
Reconstruction of High Resolution Tongue Volumes from MRI

Jonghye Woo [Member, IEEE],
University of Maryland and Johns Hopkins University, Baltimore, MD

Emi Z. Murano,
Johns Hopkins University, Baltimore, MD

Maureen Stone, and
University of Maryland, Baltimore, MD

Jerry L. Prince [Fellow, IEEE]
Johns Hopkins University, Baltimore, MD

Abstract
Magnetic resonance (MR) images of the tongue have been used in both clinical studies and
scientific research to reveal tongue structure. In order to extract different features of the tongue
and its relation to the vocal tract, it is beneficial to acquire three orthogonal image volumes—e.g.,
axial, sagittal, and coronal volumes. In order to maintain both low noise and high visual detail and
minimize the blurred effect due to involuntary motion artifacts, each set of images is acquired with
an in-plane resolution that is much better than the through-plane resolution. As a result, any one
data set, by itself, is not ideal for automatic volumetric analyses such as segmentation, registration,
and atlas building or even for visualization when oblique slices are required. This paper presents a
method of super-resolution volume reconstruction of the tongue that generates an isotropic image
volume using the three orthogonal image volumes. The method uses preprocessing steps that
include registration and intensity matching and a data combination approach with the edge-
preserving property carried out by Markov random field optimization. The performance of the
proposed method was demonstrated on fifteen clinical datasets, preserving anatomical details and
yielding superior results when compared with different reconstruction methods as visually and
quantitatively assessed.
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I. INTRODUCTION
The mortality rate of oral cancer including tongue cancer is not considered to be high, but its
morbidity in terms of speech, mastication, and swallowing problems is significant and
seriously affects the quality of life of these cancer patients. Characterizing the relationship
between structure and function in the tongue is becoming a core requirement for both
clinical diagnosis and scientific studies in the tongue/speech research community [1], [2]. In
recent years, medical imaging, especially magnetic resonance imaging (MRI), has played an
important role in this effort. MRI is a noninvasive technology that has been extensively used
over last two decades to analyze tongue structure and function ranging from studies of the
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vocal tract [3]-[6] to studies on tongue muscle deformation [1],[7]-[9]. For instance, high-
resolution MRI provides exquisite depiction of muscle anatomy while cine MRI offers
temporal information about its surface motion. With the growth in the number of images that
can be acquired, research studies now involve 3D high-resolution images taken from
different individuals, time points, and MRI modalities. Therefore, the requirement for
automated methods that carry out image analysis of the acquired tongue image data is
expected to grow rapidly.

Time limitations of current MRI acquisition protocols make it difficult to acquire a single
high-resolution 3D structural image of the tongue and vocal tract. It is almost certain that
tongue motion—particularly the gross motion of swallowing—will spoil every attempt to
acquire such data. The 3D acquisition takes at least 4–5 min and holding the tongue steady
for more than 2–3 min will be likely to induce the involuntary motion. Therefore, in our
current acquisition protocol, three orthogonal volumes with axial, sagittal, and coronal
orientations are acquired one after the other. Motion may occur between these scans but the
subject will return the tongue to a resting position for each scan. To speed up each
acquisition, the fields of view (FOVs) of each acquired orientation are limited to encompass
only the tongue itself, as shown in Figs. 1(a)–(c). Also, in order to rapidly acquire each stack
of images with contiguous images (no gaps between the images), the through-plane
resolution is worse than the in-plane resolution. In our case, the images have an in-plane
resolution of 0.94 mm × 0.94 mm but are 3 mm thick.

Because the slices are relatively thick and the regions of interest are tongue regions (e.g.,
tongue muscles) where certain muscle bundles are short and thin, none of the acquired
image stacks are ideal for 3D volumetric analyses such as segmentation, registration, and
atlas building or even for visualization when oblique views are required. In particular, since
each volume has poorer resolution in the slice-selection direction than in the in-plane
direction, it is difficult to observe tongue muscles clearly in any one of the volumes.
Therefore, reconstruction of a single high-resolution volumetric tongue MR image from the
available orthogonal image stacks will improve our ability to visualize and analyze the
tongue in living subjects.

In this work, we develop a fully automated and accurate super-resolution volume
reconstruction method from three orthogonal image stacks of the same subject by extending
our preliminary approach [10]. We present a refined preprocessing and reconstruction
algorithm design and provide validations on both tongue and brain data. This application is
quite special in the sense that the function of the tongue involves a highly complex
coordination of its different muscles to produce the precise movements necessary for proper
speech, mastication, and deglutition. In addition, the tongue is a muscular hydrostat, with no
bones or joints, thereby requiring an architecture of 3D orthogonal muscles to move and
deform it when producing speech [11]. Because of the nonrigid motion (e.g., tongue motion
or swallowing), different FOV, and different intensity distributions between scans, our
problem posed unique challenges, requiring specialized preprocessing. The challenges
motivate us to use a number of preprocessing steps including motion correction, intensity
normalization, etc., followed by a region-based maximum a posteriori (MAP) Markov
random field (MRF) approach. The region-based approach allows us to reconstruct the
tongue at high resolution, because it resides in the intersection of the image fields of view,
as well as other regions around the tongue which are also used in the analysis of speech
production. In order to preserve important anatomical features such as the subtle boundaries
of muscle, we use edge-preserving regularization. To our knowledge, this is the first attempt
at super-resolution reconstruction applied to in vivo tongue high-resolution MR images for
both normal and diseased subjects. The resulting super-resolution volume improves both the
signal-to-noise ratio (SNR) and resolution over the source images, thereby approximating an
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original high-resolution volume whose acquisition would have taken too long for the subject
to refrain from swallowing (or making other motions).

Improvements in visualizing the internal structure of the tongue may provide better ways to
determine tongue cancer boundaries relative to the tongue muscles leading to better tumor
staging and planning for cancer surgery. For example, the impact of surgery on speech can
be better understood by visualizing the muscles that will be affected by surgery and knowing
their role in speech production. For scientific study of the role of muscles, this approach
provides an alternative to the visualization of tongue muscle topography in cadaveric
anatomy. In a cadaveric specimen, the lack of a rigid framework and the muscle tone
provided by the co-contraction of interdigitated extrinsic and intrinsic muscles lead to a loss
of the in vivo topography. In summary, our reconstruction method yields a high resolution,
volumetric image of the in vivo tongue that can be ideal for both clinical and scientific
purposes.

The structure of this paper is as follows. Related work is reviewed in Section II. Section III
shows the proposed method using a region-based MAP-MRF approach. Section IV explains
the validation method, followed by the experimental results of the proposed method on
numerical simulations and in vivo MR images of the tongue in Section V. Section VI
provides a discussion, and finally, Section VII concludes the paper.

II. RELATED WORK
Super-resolution image reconstruction from multiple low-resolution images has been an area
of active research since the seminal work by Tsai and Huang [12]. It is an important problem
in a variety of fields such as video restoration, surveillance, remote sensing, and medical
imaging [13]-[15]. A super-resolution reconstruction can overcome the limitations of the
imaging system and enhance the performance of a variety of postprocessing tasks such as
image segmentation, registration, atlas building, and motion analysis. If one knows the point
spread function (PSF) of the imaging/camera system and also observes enough samples of
shifted images, then resolution can be improved and noise reduced over the individual
observations up to the limits posed by Shannon [16], [17]. It remains a difficult problem in
practice, however, due to insufficient numbers of observed images, inexact registration, and
inaccurate PSF and noise models.

Super-resolution methods can be categorized into nonuniform interpolation, frequency
domain, and spatial domain approaches [13]-[15], [18]. The nonuniform interpolation
approach is the most intuitive method consisting of successive steps including (i)
registration, (ii) nonuniform interpolation, and (iii) deblurring process. The advantages of
this approach are that it is computationally inexpensive and makes real-time application
possible. The disadvantages of this approach are that degradation models are limited and the
optimality of the whole reconstruction is not guaranteed [14].

The frequency domain approach utilizes aliasing in low-resolution images to reconstruct a
high-resolution image [14]. Tsai and Huang [12] first formulated the multiframe super-
resolution reconstruction approach in the frequency domain. This approach is based on
fundamental principles including (i) the shifting property of the Fourier transform, (ii) the
aliasing relationship between the continuous Fourier transform and the discrete Fourier
transform (DFT), and (iii) the band-limited property of the original scene. Frequency
domain approaches are generally intuitive and computationally efficient; however, they
cannot easily incorporate spatial knowledge such as spatially-varying degradation and poor
image registration [18], [19] and they are also very sensitive to modeling errors [20].
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The spatial domain approach synthesizes high-resolution information by either learning
from training sets (i.e., example-based approaches) to incorporate models involving
spatially-varying physical phenomena, or by performing regularized reconstruction (i.e.,
model-based approaches). Example-based approaches capture the co-occurrence between
low-resolution and high-resolution patches and synthesize high-resolution images by
combining the highresolution patches [21]-[30]. Model-based approaches incorporate
forward models that specify how the highresolution true image is transformed by the physics
of the imaging system to generate low-resolution images including global or local motion,
motion blur, varying PSF, compression artifacts, etc. This approach provides flexibility in
modeling physical phenomenon whereas the computational complexity may be demanding
[18]. Examples of the model-based approach include the projection onto convex sets
(POCS) approach [14] and the maximum likelihood (ML)-POCS hybrid reconstruction
approach [14]. The POCS approach simultaneously solves the restoration and interpolation
problem to obtain the high-resolution image. The ML-POCS hybrid reconstruction approach
finds high-resolution estimates by minimizing the ML cost functional with constraints. A
super-resolution reconstruction is found by solving an inverse problem yielding a high-
resolution image that is likely to be the source of the acquired images under the modeled
imaging conditions [31]. The classical solution of a linear inverse problem is analytically
obtained through the Moore-Penrose pseudo-inverse of the observation model [14]. In
practice, however, the computation is demanding and therefore iterative solutions such as
steepest descent [32] and expectation maximization [33] have been adopted to solve the
problem [31]. In the present work, we adopt a model-based spatial domain approach because
it allows us to incorporate a priori knowledge using constrained reconstruction algorithms to
enhance the resolution through a variety of postprocessing techniques. A comprehensive
survey on super-resolution reconstruction can be found in [14] and [15].

Several studies have succeeded in reconstructing a high-resolution volume from a set of
multislice MR images [15], [34]-[40]. Important factors in any MRI experiment include how
to balance interdependent variables such as image resolution, SNR, and acquisition time.
Longer acquisition time provides higher spatial resolution and SNR compared with shorter
acquisition time and vice versa [34]. Super-resolution reconstruction methods in MRI were
first proposed by Peled et al. [39] and Greenspan et al. [40], adapting algorithms from
computer vision community. A recent study has shown that super-resolution volume
reconstruction provides better trade-offs between resolution, SNR, and acquisition time than
direct high-resolution acquisition, which is especially useful when SNR and time constraints
are taken into account [34]. In the present work, image acquisition is limited by the time
constraints of speech and therefore the factors were balanced to optimize the super-
resolution reconstruction.

In brain imaging it is common to take multiple scans of the same subject from different
orientations, where the acquired images typically have better in-plane than through-plane
resolution. In particular, model-based reconstruction approaches have been actively used.
Bai et al. [41] proposed a MAP super-resolution method to reconstruct a high-resolution
volume from two orthogonal scans of the same subject. This strategy is at the heart of the
method we propose here. In addition, Gholipour et al. [35] investigated a MAP super-
resolution method with image priors based on image gradients. Both of these methods used
orthogonal stacks. Shilling et al. [37] proposed a superresolution reconstruction approach
using rotated slice stacks based on POCS formalism for image-guided brain surgery. These
methods did not address subject motion.

In addition, several researchers have developed methods for fetal brain imaging where due
to uncontrolled motion it is common to acquire multiple orthogonal 2D multiplanar
acquisitions with anisotropic voxel sizes [18], [42], [43]. To yield a single high-resolution
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registered volume image of the fetal brain from this kind of data, Rousseau [29] investigated
so-called brain hallucination by incorporating a high-resolution brain image of a different
subject (an atlas) in order to synthesize likely high-resolution texture patches from a low-
resolution image of a subject. Although this method is promising, we maintain that it is
better to reconstruct higher-resolution images from actual imaging data whenever possible
rather than relying on examples that may or may not be representative of the object actually
being imaged. This is especially true in the imaging of abnormal anatomy, such as the
tongue cancer patients who are the primary target of our scientific studies on the tongue.
Rousseau et al. [18] incorporated a registration method to correct motion and the final
reconstruction process was based on a local neighborhood approach with a Gaussian kernel.
Jiang et al. [43] proposed motion correction using registration and B-spline based scattered
interpolation to reconstruct the final 3D fetal brain. The methods in [18], [43] addressed the
subject motion but employed scatter data interpolation, which ignores the physics of
imaging. Gholipour et al. [31] proposed maximum likelihood (M-estimation) error norm to
reconstruct fetal MR images using a model of subject motion. This work addressed both
inter-slice motion and anisotropic slice acquisition using slice-to-volume registration and M-
estimation solution, respectively. Our work also incorporated a model of subject and tongue
motion. In recent work, Rousseau [42] used an edge-preserving regularization method to
reconstruct high-resolution images from the fetal MRI images and investigated the impact of
the number of low-resolution images used. These approaches incorporate registration to
align the observed data to a single anatomical model; this is a strategy we also use herein
(although we use deformable registration due to the nature of the human tongue).

A super-resolution reconstruction technique was successfully adopted to reconstruct
diffusion-weighted images (DWI) from multiple anisotropic orthogonal DWI scans [44].
The problem of patient motion was addressed by aligning the volumes both in space and q-
space. This advanced the state-of-the-art super-resolution MRI application. In addition, a
MAP formulation was used to tackle the reconstruction problem. In the present work, we
propose similarly to investigate a super-resolution reconstruction approach for tongue MR
images for the first time, aiming to advance the state-of-the-art super-resolution MRI
application. Inspired by the DWI application and recent developments in brain MR imaging
[41], [42], our approach uses an MR image acquisition model, region-based subject/tongue
motion correction, intensity matching between scans, and a region-based MAP formulation
with an edge-preserving regularization to preserve crisp muscle information.

III. METHOD
We view super-resolution volume reconstruction as an inverse problem that combines
denoising, deblurring, and up-sampling in order to recover a high-quality volume from
several low-resolution volumes. In contrast to other super-resolution frameworks, our
application poses unique challenges in that multislice tongue MR data is affected by
nonrigid motion (e.g., tongue motion or swallowing) between acquisitions and each volume
is acquired with a different field-of-view (FOV). To efficiently tackle this problem, our
proposed method comprises several steps: (1) preprocessing to address different orientation,
size, and resolution, (2) registration to correct subject motion between acquisitions, (3)
intensity normalization between volumes, and (4) a region-based MAP-MRF reconstruction.
A flowchart of the proposed method is shown in Fig. 2.

A. Imaging Model with Partial Overlap Region
In our problem, the imaging system involves a coordinate transformation, a non-uniform
decimation, a PSF, noise, and a limited FOV, as illustrated in Fig. 3. Let the high-resolution
volume  be defined on the open and bounded domain Ω.
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The FOVs of the low-resolution volumes are not identical because the acquisition protocols
are designed to be “tight” around the tongue in each orientation (see Fig. 4). Let Λ1, Λ2, and
Λ3 be the regions formed on the image domain by the axial, coronal, and sagittal volumes,
respectively. In particular, Λk ⊂ Ω is a subset of pixels at which the value of each low-
resolution volume is observed acquisitions.

For example, as illustrated in Figs. 4 (b) and (c), the white region represents SΛ1∩Λ2∩Λ3, the
horizontal gray regions represent SΛ1∩Λ3, and vertical gray regions represent SΛ1∩Λ3, where
SΛ denotes the characteristic function of the domain of high-resolution volume, i.e.

(1)

The imaging model that incorporates the overlap regions (see Fig. 3) is then given by

(2)

where k denotes the k-th observation, gk is one of the observed image volumes,  is a
coordinate transformation,  is a downsampling operator,  is an impulse response

function (i.e., PSF) that blurs f, and nk is a Gaussian noise with zero mean and variance .
This model is combined as . As is conventionally, we model the PSF as a
Gaussian function [45]. The goal of this work is to reconstruct a single high-resolution
volume f from three orthogonal scans that approximates the original in-plane resolution in
all three directions.

B. Preprocessing
The three volumes to be combined into one super-resolution volume have different slice
positions, orientations, and volume sizes. Therefore, several preprocessing steps are applied
prior to the reconstruction of the super-resolution volume: (i) generation of an isotropic
volume, (ii) conversion of the orientation of each volume to the orientation of the target
reference volume, (iii) padding of zero values to yield the same volume sizes, (iv)
registration to correct subject motion between volumes, and (v) matching of intensities in
the overlap region using spline regression. These steps are now summarized.

1) Isotropic Volume Generation—According to our imaging model, each low-
resolution volume has its resolution degraded in only one dimension (slice-selection
direction). In order to up-sample each volume in the slice-selection direction, a 5th-order B-
spline interpolation is used.

2) Orientation Conversion and Zero-padding—The orientation of each volume is
converted to that of the target reference volume. This step is required so that registration
starts with the anatomy appearing in each volume roughly aligned. Without this step, the
registration is likely to fail due to small overlap regions. In addition, although the previous
steps produce an isotropic volume with the same orientation, the size of each volume is still
different. For convenience in registration, each volume is padded with zero values in order
to create digital volumes all having the same voxel dimensions. Without this step, the
registration produces the same volume size as the target volume size (e.g., 256 × 256 × 20 in
the case of axial stack). Masks indicating the region of valid data—i.e., Λ1, Λ2, and Λ3—are
also created (see Fig. 4) for use in both registration and region-based reconstruction.

3) Registration—We use image registration to correct for subject motion between
acquisitions. Accurate registration is of great importance in this application because small
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perturbations in alignment can lead to visible artifacts after applying the MAP-MRF
reconstruction algorithm. This is because uncertainty in registration increases the variance of
intensity values at each spatial location. To obtain accurate and robust registration results,
we compute a global displacement estimate followed by a local deformation estimate. The
global displacement estimate is characterized by an affine registration accounting for
translation, rotation, and scaling (12 degrees of freedom in 3D). We use mutual information
(MI) [46] as the similarity measure for this step because orientation of acquisition can cause
intensity differences even when the same pulse sequence on the same scanner is used. The
algorithm we use is different than a conventional MI registration algorithm because of the
FOV differences in the volumes.

We denote the images  and  defined on the open and
bounded domains Ω1 and Ω2 as the template and target images, respectively. Mutual
information  can be computed using joint entropy  as

(3)

where i1 = I1(u1(x)), i2 = I2(x), and pI1(i1) and pI2(i2) are marginal distributions. Here,
pu1(i1, i2) denotes joint distribution of I1(u1(x)) and I2(x) in the overlap region

 which can be computed the Parzen window given by

(4)

where φ is a Gaussian kernel whose width is controlled by ρ.

In this global registration step, we use the overlap regions of the two volumes to weight the
evaluation of MI in order to emphasize influence on parameter estimation to regions that are
known to be overlapping. Of note, two of the volumes were registered to the target reference
volume. The optimal values for the twelve parameters that maximize the given energy
functional are obtained by solving the associated Euler-Lagrange equations, and a gradient
descent method [47] is performed. In addition, we use a coarse-to-fine multiresolution
scheme for computational efficiency and robustness.

In order to achieve sub-voxel accuracy, we estimate a local deformation using a
modification of the diffeomorphic demons method [48]. Since diffeomorphic demons is an
intensity-based registration method, we perform histogram matching between the two
images to ensure that corresponding points in different volumes have similar intensity values
for the local deformation model. The only modification that we make to diffeomorphic
demons is to incorporate the overlap region in order to restrict the domain of registration
(similar in concept to the global displacement estimation step).

4) Intensity Matching—Now that the volumes are registered, a more careful analysis of
the intensity differences that exist between the images can be carried out via a spline based
intensity regression method that uses local intensity matching. We first revert to the original
intensities (instead of the histogram-matched intensities) and recognize that if the
registration is accurate then the overlap regions provide evidence of how the intensities of
the different acquisitions correspond. In particular, we can observe intensity pairs at each
voxel within the corresponding overlap regions and compute a regression that represents an
estimate of the transformation required to make the intensities of one volume match those of
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another. In this step, intensity values of two volumes are matched to those of the target
reference volume. We use 10–15 control points in a cubic spline fit to compute two such
transformations that are then used to map the intensities of two volumes into the target
volume.

C. MAP-MRF Reconstruction
Once we have three preprocessed, orthogonal volumes, regularized reconstruction is carried
out. Classical methods including Tikhonov regularization [49], Gaussian and Gibbs
regularizations [50], and Laplacian regularization [19] have been used to achieve various
image reconstruction objectives. But these methods often create oversmoothing of edges
[20] in direct opposition to our super-resolution goals. Edge-preserving regularization
methods, including total variation (TV) [51], [52], bilateral TV [20], and half-quadratic
regularization [53], have been developed to solve this problem.

In this work, we use the edge-preserving regularization method of Villain et al. [54] wherein
MAP estimation with a half-quadratic approach is used to obtain a high-resolution volume f
given three orthogonal low-resolution images, i.e.

(5)

where  denotes the estimated solution. Applying Bayes rule, this can be written as

(6)

where P (g1, g2, g3|f) and P(f) represent likelihood and prior, respectively.

1) Likelihood Model—We assume that each observed image is corrupted by additive
Gaussian noise, which is a good approximation since the MR images in the regions of
interest (i.e., tongue region) have high SNR. Accordingly, the likelihood is determined by
the image formation process of Eq. (2) with additive noise, yielding

(7)

where Q denotes a normalization factor and D(f) using the region-based approach (see Fig. 4
(d)) is given by

(8)

Here, because the precise positions of these acquired volumes relative to the anatomy might
be slightly wrong even after motion correction and to reduce the effects of “seams” between
different regions, we use blurred versions of the masks—termed “softmasks”—which are
given by

(9)

where * denotes the convolution operator and Gσ is a unit-height Gaussian kernel with
standard deviation σ. In this work, we set σ = 2 mm. The softmasks provide a probabilistic
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confidence about the intensity value of each scan, thereby allowing a soft transition between
scans.

2) Prior Model—The MRF is defined over a graph G =< V, E > where V is the set of
nodes representing the random variables s = {sv}v∈V, E is the set of edges connecting the
nodes, and the clique c is defined by the neighborhood system. The clique of MRF is
defined by the local neighborhoods around pixels. Our prior model can be defined as

(10)

Here, W is a normalization factor and , where δ denotes a
scaling factor and Δxc and dc denote the difference of the values and the distance of the two
voxels in clique c, respectively (we set δ=0.8 in our implementation).

Maximization of Eq. (6) is equivalent to minimizing the negative of the logarithm of the
posterior probability, i.e.

(11)

which leads to the following form:

(12)

where  is a balancing parameter, controlling the smoothness of the reconstructed
image (we set λ=0.5 in our implementation).

3) Half-quadratic Approach—In order to efficiently minimize the objective function in
Eq. (12), we adopt a half-quadratic regularization technique incorporating the region-based
approach as in [54], [55].

The summary of the MAP-MRF reconstruction algorithm is shown below.

Algorithm 1 MAP-MRF Reconstruction

1 Initialization

2 for each pixel s on the volume do

3 Determine overlapping volumes using regions defined in Fig. 4.

4 Calculate ms according to Eq. (18)

5 Update fs according to the over-relaxation scheme in Eq. (21)

6 For every clique c including s, update l according to Eq. (20)

7 end for

8 Iterate for loop until convergence
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D. Implementation
The preprocessing steps including resampling, re-orientation, global displacement (affine
registration), local deformation model (diffeomorphic demons registration), and intensity
matching were implemented using C++ and ITK (Insight Segmentation and Registration
Toolkit) [56] and took 18 × 2 min. The MAP-MRF reconstruction step was also
implemented using C++ and took about 5 × 1 min. The proposed method was performed on
an Intel i7 CPU with a clock speed of 1.74 GHz and 8 GByte memory. In addition, the
ALGLIB library [57] was used to implement spline-based regression part. We used a
multiresolution scheme for our global displacement model. The parameters are first
estimated at the coarsest level, which are then used as the starting parameters for the
subsequent level. Transformations at each level of the pyramid are accumulated and
propagated. This scheme helps avoid local minima caused by partial overlap. In our
implementation we use two levels. Parameters used in the experiments were determined
empirically to produce the best visual results. Once the parameters were determined, the
same parameters were used in all experiments including tongue and brain datasets.

IV. VALIDATION
A. Evaluation using tongue data

1) Tongue data—Fifteen high-resolution MR datasets were used in these experiments.
They came from twelve normal speakers and three patients who had tongue cancer
surgically resected (glossectomy). All MRI scanning was performed on a Siemens 3.0 T Tim
Treo system using an 8-channel head and neck coil. In addition, T2-weighted Turbo Spin
Echo sequence with echo train length of 12 and TE/TR of 62ms/2500ms was used. The field
of view was 240 mm × 240 mm with resolution of 256 × 256. Each dataset contained a
sagittal, coronal, and axial stack of images containing the tongue and surrounding structures.
The image size for high-resolution MRI was 256 × 256 [notdef] z (z ranges from 10 to 24)
with 0.94 mm × 0.94 mm in-plane resolution and 3 mm slice thickness. The datasets were
acquired at rest position and the subjects were required to remain still from 1.5 to 3 minutes
for each orientation.

2) Quantitative analysis—The proposed method was first evaluated using fifteen
simulated datasets as described in IV-A. In order to quantitatively evaluate the performance
of the proposed method in terms of accuracy of the reconstruction, the final super-resolution
volume using the proposed method was considered as our ground truth data. The ground
truth was constructed with 256 × 256 × 256 voxels with resolution of 0.94 mm × 0.94 mm ×
0.94 mm. Three low-resolution volumes (i.e., axial, sagittal, and coronal volumes) were
formed where the voxel dimensions was 0.94 mm × 0.94 mm in-plane and the slice
thickness was 3.76 mm (subsampling by a factor 4). Prior to subsampling the volumes in
slice-selection directions, Gaussian filtering with σ = 0.5 (in-plane) and σ = 2 (slice-
selection direction) was applied in order to avoid an anti-aliasing effect.

In what follows, volume reconstruction was carried out in four ways. First, 5th-order B-
spline interpolation was performed in each plane independently. Second, averaging of three
up-sampled volumes was performed. Third, reconstruction from three up-sampled volumes
using Tikhonov regularization [58] was performed. Finally, the proposed method using three
up-sampled volumes was carried out. In this simulation study, preprocessing steps were not
necessary except the up-sampling process using 5th-order B-spline interpolation as the
volumes are already aligned and intensity values between volumes are identical. Tikhonov
regularization is one of the most common approaches using quadratic functions, which takes
the form
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(13)

where  represents the reconstructed volume, λ1 denotes the balancing parameter, and we
set L = I in this experiment.

As a quantitative measure, the peak signal-to-noise ratio (PSNR), which is defined as

(14)

where MAXX denotes the maximum possible voxel value of the volume, ΩR denotes a
reference image domain, X denotes a reference volume and  represents a reconstructed
volume.

3) Noise simulations—To test robustness, Gaussian noise with zero mean and standard
deviations of 50 (2% of intensity level) and 75 (3% of intensity level), respectively were
added to investigate the effect of noise on the reconstruction. The same quantitative analysis
as described in Sec. IV-A2 was performed to evaluate the performance of the different
reconstruction methods.

B. Evaluation using brain Data
1) Brain data—Three isotropic high-resolution brain MR datasets were used to objectively
evaluate and compare the performance of different reconstruction methods. For each subject,
two magnetization prepared rapid gradient echo (MP-RAGE) images were obtained using a
3.0T MR scanner (Intera, Phillips Medical Systems, Netherlands). The MP-RAGE was
acquired with the following parameters: 132 slices, axial orientation, 0.8 mm slice thickness,
8° flip angle, TE = 3.9ms, TR = 8.43ms, 256 × 256 matrix, and 212 × 212 cm FOV. The
image size for these datasets was 288 × 288 × 225 with isotropic resolution (i.e., 0.8 mm ×
0.8 mm × 0.8 mm).

2) Quantitative analysis—A challenge in testing the proposed method is the lack of
ground truth available in in vivo volumetric tongue MR data. In order to avoid potential bias
in our experiments, we used two high resolution brain datasets with isotropic resolution to
evaluate the performance of different reconstruction methods. Three low-resolution volumes
(i.e., axial, sagittal, and coronal volumes) were formed where the voxel dimensions were 0.5
mm × 0.5 mm in-plane and the slice thickness was 2.0 mm (subsampling by a factor 4).
Prior to subsampling the volumes in slice-selection directions, Gaussian filtering with σ =
0.5 (in-plane) and σ = 2 (slice-selection direction) was applied in order to avoid anti-aliasing
effect. The same quantitative analysis as described in Sec. IV-A2 was performed to evaluate
the performance of the different reconstruction methods.

V. RESULTS
In Figs. 5 and 6, two representative results using a normal subject (Fig. 5) and a glossectomy
patient (Fig. 6) with different reconstruction methods are demonstrated, respectively. The
rows show slices of three orthogonal views including axial, sagittal, and coronal,
respectively. The first three columns ((a)-(c)) show three original scans after isotropic
resampling (i.e., 0.94 mm × 0.94 mm × 0.94 mm) in the coronal, sagittal, and axial planes,
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respectively. Panel (d) shows the reconstruction using averaging, (e) shows reconstruction
using Tikhonov regularization, and (f) shows the reconstruction using the proposed method.
Panel (g) shows the original three orthogonal volumes.

As shown in Figs. 5 and 6, the proposed method provided better muscle and fine anatomical
detail than the other methods. The target reference volume into which the other volumes
were registered was the axial volume in both cases. In our experiments, preprocessing steps
(e.g., registration) were not validated in a quantitative manner. Instead, the quality of the
results were confirmed visually. Please notice that the reconstructed images and the original
images shown in the figures may not be exactly the same except in the axial slice, because
the data are aligned to the axial stack.

A. Quantitative analysis using tongue data
Fig. 7 illustrates results using the simulated data. Figs. 7 (a), (b), and (c) show the
reconstructed results using the B-spline interpolation method [59] in which resolution was
degraded in only one direction. Figs. 7 (d), (e), and (f) were reconstructed from three
volumes (i.e., Figs. 7 (a), (b), and (c)) using averaging, Tikhonov regularization, and the
proposed method, respectively, in which the proposed method provided a more visually
detailed result than the other methods. Fig. 8 illustrates the PSNR results using the normal
and patient datasets, respectively, in which the proposed method outperformed the other
methods. Patients have more complex anatomy and scar tissue than controls due to forearm
flap reconstruction. Therefore it is more challenging to reconstruct but the results show that
the proposed method was able to produce equally good results.

In addition, to compare the impact of anti-aliasing [60], volumes were reconstructed both
with and without the use of Gaussian filtering. Results are shown in Fig. 9. It is observed
that volumes reconstructed without using Gaussian filtering have step-like artifacts (see
second row). The averaging result in Fig. 9 (e) without using Gaussian filtering had better
PSNR as compared with the one using Gaussian filtering in Fig. 9 (a) as the averaging is
similar to the low-pass filtering, removing the step-like artifacts. The reconstructed volume
using Tikhonov regularization (Fig. 9 (b)) provided almost similar results. However, the
reconstructed volumes using the proposed method use edge-preserving property and
therefore the aliasing artifacts are more prominent in Fig. 9 (g) than in Fig. 9 (c). The
reconstructed volume (Fig. 9 (c)) using Gaussian filtering provided the best result as
assessed both visually

B. Noise simulations using tongue data
Gaussian noise images with two power levels were added as depicted in Fig. 10. Table I
summarizes the quantitative results after the reconstruction, showing that the proposed
method is better than the other reconstruction methods. However, increasing the noise in our
simulation degraded the proposed method (lower PSNR) while both averaging and
Tikhonov regularization remained largely unaffected. This can be explained by the edge-
preserving property of our method, which has a tendency to also preserve noise when it is
present, whereas both averaging and Tikhonov regularization tend to suppress noise.

C. Quantitative analysis using brain data
Fig. 11 illustrates reconstruction results using the brain data. Figs. 11 (a), (b), and (c) show
the reconstructed results using the B-spline interpolation method in which resolution was
degraded in only one direction. Figs. 11 (d), (e), and (f) were reconstructed from three
volumes (i.e., Figs. 11 (a), (b), and (c)) using averaging, Tikhonov regularization, and the
proposed method, respectively. Fig. 11 (g) shows the high-resolution ground truth data. Fig.
12 illustrates the quantitative measure (i.e. PSNR) of three datasets, where the proposed
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method provided better performance, confirming the proposed method is not biased with
respect to the use of different datasets.

Fig. 13 shows the importance of using both registration and subsequent intensity matching
steps. Figs. 13 (a) and (b) illustrate that misalignments and difference in intensity
distributions between scans were significant, respectively. The proposed approach corrects
this problem as shown in Fig. 13 (c). In addition, Fig. 14 illustrates that the reconstruction
results with and without using a region-based reconstruction approach. Fig. 14 (a) has
intensity mismatch compared to the Fig. 14 (b).

VI. DISCUSSION
In our application it was of great importance to preserve crisp muscle details and fine
structures. Therefore we treated them as edges and adopted an edge-preserving
regularization as in [54]. The half-quadratic approach was carried out to minimize the
objective function in the tongue MR images. In addition, we compared the results with a
regularization scheme which does not use the edge-preserving property. Other edge-
preserving regularization methods [61]-[64] are likely to give similar results.

In our experimental results, patients have more complex anatomy than controls. They have
considerable scar tissue, their muscles are deformed around the scar and missing in the area
of the resection, and they are asymmetrical. Therefore, it was possible that their datasets
would be more difficult to align. However, it is seen from our experimental results that all
were reconstructed with equally good success.

Noise simulations were also carried out to confirm the robustness of the proposed algorithm.
Since the proposed algorithm tends to preserve noise due to the use of edge-preserving
regularization, we tested it with a large amount of noise using Gaussian noise with zero
mean and standard deviations of 50 and 75, respectively, the performance of the proposed
method was better than other methods in our experiments.

Evaluation of the proposed study was a challenging task. In fact, the notion of accuracy is
ill-posed in this application as precise validation is typically impossible due to the lack of
ground truth available other than simulation and visual assessment. We considered the final
reconstruction volume as our ground truth and simulated the reconstruction step. Moreover,
we used the brain data to further evaluate the algorithm and avoid bias in our evaluation.
The brain data allowed us to more definitively determine the quality of the algorithm
because of its isotropic resolution. This leads to more confidence in the interpretation of the
tongue data and is very important because the tongue itself is highly anisotropic. The tip is
quite thin and it gets thicker towards the back. This is best seen in the sagittal orientation.
On the other hand, only the axial plane allows us to see the lateral shape of the tip. In this
paper, the axial orientation was chosen as the target. However, in a study where tongue tip
thickness is the critical feature, the sagittal orientation might be chosen as the target.

The intensity matching results, while good, were not optimal because the regression was
performed only on overlapped regions and therefore the full range of the tongue intensity
may not have been covered. In our future work, we will make use of all three datasets to
perform high-dimensional regression and devise a weighting scheme to incorporate any
difference in resolutions between the stacks. In addition, the performance of the
reconstruction algorithm depends on the choice of the balancing parameter, which is a
matter of modeling. In our future work, we will investigate the mechanism to find the best
parameter in terms of the reconstruction performance.
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The reconstruction quality heavily depends on the registration performance. In our work, we
know the overlapped regions (i.e., tongue region) and explicitly used the region in our
registration, which is an optimal way to deal with partial overlap. In addition, although
affine registration may capture the differences of different stacks acquired at rest position,
we further incorporated the diffeomorphic demons registration to accommodate subtle
deformation in order to maximize the reconstruction quality. Diffeomorphic demons
depends on accurate image intensities, however, these are only fully corrected after
registration. Furthermore, intensities should only truly match if there were no differences in
the direction of blurring between the images, which is obviously untrue.

In the clinical scenario, MRI has been used for structural imaging. The proposed super-
resolution volume reconstruction provides the groundwork for the full 3D volumetric
analyses such as image segmentation, registration, and atlas building. In addition, it
overcomes the limitations of slice thickness problems. Therefore, this automated
postprocessing technique can be potentially used in any body part to improve 3D resolution
and decrease the noise in the images. In addition, because poorer through plane quality is
acceptable, it could be used for patients that are unable to hold still for a long period of time,
but require good image resolution for diagnoses and treatment.

To our knowledge, there have been no prior attempts to perform super-resolution volume
reconstruction in tongue MR imaging domain. We successfully implemented and evaluated
interpolation, averaging, and MAP-MRF reconstruction using the Tikhonov regularization
and compared with the proposed method. The proposed method provided the best
performance and groundwork for further analyses.

VII. CONCLUSION
In this work, a super-resolution reconstruction technique based on the region-based MAP-
MRF with an edge-preserving regularization and half-quadratic approach was developed for
volumetric tongue MR images acquired from three orthogonal acquisitions. Experimental
results show that the proposed method has superior performance to the interpolation-based
method, simple averaging, and Tikhonov regularization. It also better preserved the
anatomical details as quantitatively confirmed. The proposed method allows full 3D high-
resolution volumetric data, thereby potentially improving further image/motion and visual
analyses.
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APPENDIX A

HALF-QUADRATIC APPROACH
The main idea in half-quadratic approach is to introduce and minimize a new objective
function, which has the same minimum as the original non-quadratic objective function J(f).
By introducing auxiliary variable l, the original objective function J(f) can be replaced by an
augmented objective function K(f, l). We first define an auxiliary function ψ as follows:

(15)

This leads to the new prior model given by
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(16)

The augmented objective function can then be given by

(17)

which is a quadratic function whose minimization with respect to f and l yields explicit and
closed-form expressions, respectively. Minimizing K(f, l) with respect to f leads to the
following form:

(18)

where its minimum value is achieved at ms [65]. Solving for ms yields an explicit expression
of each condition in Eq. (8), i.e.

(19)

where σn denotes standard deviation of the final super-resolution volume and the sums
extend to the neighborhood of the currently visited voxel s. In addition, to minimize K(f, l)
with respect to l, we take the derivative, set it equal to zero and solve for l, yielding

(20)

We also use an over-relaxation scheme to speed-up convergence as follows:

(21)

where we set α=1.2 in our implementation. The overall minimization of K(f, l) is achieved
by alternating between minimization with respect to f and then with respect to l using Eqs.
(21) and (20), respectively.
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Fig. 1.
Tongue images are acquired in three orthogonal volumes with field of view encompassing
the tongue and surrounding structures. (a) Coronal, (b) sagittal, and (c) axial volumes are
illustrated. The final super-resolution volume using the proposed method is shown in (d).
The red arrows indicate the tongue region.
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Fig. 2.
A flowchart of the proposed method.
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Fig. 3.
A model of the imaging system.
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Fig. 4.
One representative final super-resolution image is shown in (a); regions defined from each
low-resolution volume are shown in (b); a volume with regions defined from from each low-
resolution volume is illustrated in (c); and a schematic drawing of each region is shown in
(d).
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Fig. 5.
Comparison of different reconstruction methods on a normal subject. The original coronal,
sagittal, and axial volumes are shown in (a), (b), and (c), respectively. B-spline interpolation
was used to yield higher pixel resolutions equal to that of the highest resolution orientations,
which are indicated by the red boxes. Three different reconstruction methods including
simple averaging, Tikhonov regularization, and the proposed method are shown in (d), (e),
and (f), respectively. For reference, the highest resolution images from each original volume
are repeated in (g).
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Fig. 6.
Comparison of different reconstruction methods using a glossectomy patient. The original
coronal, sagittal, and axial volumes are shown in (a), (b), and (c), respectively. B-spline
interpolation was used to yield higher pixel resolutions equal to that of the highest resolution
orientations, which are indicated by the red boxes. Three different reconstruction methods
include (d) simple averaging, (e) Tikhonov regularization, and (f) the proposed method,
respectively. For reference, the highest resolution images from each original volume is
repeated in (g)
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Fig. 7.
Comparison of different reconstruction methods using a simulation study. Reconstructed
volume are shown in (a), (b), and (c), respectively. B-spline interpolation was used to yield
higher pixel resolutions equal to that of the highest resolution orientations, which are
indicated by the red boxes. Three different reconstruction methods including simple
averaging, Tikhonov regularization, and the proposed method are depicted in (d), (e), and
(f), respectively. Ground truth data is illustrated in (g). The proposed method provides more
detailed anatomical information than averaging and Tikhonov regularization methods as
visually assessed.
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Fig. 8.
PSNR was measured using fifteen human datasets consisting of twelve normal and three
abnormal subjects to compare the performance of the reconstruction methods quantitatively.

Woo et al. Page 26

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2013 February 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 9.
Comparison of effect of Gaussian filtering that removes anti-aliasing effect using a
simulation study. The first row shows reconstructed volumes generated using Gaussian
filtering that removes anti-aliasing effects including (a) averaging (PSNR = 24.36 dB), (b)
Tikhonov regularization (PSNR = 27.74 dB), (c) the proposed method (PSNR = 28.74 dB),
and (d) ground truth, respectively. The second row shows reconstructed volumes generated
without using Gaussian filtering that removes anti-aliasing effects including (e) averaging
(PSNR = 25.71 dB), (f) Tikhonov regularization (PSNR = 27.42 dB), (g) the proposed
method (PSNR = 26.87 dB), and (h) ground truth, respectively. (d) and (h) are the same.
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Fig. 10.
To simulate the performance of the reconstruction in the presence of the noise, Gaussian
noise images with two power levels were added to ground truth in (a): Gaussian noise with
zero mean and standard deviations of (b) 50 and (c) 75, respectively
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Fig. 11.
Brain datasets were used to gauge the performance of the different reconstruction methods.
The images in the second row illustrate the enlarged region shown in red box in the first
column.
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Fig. 12.
PSNR (dB) for different reconstruction methods on brain data. Dotted lines represent the
mean of the three datasets.
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Fig. 13.
One example showing the super-resolution volume reconstruction (a) without using
registration and intensity matching, (b) without using intensity matching after registration,
and (c) the proposed method.
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Fig. 14.
The results of super-resolution reconstruction with and without using the region-based
approach. (a) MAP-MRF reconstruction without using the region-based approach, (b) the
proposed method, and (c) original three volumes. Axial, sagittal, and coronal volumes are
shown in the first, second, and third columns, respectively.
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