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Abstract

Major challenges in current computer-aided detection (CADe) schemes for nodule detection in 

chest radiographs (CXRs) are to detect nodules that overlap with ribs and/or clavicles and to 

reduce the frequent false positives (FPs) caused by ribs. Detection of such nodules by a CADe 

scheme is very important, because radiologists are likely to miss such subtle nodules. Our purpose 

in this study was to develop a CADe scheme with improved sensitivity and specificity by use of 

“virtual dual-energy” (VDE) CXRs where ribs and clavicles are suppressed with massive-training 

artificial neural networks (MTANNs). To reduce rib-induced FPs and detect nodules overlapping 

with ribs, we incorporated the VDE technology in our CADe scheme. The VDE technology 

suppressed rib and clavicle opacities in CXRs while maintaining soft-tissue opacity by use of the 

MTANN technique that had been trained with real dual-energy imaging. Our scheme detected 

nodule candidates on VDE images by use of a morphologic filtering technique. Sixty morphologic 

and gray-level-based features were extracted from each candidate from both original and VDE 

CXRs. A nonlinear support vector classifier was employed for classification of the nodule 

candidates. A publicly available database containing 140 nodules in 140 CXRs and 93 normal 

CXRs was used for testing our CADe scheme. All nodules were confirmed by computed 

tomography examinations, and the average size of the nodules was 17.8 mm. Thirty percent 

(42/140) of the nodules were rated “extremely subtle” or “very subtle” by a radiologist. The 

original scheme without VDE technology achieved a sensitivity of 78.6% (110/140) with 5 

(1165/233) FPs per image. By use of the VDE technology, more nodules overlapping with ribs or 

clavicles were detected and the sensitivity was improved substantially to 85.0% (119/140) at the 

same FP rate in a leave-one-out cross-validation test, whereas the FP rate was reduced to 2.5 

(583/233) per image at the same sensitivity level as the original CADe scheme obtained 

(Difference between the specificities of the original and the VDE-based CADe schemes was 

statistically significant). In particular, the sensitivity of our VDE-based CADe scheme for subtle 

nodules (66.7% = 28/42) was statistically significantly higher than that of the original CADe 

scheme (57.1% = 24/42). Therefore, by use of VDE technology, the sensitivity and specificity of 

our CADe scheme for detection of nodules, especially subtle nodules, in CXRs were improved 

substantially.
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I. Introduction

Currently, the overall five-year survival rate for lung cancer patients is only 14% [1]. Early 

detection and treatment of lung cancers can improve the survival rate by 50% if the tumor is 

detected early at Stage 1, which is a solitary and circumscribed lung nodule.

For detection of lung cancer at an early stage, computed tomography (CT) is a more 

sensitive imaging modality [2]. However, chest radiographs (CXRs) are used far more 

commonly for chest diseases because they are the most cost-effective, routinely available, 

and dose-effective diagnostic tool [3], [4]. Because CXRs are so widely used, improvements 

in the detection of lung nodules in CXRs could have a significant impact on early detection 

of lung cancer. Studies have shown that, however, 30% of nodules in CXRs were missed by 

radiologists in which nodules were visible in retrospect, and that 82–95% of the missed 

nodules were partly obscured by overlying bones such as ribs and clavicles [5], [6]. Such 

nodules would be more conspicuous on the soft-tissue images obtained by using the dual-

energy subtraction technique [7].

Therefore, a computer-aided detection (CADe) scheme [8], [9] for nodules in CXRs has 

been investigated for assisting radiologists in improving their sensitivity. Although a great 

deal of work has been done by researchers to improve the performance of CADe schemes, 

CADe schemes still produce a relatively large number of false positives (FPs). This would 

distract radiologists in their detection and reduce radiologists’ efficiency. In addition, 

radiologists may lose their confidence with the CADe scheme as a useful tool. Matsumoto et 

al. conducted observer studies [10], which showed that, if a CADe scheme had a high FP 

rate of 11 per image, radiologists’ accuracy in detecting nodules was not improved when 

they were aided by computer output, even though the scheme had a high sensitivity of 80%. 

Radiologists’ accuracy, however, was significantly improved if the CADe scheme had a 

simulated low FP rate with the same sensitivity. Therefore, having a low FP rate is critical 

for a CADe scheme to be useful. A number of investigators developed FP reduction methods 

[11]–[13]. Yoshida et al. proposed a method called local contralateral subtraction to remove 

normal anatomic structures in CXRs based on the symmetry between the left and right lung 

regions for FP reduction [11]. Suzuki et al. developed a multiple massive-training artificial 

neural networks (MTANNs) to reduce the number of FPs produced by their CADe scheme 

[12]. Loog et al. investigate if the conspicuity of lung nodules increases when applying the 

suppression technique in CXR. Other abnormalities may also be detected, classified, and 

quantified more accurately if the bony anatomy is adequately suppressed [14].

A major challenge for current CADe schemes is to detect the nodules overlapping ribs, rib 

crossings, and clavicles, because a majority of FPs is caused by these structures [15], [16]. 

This leads to lowering the sensitivity as well. To detect such nodules overlapping ribs and 

clavicles, Kido et al. developed a CADe scheme based on single-exposure dual-energy 
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computed radiography [17], [18]. A dual-energy subtraction technique [19], [20] is a 

technique for separating soft tissue from bones in CXRs by use of two X-ray exposures at 

two different energy levels. In spite of its great advantages, a limited number of hospitals 

use a dual-energy radiography system, because specialized equipment is required, and the 

radiation dose can be double. To address the issue of the availability of dual-energy systems, 

Suzuki et al. developed an image-processing technique called virtual dual-energy (VDE) 

radiography for suppressing ribs and clavicles in CXRs by means of a multiresolution 

MTANN [21], [22]. The real dual-energy images were used as the teaching images for 

training of the multiresolution MTANN. Once trained, real dual-energy images were not 

necessary any more. The trained MTANN suppressed ribs and clavicles in standard CXRs 

substantially, while the visibility of nodules and lung vessels was maintained.

In this study, we developed a CADe scheme for detection of pulmonary nodules by use of 

the MTANN VDE technology to improve the sensitivity for nodules overlapping ribs and 

clavicles and to reduce FPs caused by these structures.

II. Materials And Method

A. Database of CXRs

To train our CADe scheme, we collected 300 cases with nodules and 100 normal cases from 

six medical institutions by use of screen-film systems, computed radiography systems, and 

digital radiography systems. All nodules were confirmed by CT, and the locations of the 

nodules were confirmed by one of the chest radiologists. The nodule size ranged from 5 to 

40 mm.

To facilitate comparisons of our VDE-based CADe scheme with our original scheme [23] 

and future comparisons with other methods, we used the JSRT database [24], which is 

publicly available. The posteroanterior CXRs in the database were collected from 14 

medical institutions by use of screen-film systems over a period of three years. All nodules 

in the CXRs were confirmed by CT, and the locations of the nodules were confirmed by 

three chest radiologists. The images were digitized to yield 12-bit CXRs with a resolution of 

2048 2048 pixels. The size of a pixel was 0.175 × 0.175 mm. The ×original database 

contained 93 normal cases and 154 cases with confirmed lung nodules. The nodules were 

grouped into five categories, based on the degree of subtlety for detection.

We created a database for evaluating our VDE-based CADe scheme by excluding from the 

full JSRT database the nodules in the opaque portions of the CXR that correspond to the 

retro-cardiac and subdiaphramatic regions of the lung, because the purpose of using our 

CADe scheme was to detect nodules in the lung fields [23]. As a result, 140 nodule cases 

and 93 normal cases were selected and included in the database (i.e., a subset of the JSRT 

database) for our experiments. Note that evaluations of CADe schemes in past studies [25], 

[26] were performed without nodules in the opaque portions of CXRs for the same reason. 

Chen et al. [23] gave the characteristics of the nodules in our testing database.
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B. Original Computerized Scheme for Nodule Detection

Our original CADe scheme for detection of lung nodules in CXRs consisted of four major 

steps: 1) segmentation of lung fields based on our multisegment active shape model (M-

ASM); 2) two-stage nodule enhancement and nodule candidate detection; 3) segmentation of 

nodule candidates by use of our clustering watershed algorithm; and 4) feature analysis and 

classification of the nodule candidates into nodules or non-nodules by use of a nonlinear 

support vector machine (SVM) classifier [23].

To summarize, our M-ASM for lung segmenting is an improved model of the Cootes et al. 

formulation [27] by fixating selected nodes at specific structural boundaries called 

transitional landmarks. The transitional landmarks determined multiple segments, each of 

which corresponded to a specific boundary type such as the heart, aorta, and rib-cage. The 

node-specified ASM was built using a fixed set of equally spaced feature nodes for each 

boundary segment. This allowed the nodes to learn local appearance models for a specific 

boundary type, rather than generalizing over multiple boundary types, which resulted in a 

marked improvement in boundary accuracy.

After the lungs were segmented, a background-trend-correction technique based on the 

following second-order bivariate polynomial function was applied to the segmented lung 

field: F (x, y) = ax2 + by2 + cxy + dx + ey + f where a, b, c, d, e, and f are coefficients. Then, 

our two-stage nodule enhancement technique produced a nodule-enhanced image and a 

nodule-likelihood map. The first stage of the technique enhanced nodules by use of two 

different types of gray-level morphologic opening operators [28]: one enhanced nodules; the 

other suppressed ribs. The second stage of our nodule enhancement converted the nodule-

enhanced image into a nodule likelihood map by use of a directional gradient magnitude 

filter. Local peaks in the map were detected as nodule candidates.

To segment the nodule candidates, our “coarse-to-fine” segmentation technique based on 

morphologic filtering and improved watershed segmentation was employed. We applied a 

binary morphologic erosion operator to the nodule candidate regions to break connections 

between the nodule and non-nodule regions. Next, a binary morphologic dilation operator 

dilated the connected region. As a result, a single connected region representing a rough 

nodule candidate was obtained. To refine the rough segmentation, we developed a clustering 

watershed segmentation technique. Peaks within the rough nodule candidate region in the 

nodule-enhanced image were obtained and used for initializing the watershed segmentation 

algorithm [29]. With the watershed segmentation, the rough nodule candidate region was 

divided into several catchment basins. Each minimum point was surrounded by a catchment 

basin associated with it; thus, there were one or more peaks, each of which was surrounded 

by a cluster of connected pixels that constituted a catchment basin. From the multiple 

catchment basins, a single nodule candidate region was determined by use of the following 

clustering method: first, a primary cluster was defined as a cluster that contained the nodule 

candidate location (as a point) determined by the initial nodule candidate detection step. 

Next, clusters connected to the primary cluster were added. The connected clusters were 

identified by use of the criterion that the minimum value between the peak in the primary 

cluster and each of the other peaks was larger than a threshold value.
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Finally, 31 shape, gray-level, texture, and specific FP features were extracted from nodule 

candidates. A nonlinear SVM with a Gaussian kernel was employed for classification of the 

nodule candidates. We selected this classifier because its generalization ability is relatively 

high with a small number of training samples.

The SVM classifier was trained/tested with a leave-one-out cross-validation test. The 

performance of the SVM classifier was evaluated by use of free-response receiver operating 

characteristic (FROC) analysis [30].

C. Creation of VDE Images

An image-processing technique for suppression of ribs and clavicles in CXRs has been 

developed by means of a multiresolution MTANN [21], [31]. With this technique, ribs and 

clavicles in CXRs can be suppressed substantially, while soft tissues such as lung nodules 

and vessels are maintained. Fig. 1 shows examples of VDE images in which ribs and 

clavicles were suppressed by use of the MTANN technique. MTANN is a highly nonlinear 

filter that can be trained by use of input CXRs and the corresponding “teaching” images. 

Bone images obtained by use of a dual-energy radiography system were used as the teaching 

images.

The MTANN consisted of a linear-output ANN regression model that is capable of 

operating on image data directly [32]. Input CXRs are divided pixel by pixel into a large 

number of overlapping subregions. Single pixels corresponding to the centers of the input 

subregions are extracted from the teaching images as teaching values, represented by

(1)

where  is the input vector to the MTANN which is a 

subregion extracted from CXR, and f (x, y) is an estimate for a teaching value.

The MTANN is massively trained by using each of a large number of the input subregions 

together with each of the corresponding teaching single pixels. The training set of pairs of a 

subregion and a teaching pixel is represented by

(2)

where T (x, y) is a teaching image, RT is a training region which corresponds to the 

collection of the centers of subregion, and NT is the number of pixels in RT .

For a single MTANN, suppression of ribs containing various frequencies was difficult, 

because of the capability of a single MTANN was limited. To overcome this issue, 

multiresolution decomposition/composition techniques were employed. First, a lower 

resolution image gL(x,y) was obtained from an original higher resolution image gH (x,y) by 

performing downsampling with averaging, i.e., four pixels in the original image are replaced 

by a pixel having the mean value for the four pixel values, represented by
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(3)

where R22 is a 2 × 2 pixel region. The lower resolution image is enlarged by upsampling 

with pixel substitution, i.e., a pixel in the lower resolution image is replaced by four pixels 

with the same pixel value, as follows:

(4)

Then, a higher resolution difference image dH (x,y) is obtained by subtraction of the 

enlarged lower resolution image from the higher resolution image, represented by

(5)

These procedures are performed repeatedly, producing further lower resolution images. 

Thus, multiresolution images having various frequencies are obtained by use of the 

multiresolution decomposition technique.

An important property of this technique is that exactly the same original-resolution image 

gH (x,y) can be obtained from the multiresolution images, as follows:

(6)

Therefore, we can process multiresolution images independently instead of processing 

original high-resolution images directly, i.e., with these techniques, the processed original 

high-resolution image can be obtained by composing of the processed multiresolution 

images.

After training with input CXRs and the corresponding dual-energy bone images, the 

multiresolution MTANN is able to produce bone images that are expected to be similar to 

the teaching bone images. For suppression of ribs and clavicles in an original CXR g (x, y), a 

VDE bone image fb (x, y) produced by the trained multiresolution MTANN is subtracted 

from the original CXR with the lung masking image m (x, y) as follows:

(7)

where wc is a weighting parameter for determining the contrast of ribs. By changing the 

weighting parameter wc, we can obtain VDE soft-tissue images with different contrasts of 

ribs.

D. CAD Scheme Combined With VDE Technique

Fig. 2 shows the main diagram of our proposed CADe scheme combined with the VDE 

technology for detection of lung nodules in CXRs. To reduce rib-induced FPs and detect 

nodules overlapping ribs and clavicles, we incorporated the VDE technology in our CADe 

scheme. The VDE-based CADe scheme detected nodule candidates on VDE images by use 

of the two-stage nodule enhancement technique that was applied in our original CADe 
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scheme. A watershed segmentation algorithm was employed to segment each candidate in 

both original and VDE CXRs. Sixty morphologic and gray-level-based features were 

extracted from each candidate from both original and VDE CXRs which were smaller than 

the number of nodules in the training database. A nonlinear SVM was employed for 

classification of the nodule candidates into nodules or non-nodules. In our CADe scheme, 

only CXR acquired with a standard radiography system was inputted into our system and no 

specialized equipment for generating VDE image, but only software, is required (shown in 

Fig. 3).

Major challenges for our original CADe scheme were to detect the nodules overlapped with 

ribs, rib crossings, and clavicles, and reduce the FPs caused by these structures. Because of 

the rib and clavicle suppression in VDE images, nodules were more obvious than those in 

the original images. We detected nodule candidates in VDE images to improve the 

sensitivity for detection of nodule candidates. On the other hand, most of false nodule 

candidates were located in the rib crossing, clavicle regions in our original CAD scheme. 

We look forward to reduce most of the FPs that were caused by these structures by the 

incorporation of VDE image in the nodule candidate detection step.

Some nodules had similar characteristics to those of bones in terms of the shape, the size, 

the contrast, and the orientation. The features of these nodules may be suppressed in VDE 

image. Detected nodules in the nodule candidate detection step may be misclassified as non-

nodules based on the features in the original image or VDE image alone. To improve the 

classification performance, we also extracted the same feature set at the corresponding 

locations of the detected nodule candidates in the corresponding original image (two 

coordinate features were excluded). Nodule candidate segmentation was repeated both in 

original and VDE images. Because of the bone suppression, the segmented contour of 

nodule candidate overlapped with ribs and clavicles may be more precise than that from 

original CXR and the feature based on the segmentation results may be more effective.

III. Results

In this section, we present some experimental results to demonstrate the performance of the 

VDE-based CADe scheme, which incorporated the VDE technique. We first defined how to 

train the MTANN to create the VDE images for the CADe scheme. Next, the sensitivity for 

nodules candidate detection on VDE images with different rib contrast was presented and 

compared to that on the original image. Then, we presented the performance of the CADe 

scheme, which only used the VDE image to replace the original CXR for candidate 

detection, feature extraction, and classification. A comparison to our original scheme was 

also conducted. At last, the performance of the VDE-based CADe scheme was presented 

and compared with that of the original CADe scheme.

The overall system performance was quantified using FROC curves. The SVM classifier and 

linear discrimination analysis (LDA) classifier were trained/tested with a leave-one-out 

cross-validation test. Features for the LDA were selected by use of the stepwise feature 

selection method. With the selection method, we determined a single set of features from M 

runs of a leave-one-out cross-validation test (M is the number of features). Each feature was 
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selected at each run after we accumulated all N results from the run (N is the number of 

samples). In our CADe schemes, all features extracted and selected for each CADe scheme 

were given in Table I. From the table, we can see that the number of selected features for 

VDE image was equal to that for original image. However, there were some different 

features selected and more density-based features instead of nodule-rib image-based features 

were selected for VDE image. For the VDE-based CADe scheme, 14 features were selected. 

It was significantly smaller than the number of true training samples.

A. MTANN Training

We used four CXRs and their corresponding dual-energy bone images in a training set for 

training the multiresolution MTANN. One of the advantages of the MTANN technique is 

that it only needs a few number of dual-energy training images. In the four cases, one was a 

normal case and the other three contained with nodules. The training samples for the nodules 

were extracted by manual in order to make it cover the nodule. The size of the subregion for 

MTANNs was 9 × 9 pixels. It was sufficient to cover the width of rib in the resolution 

image. Three-layered MTANNs were used in our experiments where the numbers of input, 

hidden, and output units were 81, 20, and 1, respectively. Fig. 4 shows the VDE bone image 

and the VDE soft tissue images with difference rib contrast processed by multiresolution 

MTANN technique.

B. Nodule Candidate Detection

In this section, some experiments for nodule candidate detection based on VDE images were 

conducted. The “region” criterion was adopted to determine a true positive (TP) which was 

also applied in our original CADe scheme [23].

From Section II, we have known that the “bone-like-image” was subtracted from the 

original CXR to get the VDE soft tissue image. There was a parameter mc to adjust the rib 

contrast in VDE image. Different parameters would have an influence on the nodule 

candidate detection performance. Fig. 5 shows the performance of the nodule candidate 

detection stage with different rib contrast in VDE image for JSRT database. The sensitivity 

was highest when the rib contrast parameter mc was set 0.4. The most nodules were detected 

in the nodule candidate detection step and the contrast of nodule was more obvious for our 

CADe scheme.

In our experiments, 70 candidates that had max code values in the nodule likelihood map 

were selected for each image. If the distance between any two peaks was less than 5 mm, 

then a candidate was created only from the peak with the highest value. The nodule 

candidate detection stage in our VDE-based CADe scheme achieved a sensitivity of 96.4% 

(135/140) with 70 candidates per image (a sensitivity of 92.1% (129/140) in original CADe 

scheme). Fig. 6(a) illustrates missed nodules in the candidate detection step from original 

CXR, but detected from VDE image [shown in Fig. 6(b)].

C. Performance of the Scheme Only Using VDE Image

In this experiment, VDE image was applied to replace the original image in our original 

CADe scheme. The nodule candidates were detected from the VDE image by use of the 
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two-stage nodule enhancement method. Then, 31 features were extracted from the VDE 

image after nodule candidate segmentation. The performance of the CADe scheme only 

using VDE image was higher than that of original CADe scheme, i.e., it achieved a 

sensitivity of 65.7% (92/140) by use of VDE image and a sensitivity of 60.7% (85/140) by 

use of original image at an FP rate of 1.5 FPs per image for nodule cases in the JSRT 

database. The CADe scheme only using VDE image detected 12 more nodules, which were 

missed by the CADe scheme using original image at 5 FPs per image on average. Most of 

these nodules were very subtle or extremely subtle nodules in the JSRT database. However, 

five nodules were missed by the CADe scheme using VDE image, while they were detected 

by the original CADe scheme and they were nonsubtle nodules. So there was only 5% 

improvement with 5 FPs per image. It is interesting to note that the sensitivity of CADe 

scheme only using original image was higher than that of CADe scheme only using VDE 

image at a lower FP rate. With increasing the rate of FPs, the scheme using VDE image 

detected more subtle nodules than the original scheme. The reason is that the contrast of 

some nodules in VDE images was improved because of the rib suppression and it was 

visible for our CADe scheme to detect them. But some nodules were smoothed when using 

the MTANN technique to suppress the ribs in CXR. Based on this phenomenon, we also 

segmented the candidates and extracted the features from the original image at the same 

location which were detected in the VDE image. Fig. 7 illustrates that the nodule detected in 

the nodule candidate detection step was classified as FP by use of the features based on 

original image because some rib edges were segmented as the nodule boundaries, but 

classified as TP by use of the features based on both original and VDE image.

D. Performance of Scheme Using VDE Combined With Original Image

FROC curves showing the overall performances of our VDE-based CADe scheme, which 

combined VDE image with original image, and the original CADe scheme for the JSRT 

database in a leave-one-out cross-validation test with SVM are shown in Fig. 8. The 

performance of the VDE-based CADe scheme was substantially higher than that of the 

original CADe scheme, i.e., the VDE-based CADe scheme achieved a sensitivity of 85.0% 

(119/140) and the original CADe scheme achieved a sensitivity of 78.5% (110/140) at an FP 

rate of 5.0 FPs per image for the JSRT database. In the VDE-based CADe scheme, 11 

nodules were detected while they were missed in the original CAD scheme and only two 

nodules (shown in Fig. 9) were missed.

We analyzed the CADe scheme performance according to nodule subtlety, size, and 

pathology, as shown in Figs. 10–12 for the JSRT database. The sensitivity was calculated in 

each category (i.e., the sensitivity was 100% if all nodules in a particular category were 

marked). Our VDE-based CADe scheme marked 66.7% (28/42) of very subtle and 

extremely subtle nodules with 5 FPs per image. All obvious nodules were marked with 2.5 

FPs per image, and 92.1% (35/38) of relatively obvious nodules were detected with 1.6 FPs 

per image. It is interesting to note that the detection result for very subtle nodules was 

significantly improved. This may be partially attributable to the fact that the very subtle 

nodules were overlapped with ribs, while in the VDE image, it was more visible to be 

detected. Our VDE-based CADe scheme has a high performance (a sensitivity of 87.1% 

(54/62) with 5.0 FPs per image) for the medium-sized nodules and a relatively high 
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performance (a sensitivity of 79.3% (46/58) with 5.0 FPs per image) for small nodules, as 

shown in Fig. 11. The sensitivities for malignant and benign nodules were comparable, as 

shown in Fig. 12.

Several typical examples of our CADe detection results at operating points with an FP rate 

of 4.5 FPs per image for the JSRT database are shown in Fig. 13. The VDE-based CADe 

scheme detected the truth nodules with few FPs, whereas the original CADe scheme missed 

the truth nodules, and most of the FPs were located in the ribs, rib intersections, and the 

clavicles. Fig. 14 shows two examples that the FPs which were detected in the original 

scheme were reduced in the VDE-based CADe scheme. The VDE-based CADe scheme not 

only can detect more nodules which were overlapped with ribs or clavicles, but also can 

reduce the FPs deduced by the ribs and clavicle. Thus, the overall performance was 

substantially improved by use of the VDE technique.

E. Performance Comparison With Others

It is difficult to make definitive comparisons with previously published CADe schemes 

because of different databases, different TP criteria, different evaluation procedures, 

different optimization parameters, and different operating points [33]. We, however, 

attempted to compare our performance with the performance reported in the literature. We 

found four studies in which the publicly available JSRT database was used. Table II 

summarizes the performance comparisons among different CADe schemes in the literature. 

Wei et al. reported that their CAD scheme achieved a sensitivity of 80% with 5.4 FPs per 

image for the JSRT database [34]. Hardie et al. reported that their scheme marked 80% of 

nodules in a subset of the JSRT database with 5 FPs per image [26]. Their performance was 

calculated by use of the “distance” criterion of 25 mm for determining TP detections. The 

performance of our VDE-based CADe scheme was substantially higher than that of Hardie's 

CADe scheme, i.e., our VDE-based CADe scheme achieved a sensitivity of 85.0% 

(119/140) and 77.9% (109/140); Hardie's CADe scheme achieved a sensitivity of 80.0% and 

63% at FP rates of 5.0 and 2.0 per image, respectively.

IV. Discussion

A dual-energy subtraction technique has been used to address the issue of obscuring bones. 

Dual-energy soft-tissue images can improve the detection of focal soft-tissue opacities, such 

as lung nodules, that may be partly obscured by overlapping ribs or clavicles. For the 

computerized CADe scheme, the FPs deduced by these reasons can also be reduced. In spite 

of the advantages, a very limited number of hospitals use radiography systems with dual-

energy subtraction, because specialized equipment for obtaining dual-energy X-ray 

exposures is required. It is very difficult to collect a large number of lung nodule cases from 

the dual-energy system for CADe scheme's training and testing. Also, the radiation dose can 

be greater than that for standard chest radiography in some cases. Likewise dual-energy soft-

tissue images, VDE images have a potential to improve the sensitivity in detecting early 

cancer that is partly obscured by overlying ribs, and potential to improve the specificity by 

differentiating nodules from other abnormalities or normal anatomic structures because of 

Chen and Suzuki Page 10

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2015 January 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



the suppression of obscuring ribs. In this paper, we proposed a VDE-based CADe scheme 

for lung nodule detection by use of VDE images.

For nodule candidate detection in VDE images, we can get different performance by use of 

different rib contrast in the VDE images. In our paper, a fixed rib contrast parameter was 

selected corresponding to the highest performance in candidate detection for all nodule cases 

in the JSRT database. However, there are still several truth nodules missed and some of 

these nodules could be detected in the VDE image with other rib contrast. There is a 

potential improvement for the performance in the nodule candidate detection. Because the 

rib contrast in the original image is different from case to case for the exposure dose, the rib 

contrast suppression parameter should be optimized based on each case.

For the final detection result, although more very subtle nodules were detected, there were 

some obvious nodules missed by the VDE-based CADe scheme. The main reason was that 

these nodules had characteristics similar to those of ribs in terms of the shape, the size, the 

contrast, the orientation, the texture, and the margin. Another reason was that, in our 

experiment, the images were scanned from films. There were not corresponding dual-energy 

bone images to them. The MTANN that was used to create the VDE image was trained by 

four cases (one was a normal case and the three contained with nodules), which were 

obtained from a dual-energy CR system. The rib contrast and resolution in the digital 

radiograph are higher than that scanned from films. When we used this trained MTANN to 

suppress the ribs and clavicles in CXR from JSRT, the results were not optimization. If we 

test our VDE-based CADe scheme on such a database that is composed of CR images, it 

may have a better performance. Currently, in order to address this issue that some nodules 

were suppressed in VDE images, the CADe scheme incorporated VDE image with original 

image together and extracted the same set of features from the original image as from the 

VDE image. The results demonstrated that it could improve the performance effectively. For 

the VDE-based CADe scheme, most of the FPs were located in the hilar vessels and the 

diaphragm area.

We used the publicly available JSRT database to evaluate our CADe scheme. The observer 

studies indicated that radiologists found it particularly difficult to detect the very and 

extremely subtle nodules in the JSRT database and the radiologist detected only 44% of the 

hard cases. With an average 4 FPs per image, our VDE-based scheme correctly marked 

66.7% of the hard cases. There was 10% improvement than our original scheme, and it also 

had a higher performance than that proposed by Schilham et al., which is 41% [13]. This 

was a very encouraging result that our method could provide a useful clinical tool. The 

improved CADe scheme incorporating VDE image had a special characteristic for detecting 

the hard subtle nodules.

The time for processing one case with our VDE-based CADe scheme was about 115 s 

(including 25 s for nodule candidate detection and 90 s for candidate segmentation, features 

extraction, and classification in both original CXR and VDE images) on a PC-based 

workstation (Intel Pentium 2.4-GHz processor with a 3-GB memory). The candidate 

segmentation consumed most of the entire processing time. A radiologist can reference to 
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the CADe scheme's results to take a second reading for CXR after 120 s of first reading. It 

can satisfy the clinical requirement.

V. Conclusion

We developed an advanced computerized scheme for detection of lung nodules by 

incorporating VDE image in which ribs and clavicles were suppressed by an MTANN 

technique. The performance of the CADe scheme (85% sensitivity with 5 FPs/image) 

provided a substantial improvement against the original CADe scheme (78% sensitivity with 

5 FPs/image).
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Fig. 1. 
Examples of VDE images in which ribs and clavicles were suppressed by using our 

MTANN technique. (a) Original CXR. (b) VDE soft-tissue image. Arrows indicate nodules.
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Fig. 2. 
Main diagram for our CADe scheme with the VDE technology based on MTANNs.
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Fig. 3. 
Our CADe scheme for detection of lung nodules in CXRS by use of our VDE technology 

based on MTANNs.
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Fig. 4. 
Illustration of changes in rib contrast in VDE soft-tissue images and the VDE bone image 

used to create those soft-tissue images. (a) Original image. (b) VDE soft-tissue image with 

20% rib contrast. (c) 40% rib contrast. (d) 70% rib contrast. (e) 90% rib contrast. (f) VDE 

bone image.
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Fig. 5. 
Effect of the change in rib contrast on the sensitivity of our CADe scheme.
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Fig. 6. 
Improvement in detection of nodule candidates by use of our VDE technology. (a) Nodule 

candidate detection results based on original images. (b) Nodule candidate detection results 

based on VDE images. Arrows indicate nodules. The nodules overlapping ribs that had been 

missed with the original images were detected with the VDE images.
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Fig. 7. 
Illustration of the nodules detected in the nodule candidate detection step: classified as FP 

by use of the features based on original image, but classified as TP by use of the features 

based on both the original and VDE images. (a) Nodules with segmentation results in 

original image. (b) Nodules with segmentation results in VDE images.
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Fig. 8. 
FROC curves indicating the improvement in the performance of our CADe schemes with 

SVM classifier by use of our VDE technology for the JSRT database. Error bars indicate 

95% confidence intervals.
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Fig. 9. 
Illustration of detection of nodules by our VDE-based CADe scheme (indicated by circles). 

(a) TP (arrow) and FPs of the original CADe scheme. (b) False negative (arrow) and FP of 

the VDE-based CADe scheme.
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Fig. 10. 
FROC curves indicating the performance of the VDE-based CADe scheme by nodule 

subtlety for the JSRT database.
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Fig. 11. 
FROC curves indicating the performance of the VDE-based CADe scheme by nodule size 

for the JSRT database.
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Fig. 12. 
FROC curves indicating the performance of the VDE-based CADe scheme by pathology for 

the JSRT database.
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Fig. 13. 
Illustration of the improvement in nodule detection with our VDE technology. CADe marks 

are indicated by circles. (a) False negatives (arrow) and FPs of the original CADe scheme. 

(b) TPs (arrow) and FPs of the VDE-based CADe scheme with the VDE technology.
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Fig. 14. 
Illustration of the improvement in specificity by our VDE technology. CADe marks are 

indicated by circles. (a) TPs (arrow) and FPs of the original CADe scheme. (b) TPs (arrow) 

and FPs of the VDE-based CADe scheme with the VDE technology.
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TABLE I

Features Selected for Three CADe Schemes Based on the Original CXRs, VDE CXRs, and Original and VDE 

CXRsby Use of the Feature Selection Method

Extracted features Original CXRs VDE CXRs VDE and original CXRs

Can.x * # #

Can.y * #

Can.Grad1

Can.Cv * #

Can.Grad2

Can.Cv2 # *,#

Shape1 # *

Shape2 #

Shape3

Shape4 * *

Gray1 *

Gray2

Gray3 #

Gray4 *

Gray5 * #

Gray6 *

Gray7

Gray8 * #

Grad1 * #

Grad2 *

Grad3 * # *,#

Surface1 # *

Surface2 *

Surface3 #

Texture1 #

Texture2

Texture3

Texture4

Texture5

Texture6
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Extracted features Original CXRs VDE CXRs VDE and original CXRs

FP #

*
features selected from those on an original image.

#
features selected from those on a VDE image.
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TABLE II

Performance Comparisons of CADe Schemes That Used the JSRT Database for Evaluation in the Literature

Sensitivity FPs/image Database

Wei et al. (2002) [34] 80% (123/154) 5.4 (1333/247) All nodule and normal cases in JSRT (247)

Coppini et al. (2003) [35] 60% (93/154) 4.3 (662/154) All nodules cases in JSRT (154)

Schiham et al. (2006) [13] 51% (79/154) 2.0 (308/154) All nodule cases in JSRT (154)

67% (103/154) 4.0 (616/154)

Hardie et al. (2009) [26] 80% (112/140) 5.0 (700/140) Nodule cases in JSRT (140)

63% (88/140) 2.0 (280/140)

Chen et al. (2011) [23] 79% (110/140) 5.0 (1165/233) Nodule cases and all normal cases in JSRT (233)

71% (100/140) 2.0 (466/233)

VDE-based CADe 85% (119/140) 5.0 (1165/233) Nodule cases and all normal cases in JSRT (233)
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