover, some useful features 

towards predicting the response amongst the correlated 

features may be discarded [25]. The mRMR algorithm uses a 

heuristic criterion to set a trade-off between maximizing 

relevance (association strength of features with the response) 

and minimizing redundancy (association strength between 

pairs of features). It is a greedy algorithm (selecting one 

TABLE I 

BREAKDOWN OF THE 132 DYSPHONIA MEASURES USED IN THIS STUDY 

Family of dysphonia 

measures 
Brief description 

Number of 

measures 

Jitter variants F0 perturbation 30 

Shimmer variants Amplitude perturbation 21 
Harmonics to noise ratio 

(HNR) and noise to 

harmonics ratio (NHR) 

Signal to noise, and noise to 

signal ratios 4 

Glottis quotient (GQ) Vocal fold cycle duration 

changes 
3 

Recurrence period 
density entropy (RPDE) 

Uncertainty in estimation of 
fundamental frequency 

1 

Detrended fluctuation 

analysis (DFA) 

Stochastic self-similarity of 

turbulent noise 
1 

Pitch period entropy 

(PPE) 

Inefficiency of F0 control 
1 

Glottal to noise 

excitation (GNE) 

Extent of noise in speech using 

energy and nonlinear energy 

concepts 

6 

Vocal fold excitation 

ratio (VFER) 

Extent of noise in speech using 

energy, nonlinear energy, and 

entropy concepts 

9 

Empirical mode 

decomposition excitation 

ratio (EMD-ER) 

Signal to noise ratios using 

EMD-based energy, nonlinear 

energy and entropy 

6 

Mel Frequency Cepstral 

Coefficients (MFCC) 

Amplitude and spectral 

fluctuations 
42 

F0-related measures Summary  statistics of F0, 
Differences from expected F0 

in age- and sex- matched 

controls, variations in F0  

8 

Algorithmic expressions for the 132 measures summarized here are 

described in detail in Tsanas et al. [11]. F0 refers to fundamental frequency 
estimates. 
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feature at a time), which takes into account only pairwise 

redundancies and neglects complementarity (joint association 

of features towards predicting the response). RELIEF is a 

feature-weighting algorithm, which promotes features that 

contribute to the separation of samples from different classes. 

It is conceptually related to margin maximization algorithms, 

and has been linked to the k-Nearest-Neighbor classifier [33]. 

Contrary to mRMR, RELIEF uses complementarity as an 

inherent part of the feature selection process. Finally, LLBFS 

aims to decompose the intractable, exhaustive combinatorial 

problem of FS into a set of locally linear problems through 

local learning. The original features are assigned feature 

weights which denote their importance to the classification 

problem, and the features with the maximal weights are then 

selected. LLBFS was conceived as an extension of RELIEF 

and relies on kernel density estimation and margin 

maximization concepts [30]. Overall, all four feature selection 

algorithms have shown promising results in machine learning 

applications over a wide range of different applications. 

The feature subsets were selected using a cross-validation 

(CV) approach (see Section III.E), using only the training data 

at each CV iteration. We repeated the CV process a total of 10 

times, where each time the   features (       for each FS 

algorithm appear in descending order of selection. Ideally, this 

feature ordering would be identical for all 10 CV iterations, 

but in practice it is not. Hence, we need to have a strategy to 

select the features that appeared most often under each of the 

FS algorithms, to identify four feature subsets, one subset for 

each FS algorithm. Specifically, for each FS algorithm we 

create an empty set   which will contain the indices of the 

features selected, and apply the following voting scheme. 

Feature indices are incrementally included, one at a time, in  . 

For each step   (  is a scalar taking values    ) we find 

the indices corresponding to the features selected in the     

search steps for all the 10 CV repetitions. Then, we select the 

index which appears most frequently amongst these      

elements and which is also not already included in  . This 

index is now included as the  th element in  . Ties are 

resolved by including the lowest index number. This entire 

process is repeated for each of the four FS algorithms. There is 

one final implementation issue we need to address: contrary to 

the other three FS algorithms, LASSO may remove features in 

subsequent stages during its incremental FS search. Therefore, 

for LASSO we repeated the 10-fold CV process independently 

for each  th step, interrogating the algorithm to provide the 

best   features prior to the voting scheme explained above. 

Once the final selected feature subset   was decided for 

each FS algorithm, these features were input into the classifier 

in the subsequent mapping phase to obtain the final 

healthy/PD predictions from the dysphonia measures. 

 

D. Mapping selected dysphonia features to the response 

The preliminary correlation analysis of the features against 

the response presented above provides an indication of the 

association strength of each feature with the response. 

However, ultimately our aim is to develop a functional 

relationship       , which maps the dysphonia features 

         , where M is the number of features, to the 

response y. That is, we need a binary classifier that will use 

the dysphonia measures to discriminate healthy controls from 

PWP. 

We compared two widely-used statistical machine learning 

algorithms here: Random Forests (RF), and Support Vector 

Machines (SVM) [25]. RF is an ensemble technique, 

weighting the output of a large number of tree-structured 

prediction functions   (we used 500 trees). RF has a single 

tuning parameter: the number of features over which to search 

to construct each branch of each tree. However, this classifier 

has been found to be very robust to the choice of this 

parameter [35]. Following the suggestion of Breiman [35], we 

used the default setting (the square root of the number of input 

features), but also compared the results using half this default 

number, and double this number. 

SVMs attempt to construct an optimal separating hyper-

plane in the feature space, between the two classes in this 

binary decision problem by maximizing a geometric margin 

between points from the two classes. In practical applications 

data often cannot be linearly separated; in those cases SVMs 

can use the kernel trick to transform the data into a higher 

dimensional space, and construct the separating hyperplane in 

that space [25]. There is extensive research, beyond the scope 

of this study, on how to work with nonlinearly separable data 

(see Hastie et al. [25] and references therein). In general, this 

classifier requires the specification of some internal 

parameters, and SVMs are known to be particularly sensitive 

to the values of these parameters [25]. Here, we used the 

LIBSVM implementation [36] and followed the suggestions of 

the developers of that implementation [37]: we linearly scaled 

each of the input features to lie in the range [-1, 1], and used a 

Gaussian, radial basis function kernel. The determination of 

the optimal values of the kernel parameter γ and the penalty 

parameter C was decided using a grid search of possible 

values. We selected the pair       that gave the lowest CV 

misclassification error (see Section III.E for details of CV 

scheme). Specifically, we searched over the grid       

defined by the product of the sets                   , and 

                  . Once the optimal parameter pair  

      was determined, we trained and tested the classifier 

using these parameters. 

 

E. Classifier validation 

Validation in this context aims at an estimate of the 

generalization performance of the classification based on the 

dysphonia features, when presented with novel, previously 

unseen data. The tacit statistical assumption is that the new, 

unseen data will have a similar joint distribution to the data 

used to train the classifier. Most studies achieve this validation 

using either CV or bootstrap techniques [25]. 

In this study we used a 10-fold CV scheme, where the 

original data (263 phonations) was split into two subsets: a 

training subset consisting of 90% of the data (237 phonations), 

and a testing subset consisting of 10% of the data (26 

phonations). The process was repeated a total of 100 times, 

where in each repetition the original dataset was randomly 

permuted prior to splitting into training and testing subsets. On 

each repetition we computed the mean absolute classification 

error        ∑ | ̂    |   , where  ̂  is the predicted 

response,    is the actual response for each ith entry in the 
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training or testing subset, N is the number of phonations in the 

training or testing subset, and Q contains the indices of that 

set. Errors over the 100 CV repetitions were averaged. Then, 

the performance of the model is             . 

IV. RESULTS 

A. Preliminary statistical survey 

Table II presents the ten dysphonia features most strongly 

associated with the response, sorted according to the absolute 

correlation coefficient value. It is interesting to note that some 

of the nonlinear dysphonia measures (RPDE, DFA) appear to 

be quite strongly associated with the response, and exhibit 

statistically significant (p < 0.001) correlation, but the more 

recently proposed VFER measures, and MFCCs, are more 

TABLE III 

CLASSIFICATION ACCURACY OF STUDIES IN THE LITERATURE AND THIS PAPER 

Study Learning and validation scheme 
Reported 

accuracy (%) 

Guo et al. 2010 [38] GP-EM, 10-fold cross-validation 93.1 ± 2.9 

Das 2010 [39] Neural network, 35% of the data 

used for testing following random 

initial partitioning 

92.9 

Sakar and Kursun 

2010 [40] 

SVM, bootstrap with 50 

replicates 
92.8 ± 1.2 

Little et al. 2009 [5] SVM, bootstrap with 50 
replicates 

91.4 ± 4.4 

Psorakis et al. 2010 

[41] 

Non-sparse E-M, 10-fold cross-

validation with 10 repetitions 
89.5 ± 6.6 

Shahbaba and Neal 

2009 [42] 

dpMNL, 5-fold cross-validation 87.7 ± 3.3 

*Optimal 4 feature 

subset from Little et 
al. 2009 [5] 

SVM methodology in this study, 

10-fold cross-validation with 100 
repetitions, features recalculated 

89.3 ± 6.9 

*Optimal 4 feature 

subset from Little et 
al. 2009 [5] 

RF methodology in this study, 

10-fold cross-validation with 100 
repetitions, features recalculated 

89.3 ± 7.2 

*All 132 features SVM, 10-fold cross-validation 

with 100 repetitions 

97.7 ± 2.8 

*All 132 features  RF, 10-fold cross-validation with 

100 repetitions 
90.2 ± 5.9 

The results are presented in the form mean ± standard deviation where 

appropriate. The asterisk (*) indicates new results of the present study. SVM 
stands for support vector machine, dpMNL for Dirichlet process multinomial 

logit, GP-EM for genetic programming and the expectation maximization 

algorithm, E-M for expectation maximization algorithm, and RF for random 
forests. All cited studies used the features derived in [5] with 31 subjects; the 

results in the present study are from an expanded database with 43 subjects, 

with all features recalculated. 

 

TABLE IV 
SELECTED FEATURE SUBSETS AND CLASSIFICATION PERFORMANCE 

LASSO mRMR RELIEF LLBFS 

VFERNSR,TKEO 2nd MFCC coef 1st MFCC coef 2nd MFCC coef 

11th MFCC coef 
ShimmerAmplitude, 

AM 
11th MFCC coef 11th MFCC coef 

VFERNSR,SEO VFERNSR,SEO 2nd MFCC coef 9th MFCC coef 

4th delta MFCC GNENSR,SEO 3rd MFCC coef VFERNSR,TKEO 

HNRmean 
5th delta-delta 

MFCC 
VFERNSR,TKEO VFERentropy 

GNEstd HNRmean VFERNSR,SEO VFERNSR,SEO 

12th MFCC coef 8th MFCC coef 9th MFCC coef RPDE 

RPDE 4th delta MFCC 7th MFCC coef HNRmean 

OQstd cycle open 11th MFCC coef 6th MFCC coef DFA 

2nd MFCC coef VFERNSR,TKEO 8th MFCC coef 4th delta MFCC 

94.4 ± 4.4 

TP: 97.5 ± 3.4 

TN: 86.5 ± 14.3 

94.1 ± 3.9 

TP: 97.6 ± 3.3 

TN: 84.3 ± 13.2 

98.6 ± 2.1 

TP: 99.2 ± 1.8 

TN: 95.1 ± 8.4 

97.1 ± 3.7 

TP: 99.7 ± 1.7 

TN: 89.1 ±13.9 

The last row presents the % accuracy when the selected features from each 

algorithm are fed into the SVM classification algorithm. The results are 

given in the form mean ± standard deviation and are out of sample computed 
using10-fold cross validation with 100 repetitions. TP stands for true positive 

(PWP) and TN for true negative (healthy controls). 

 

TABLE II 

STATISTICAL ANALYSIS OF THE DYSPHONIA FEATURES 

Dysphonia measure Correlation coefficient 
Normalized mutual 

information 

VFERentropy -0.388 0.159 

VFERNSR,TKEO -0.379 0.309 

11
th

 MFCC coef 0.369 0.303 

VFERNSR,SEO -0.365 0.324 

4
th

 delta MFCC -0.363 0.219 

VFERmean -0.321 0.110 

RPDE 0.292 0.221 

DFA 0.287 0.324 

ShimmerPQ11 0.285 0.181 

HNRmean -0.285 0.315 
Ten features most strongly associated with the response, sorted using the 

magnitude of the correlation coefficient. The correlations are all statistically 
significant (p < 0.001). Also, the results of the Mann Whitney statistical test 

suggest all relationships are statistically significant (p < 0.001). The 

normalized mutual information lies in the range zero to one, with a value 
closer to one indicating stronger association. The response was „0‟ for 

healthy controls and „1‟ for people with Parkinson‟s disease. Thus, positive 

correlation coefficients suggest that the dysphonia measure takes, in general, 
larger values for Parkinson‟s disease phonations. 

 

 
 
Fig. 1.  Comparison of out of sample mean performance results with 

confidence intervals (one standard deviation around the quoted mean 

performance) using the features selected by each of the four feature selection 
algorithms. These results are computed using 10-fold cross validation with 

100 repetitions. For clarity, we present here only the first 30 steps. 
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strongly associated. These findings give some initial 

confidence that the binary classification task of this study has 

a good chance of success. The statistical correlations between 

pairs of dysphonia measures (correlation matrix) appear in the 

online supplementary material. 

B. Classification stage: mapping dysphonia features to the 

response 

Table III summarizes comparable classification results in the 

literature, and those in the present study. All the studies cited 

in Table III used the exact feature data matrix computed in 

Little et al. [5], which comprised 31 subjects (195 phonations) 

and 22 features. FS was conducted in all of these studies 

before mapping those (selected) features to the response. Our 

results are obtained using a larger database with 43 subjects 

(263 phonations), and a much larger number of features (132) 

based on the algorithms described in Tsanas et al. [11]. For a 

fair comparison with the original study of Little et al. [5], we 

have also applied the cross-validated classification algorithms 

of the present work to the optimal feature subset selected in 

that study. 

To date, the best results, across a wide range of classification 

algorithms, had a reported accuracy of around 93%, when 

using the same feature data as calculated in [5] (Table III). 

Using the 132 features in this study with SVM leads to a 

noticeable improvement in accuracy (97.7%) over these 

existing studies. However, these studies used considerably 

fewer features (at most 22). Therefore, this improved result 

could be affected by overfitting, and further accuracy gains 

may occur with fewer features. Thus, we computed the out of 

sample MAE results using the features selected by the four FS 

algorithms as the number of features is varied (Fig. 1). In this 

way, we found that the globally optimal feature size 

(minimum MAE) is 22 using RELIEF, but this is not a 

practically useful improvement over the MAE when using 

only 10 features. Following the principle of parsimony then, 

we choose the least number of features giving the most 

accurate results according to mean performance (%). 

Therefore, our subsequent results use only the first 10 features 

(Table IV) for each FS algorithm (the features are presented in 

descending order of selection). 

The SVM also outperforms RF in this reduced feature space 

(for example, using the 10 features from RELIEF in Table IV, 

RF achieves only 93.5% accuracy compared to 98.6% 

accuracy with SVM). We remark that reducing the original 

132-dimensional feature space can lead to an improvement in 

out-of-sample performance accuracy with both SVM and RF. 

Overall, these findings suggest that we can estimate whether 

someone has PD or is healthy from a single phonation, with 

almost 99% accuracy using only 10 dysphonia features, a 

considerable improvement over previous results. 

Finally, we examine whether the out-of-sample results using 

different FS algorithms (Table IV) are statistically 

significantly different. Specifically, we compared the 

distributions of the classification errors obtained using 

RELIEF against the distributions of classification errors with 

the alternative FS approaches (Mann-Whitney rank sum test). 

In all three cases, the test rejected the null hypothesis of equal 

medians (p < 0.001); hence the classification results using 

RELIEF-selected features are, statistically, significantly better 

from the results obtained using the other FS algorithms. 

V. DISCUSSION 

Decision support tools in biomedical applications are 

generating considerable research interest not least because of 

their potential to improve healthcare provision. In this study, 

we have applied an extensive range of classical and novel 

speech signal processing algorithms for vocal pathology 

assessment, in order to investigate how to discriminate PWP 

from healthy controls using sustained vowel phonations. This 

binary discrimination problem has attracted interest in recent 

years, with the best results reporting approximately 93% 

classification accuracy on a subset of 22 features. Here, we 

demonstrated that we can achieve almost 99% accuracy using 

10 dysphonia measures. Compared to previous studies in this 

application, we have used an expanded speech database 

(which included all the 195 phonations in the original database 

and 68 additional phonations), and introduced many recently 

proposed dysphonia measures which have not been previously 

used in this application (all the dysphonia measures in this 

study were computed anew using the algorithms described in 

[11]). As in previous studies, we have used nonlinear SVMs 

for mapping features to the response, and also investigated RF. 

A novel contribution in this paper is to use four different FS 

algorithms to find a small subset of only 10 features from the 

original 132. This led to an informative feature subset for the 

binary classification task of this study, which may also 

tentatively suggest the most detectable characteristics of voice 

impairment in PD. All FS algorithms coped relatively well 

with the task, but RELIEF provided the subset with the lowest 

classification error. Recent research has demonstrated that 

RELIEF may work very well in practice in this kind of 

application, because internally, it incorporates a (nonlinear, 

nearest-neighbor) classifier [33]. The presence of highly 

correlated features (see the Excel file in the online 

supplementary material) indicates that LASSO may not be in 

its optimal setting (sparse environment with low feature 

correlations) to perform well. Thus, LASSO may be selecting 

some noisy features which may not assist the discrimination of 

the two classes. Recently, we have found that feature 

complementarity may be a required aspect of feature selection 

in a related application [34]. Therefore, mRMR, which does 

not take into account feature complementarity, may also not 

be the most appropriate algorithm in this application. These 

insights may help explain why RELIEF and LLBFS appear to 

work better in this domain. 

One interesting new finding is that of all the families of 

measures tested here, MFCCs and signal to noise ratio 

measures (VFER, HNR, GNE) appear to be consistently 

selected (Table IV). The pathophysiological importance of 

signal to noise ratio measures is well-known: it is most likely 

the effect of amplified aeroacoustic noise due to increased 

airflow turbulence, ultimately generated by incomplete vocal 

fold closure. However, the selection of MFCCs is somewhat 

surprising, because these measures are mainly sensitive to 

insufficient control in the steady placement of the articulators, 
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which amplify specific acoustic resonances and attenuate 

others in the vocal tract. This may indicate that more research 

into the effect of PD on vocal tract articulatory impairment, 

even for sustained phonations, is required. By design, MFCCs 

are not highly correlated (see the correlation matrix in the 

online supplementary material), and provide complementary 

information regarding characteristics of the speech signal. 

Combined with the fact that some MFCCs are relatively 

highly correlated with the response (see Table II), provides a 

highly plausible explanation for why RELIEF tends to select 

these features. Compared to the original study of Little et al. 

[5] where the selected feature subset comprised HNR, RPDE, 

DFA and PPE, here RELIEF consistently selected the new 

dysphonia measures presented here. LLBFS (the feature 

selection algorithm which resulted in second best 

performance) selected RPDE, HNR, and DFA with lower rank 

(7-9) compared to the new features described here. These 

findings justify the higher classification accuracy obtained in 

this study by comparison to previous studies. 

In our experiments SVM has a clear edge over RF for this 

particular application (Table III). We also verified Breiman‟s 

observation [35] that modifying the RF tuning parameter (the 

number of features over which to search to construct each 

branch of each tree), does not produce markedly different 

results in the overall RF classification accuracy. Some 

empirical studies have compared SVM and RF with no clear 

verdict about overall superiority of either approach [43], 

although it is well established that both classifiers perform 

well in general [25]. It would be interesting to investigate the 

reasons that RF perform noticeably worse than SVM in this 

application. As Statnikov et al. [44] remark this undertaking is 

not straightforward, and requires extensive empirical and 

theoretical studies to explain the performance differences 

observed across different studies for SVMs and RF [40]. 

Moreover it may be worth taking into account the confidence 

of the classifiers‟ decisions. Both SVMs and RF can be 

arranged to produce probabilistic outputs, and it would be 

possible to introduce an additional “Don‟t-know” class if the 

probability of the class assignments was below some pre-

specified threshold. In a practical setting, assigning 

probabilities to an automatic decision support tool would aid 

clinicians in deciding upon further actions. 

It has recently been suggested that it may be useful to 

partition the data according to gender in a similar application 

(mapping the dysphonia measures to a clinical metric that 

quantifies average Parkinson‟s disease symptom severity 

[11]). Here, this would require an entirely different dysphonia 

feature subset and classifier for males versus females. 

However, reducing the available data by splitting the original 

dataset into two subsets diminishes the statistical power of the 

performance evaluations. When we attempted data partitioning 

according to gender with this data, we obtain reduced 

performance accuracy. We emphasize that with more data it is 

possible that partitioning (which may or may not be limited to 

gender partitioning) could lead to interesting insights. For 

example, data partitioning by gender could provide insight 

into the most useful features for males versus females with 

regard to the discrimination of PWP from healthy controls, as 

in Tsanas et al. [11]. 

We envisage this study as a step towards the larger goal of 

technologies for diagnostic decision support in PD. The 

algorithms in this study appear to be very effective for 

discriminating PWP from healthy controls on the basis of 

extensive cross-validation tests. Conceptually, cross-validation 

provides an estimate of the performance of the model on new 

data, assuming that the new dataset is drawn from the same 

distribution as the dataset used to train the classifier. 

Therefore, the findings of this study might need to be further 

validated using independent datasets before this technology 

could be used as a diagnostic decision support tool. We are 

working towards collecting new datasets towards this aim. 

Furthermore, we remark that the healthy subjects in this study 

did not have any pathological vocal symptoms when assessed 

by expert speech scientists. A study involving a cohort of 

subjects with PD-like vocal symptoms, but without PD, would 

further validate the applicability of these findings. Although 

running speech has been used in other studies [7], the 

collection of sustained vowels in controlled circumstances 

reduces intra-speaker variability and confounding linguistic 

factors, and may lead to better results. Nevertheless, future 

studies could investigate the combination of both approaches, 

extracting information from both sustained vowels and 

running speech. It would be interesting to use a very large 

database including voices from diverse disorders, where the 

use of sophisticated dysphonia measures might help determine 

the underlying pathology amongst a wide set of possible 

diagnoses. Also, the data in this study are collected in an 

acoustically controlled environment we are currently working 

to extend these findings to more realistic acoustic setups 

which would extend the proposed technology for use in more 

practical settings. Finally, future work could incorporate 

additional information from physical models of voice 

production mechanisms, for example to improve the accuracy 

of jitter, shimmer and HNR estimates using glottal source 

signals obtained from the voice recordings. 
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