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Scoliosis Follow-Up Using Non-Invasive Trunk
Surface Acquisition.

Mathias M. Adankon, Najat Chihab, Jean Dansereau, Hubert Labelle and Farida Cheriet

Abstract—Adolescent Idiopathic Scoliosis (AIS) is a muscu-
loskeletal pathology. It is a complex spinal curvature in three-
dimensional space that also affects the appearance of the trunk.
The clinical follow-up of AIS is decisive for its management.
Currently, the Cobb angle, which is measured from full spine
radiography, is the most common indicator of scoliosis progres-
sion. However, cumulative exposure to X-rays radiation increases
the risk for certain cancers. Thus, a non-invasive method for the
identification of scoliosis progression from trunk shape analysis
would be helpful. In this study, a statistical model is built
from a set of healthy subjects using Independent Component
Analysis (ICA) and Genetic Algorithm (GA). Based on this
model, a representation of each scoliotic trunk from a set ofAIS
patients is computed and the difference between two successive
acquisitions is used to determine if the scoliosis has progressed
or not. This study was conducted on 58 subjects comprising 28
healthy subjects and 30 AIS patients who had trunk surface
acquisitions in upright standing posture. The model detects 93%
of the progressive cases and 80% of the non-progressive cases.
Thus, the rate of false negatives, representing the proportion
of undetected progressions, is very low, only 7%. This study
shows that it is possible to perform a scoliotic patient’s follow-up
using 3D trunk image analysis, which is based on a non-invasive
acquisition technique.

Index Terms—Scoliosis, Independent Component Analysis, Ge-
netic Algorithm, Surface topography, 3D trunk modeling, Pattern
recognition.

I. I NTRODUCTION

Adolescent Idiopathic Scoliosis (AIS) is a deformity of
the spine that is outwardly manifested by asymmetry and
deformities of the external surface of the trunk. It consists
of a complex spinal curvature in three-dimensional space:
inclination in the frontal plane, rotation of vertebrae in the
axial plane and modification of the natural curves in the
sagittal plane. This pathology is often outwardly visible,
but it may go unnoticed during its development for several
years. Among patients with AIS, 1 in 25 cases have mild
deformities and only 1 in 200 adolescents have deformities
that progress to require either bracing or surgical treatment.
In fact, the treatment decision is taken by the orthopedic
doctor based on the progression of the scoliotic curve. Thus,
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it is important to know if and when the curve will progress
in order to perform optimal treatment.

The Cobb angle is the gold standard for the monitoring and
treatment decision of scoliosis. Several researchers consider
that an increase in the Cobb angle measured from full spine
radiography is the most common indicator of progression.
On the other hand, there is as yet no reliable way to predict
which deformities will progress; these patients are monitored
with a series of X-rays acquired semi-annually during rapid
adolescent growth. However, cumulative exposure to X-rays
radiation significantly increases the risk for certain cancers
[14].

Thus, during the last 30 years, many optical non-invasive
surface measurement systems have been developed based
on a 3D reconstruction of the back or of the whole trunk
using various techniques: Moiré contour topography [40, 42],
Integrated Shape Imaging System (ISIS)[43] and Quantec
scanner [16, 32]. However, most studies have been focused
on how to find the relationship between the Cobb angle and
the indices computed from the trunk surface. Many research
teams have tried to establish the correlation between the
Cobb angle and various indices of torso asymmetry but their
results are mitigated [2, 27, 28].

Recently, a few studies have addressed the issue of
scoliosis progression using non-invasive acquisition. In[35],
the authors have identified the best surface topography
parameters correlated with scoliosis progression. Their results
reveal that the most important measures are decompensation,
trunk rotation and lordosis angle. In addition, Seze and Korvin
[13] have presented a preliminary work on the feasibility
of scoliosis follow-up using surface topography. This study
used the Moiré contour topography technique, where the
progression was assessed by looking at the rib hump, lordosis
and spinal curve and by subjective comparison of the fringe
mappings. However, the results are moderate: sensitivity 90%
and specificity 60%.

In several previous studies, cross-sectional surface
measurements have been proposed for noninvasive assessment
of AIS trunk deformity. A drawback of these studies is that
only the maximum index values along the trunk are used
for monitoring AIS progression. To address that, Seoud and
al [38] have proposed multilevel analysis using functional
indices computed along the entire trunk. However, local
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trunk deformations such as asymmetry of the shoulders,
waist or scapulae cannot been characterized by these
functional indices. Thus, in our recent work [1], we have
proposed a method for analyzing scoliotic trunk deformities
using Independent Component Analysis (ICA), and have
shown that the independent components capture the local
scoliosis deformations.

ICA is a statistical method that attempts to express
the observed data with a linear combination of mutually
independent variables [12]. ICA finds the independent
components, also called sources, by maximizing the statistical
independence between the estimated components. ICA was
originally developed to deal with the blind source separation
problem. With the recent increase of interest in ICA, various
applications have been designed based on this statistical
technique. Among them, we have feature extraction or data
representation, which consists of computing a small vector
representation of data (sound, image, etc) [23, 31, 5].

Recently, ICA has been used for image segmentation
[30] and medical image analysis [8, 19, 41]. Boquete et al.
[8] have proposed a thermographic image analysis based
on ICA for automated detection of high tumor risk areas.
Hassen et al [19] used ICA to built a cardiovascular disease
diagnosis system based on magnetic resonance imaging. ICA
in a high-dimensional space with sparse data was applied to
landmarked 3D shapes resulting from the aortic segmentation.
The aortic shape variations were captured by the independent
components, which were sorted using prior knowledge. The
simple classification task in the 2D space spanned by the
two first independent components was then performed by a
simple quadratic classifier. In [41], ICA is used to perform
myocardial contraction shape analysis. Here, a classification
algorithm was built from the ICA components in order to
automatically detect and localize abnormally contracting
regions of the myocardium.

In this paper, we propose to analyze 3D images of scoliotic
trunks based on ICA in order to identify progressive cases
of scoliosis. The aim of this study is to determine if the
deformation severity of AIS patients has increased or not
(Cobb angle increase of at least 5 degrees) between successive
clinical visits based on surface topography analysis, without
prior knowledge from X-ray data.

The organization of the paper is as follows. In Section II,
we describe the materials and the methodology used in this
study. In Section III, we present the experiment results and
discussion. Finally, a conclusion is given in Section IV.

II. M ATERIALS AND METHODS

A. Data acquisition

Over the last thirty years, several techniques have been
used for non invasive evaluation of scoliosis. In this context,

an optical surface digitizing system (Creaform Inc., Lévis,
QC, Canada) is used at the scoliosis clinic of Sainte-Justine
Hospital. The precision of the 3D reconstruction of the trunk
surface using this system was evaluated by measuring the
mean normal distance between the 3D reconstruction of an
anthropomorphic manikin with the optical digitizers and a
set of point markers on the object surface digitized with a
coordinate measuring machine (CMM). This distance was
evaluated at1.1 ± 0.9mm [36]. The acquisition system has
four scanners (Capturor II Large Field) placed around the
patient (at the back, at the front and to the right and left
sides of the front angulated at about 55 degrees in order to
minimize occlusion by the patient’s arms). Visible markers
are affixed to the patient’s skin to indicate several anatomical
landmarks: left and right anterior-superior iliac spines (ASIS);
suprasternal notch; xiphoid process; spinous process of the
prominent vertebra (C7-T1); middle of the posterior-superior
iliac spines (PSIS); left and right iliac crests (lateral);left
and right inferior limits of the ribcage. The patient must
be centered in the field of view of the four cameras with a
free-standing anatomical posture; see Figure 1. Subjects must
be at the center of the system (marked on the floor) with their
shoes removed and with any long hair tied up over the neck.
They are asked to stand still during acquisition, focusing on
a point above the front digitizer. Each scanner consists of a
CCD camera and a structured light projector. The large field
scanner model has a viewing volume of 1200 mm x 900 mm
x 1000 mm, a lateral resolution of 1.2 mm, a depth resolution
of 1.0 mm and a camera resolution of 0.8 megapixels. The
Creaform body digitizer technology combines phase-shifting
interferometry and active optical triangulation. Each of the
four scanners provides a partial 3D surface of the trunk and
the total acquisition time is slightly under 5 seconds. The vast
majority of patients at the scoliosis clinic of Sainte-Justine
Hospital accept full torso surface scanning; we estimate that
the refusal rate is between 2% and 4%.

Fig. 1. Configuration of Creaform digitizers at Sainte-Justine Hospital.
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B. 3D trunk reconstruction

The 3D reconstruction of the whole trunk surface of a
scoliotic patient using the Creaform (Editing and Merging)
software is not automatic. It requires manual interventions
that can take considerable time (on average 20 minutes)
to reconstruct the trunk surface of a single scoliotic
patient. Moreover, these manual interventions result in low
reproducibility. We developed an automatic method for
reconstructing in 3D the trunk surface of scoliotic patients to
reduce the time required to obtain each 3D trunk model. The
advantage of this new, automatic and fast method is to enable
the rapid construction of a large database of 3D trunk surface
models of scoliotic patients in different postures as well as
of non-scoliotic cases. Moreover, the results are completely
reproducible. Our novel 3D trunk surface reconstruction
method consists of three steps: preprocessing of the four
noisy polygonal surfaces from the Creaform digitizers,
registration of these polygonal surfaces and merging the
geometries and textures.

Fig. 2. Merging the four polygonal surfaces.

Firstly, to remove the noise from the 3D polygonal surfaces,
we propose the bilateral filter for its simplicity, speed and
ability to remove noise while preserving 3D surface features
[15]. The bilateral filter uses the local neighborhoods to filter
vertices v of the mesh in the normal direction using the
following equation:

v̂ = v + d.n

The calculation of the displacementd along the normaln of
each vertexv is given by the following equation:

d =

K
∑

i=1

(wc.ws).h

K
∑

i=1

wc.ws

K represents the number of neighbors{qi} of the vertexv. wc

is the closeness smoothing filter, the standard Gaussian filter
with parameterσc; it is given by following equation:

wc = exp
(

−
‖v − qi‖

2

2σ2
c

)

‖v − qi‖ represents the Euclidean distance between the
vertexv and its neighborqi.
ws is the feature-preserving weight function; it is given by

following equation:

ws = exp
(

−
< n,v − qi >

2

2σ2
s

)

< n,v−qi > represents the dot product of the normaln with
the vectorv−qi. This dot product represents the offset of the
neighborqi to the tangent planeP (v,n) defined by the pair
(v,n).

We have validated the smoothing parameters (σc, σs) by
calculating the average point to point distance between the
noisy surface and its filtered counterpart for 28 polygonal
surfaces. Thus, we have selected the values of the smoothing
parametersσc = σs = 3, since, qualitatively, noise is no
longer visible on the filtered surface, while quantitatively the
average distance calculated over the 28 polygonal surfaces
is small (0.26 ± 0.33 mm), which is less than the depth
resolution of the Creaform system (1 mm).

Subsequently, we introduced a measure to automatically and
rapidly compute the quality of triangles and to eliminate those
of poor quality while at the same time keeping a minimum
percentage of triangles to obtain a good 3D reconstruction of
the trunk surface. The most common measure of the quality
of triangles is given by the following formula [37]:

q = 2
rin

rout

=
(b + c− a)(c+ a− b)(a+ b− c)

abc

(1)

rin and rout represent the radii of the inscribed and
circumscribed circles of the triangle respectively. The terms
a, b and c represent the lengths of the sides(AB,AC,BC)
of the triangleABC. We have selected the valueq = 0.3
for the quality factor because it eliminates triangles of poor
quality while at the same time keeping a minimum percentage
of triangles (40% of all triangles of the initial mesh) to obtain
a good 3D reconstruction of the trunk surface. We have
validated this parameter on 145 patients in different positions
(standing and lateral bending).

Secondly, the data captured by each digitizer are expressed
in a coordinate system related to the camera. It is therefore
necessary to register all the data into a common coordinate
system. Since the time required to acquire the surface of the
trunk with four cameras is quite short (under five seconds),
we consider that the patient does not move. Also, the operator
repeats the acquisition once: if patient movement is visible
in the first acquisition, the other one is used. Hence, we
exploit a rigid registration technique that uses the initial
registration matrices computed by the multi-head calibration
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Fig. 3. Features extraction process: (a) 3D trunk image; (b)cloud of 1800 points; (c) vector of 5400 components; (d) 40 components resulting from PCA.

of the Creaform system. The rigid registration consists in
transforming each pointp(x, y, z) ∈ R

3 belonging to each
polygonal surface into a pointq(x

′

, y
′

, z
′

) ∈ R
3 using the

following equation:

q = Rp+T (2)

R represents the rotation matrix andT represents the
translation matrix.

The rigid registration is followed by a refinement step using
the ICP (Iterative Closest Point) algorithm to correct errors.
The aim of the ICP algorithm is to iteratively register two point
clouds that partially overlap into a common coordinate system
based on an initial estimate of the transformation [7]. The steps
performed iteratively until convergence are as follows:

• match all the points ({pi}, i = 1 : N ) belonging to the
source surface (right or left side of patient) with all the
points ({qi}, i = 1 : N ) belonging to the destination
surface (front of patient);

• estimate the rigid transformation (translation and rota-
tion) that minimizes the mean squared errors between
the corresponding points ({pi} et {qi}):

E =
1

N

N
∑

i=1

|Rpi +T− qi|
2 (3)

• transform the points ({pi}, i = 1 : N ) using the
estimated transformation to align them with the points
({qi}, i = 1 : N ).

Thirdly, after the filtering and registration steps, we propose
a method for merging the four polygonal surfaces (see figure
2) based on the Poisson equation [29]. The Poisson surface
reconstruction is a hybrid method, being both global and
local. It is global since it considers all points at once,
and local since it is based on a hierarchical set of basis
functions with compact support, which reduces the Poisson
equation to a sparse linear system. This method generates a
closed and smooth surface and the resulting mesh contains
around 70,000 vertices (for an average patient trunk) with no

duplicate vertices nor intersecting polygons.

Finally, the texture information associated to the partial
surfaces must also be merged. Indeed, the Poisson surface
reconstruction only allows merging of the geometry of the
four polygonal surfaces. However, the texture of the 3D trunk
reconstruction is needed to detect the positions of markers
affixed to the patient’s skin and other anatomical landmarks.
To merge the textures, we orthogonally project the merged
polygonal surface onto the six faces of a cube according to
the orientations of the normal vectors of the mesh triangles.
Then, we similarly project the four textures of each face on
the six faces of the cube, we save the texture obtained and
for those triangles that were created by the geometries merge
step, we interpolate their texture by averaging all the colors
on all four faces.

C. Features extraction

First of all, several preprocessing steps are performed before
applying ICA. The training trunk models are aligned in
order to remove unwanted variations. For this task, we use
Generalized Procrustes alignment [18], in which registration
is done using isomorphic scaling, translation, and rotation.

Before the alignment step, each scoliotic trunk 3D image is
decomposed into 1800 points (30 sections and 60 points per
section) and after the alignment, the feature vector is built from
the 3D coordinates(x, y, z) of each point. Thus, each torso
is represented by a vector whose length is5400 = 1800× 3.
The optimal numbers of sections and points per section are
obtained manually after using a grid method through cross-
validation procedure.

In general, analyzing an object based on statistical methods
with a large number of features is not recommended because
working in high-dimensional space entails the well-known
”curse of dimensionality” problem. To avoid this, we
use Principal Component Analysis (PCA) to reduce the
dimensionality of the data. PCA is a mathematical technique
that uses an orthogonal transformation to convert a number
of (possibly) correlated variables into a (smaller) number



Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING 5

of uncorrelated variables. However, PCA focuses on the
components that provide large variations in the data and
hasn’t the capacity to preserve the smaller variability. Thus,
we select 40 components that provide virtually all of the total
variance (99%). Figure 3 illustrates each step of the features
extraction process from 3D image to feature vector with 40
components.

D. ICA modeling

Let us consider a datasetD comprising ℓ samples
{x1, . . . , xℓ} with xi ∈ R

d. ICA attempts to find a linear
transformation :

X = As (4)

where the statistical independence between the variabless =
(s1, . . . , sn) is maximized. The random variabless are called
independent components(ICs), with si ∈ R

d andA ∈ R
ℓ×n

is a mixing matrix.
Thus, each samplexi of datasetD is represented by sum-

ming the independent components weighted by the elements
of the mixing matrixA:

xi =

n
∑

k=1

Aiksk (5)

The previous equation is a common definition of ICA.
However, it is not possible in the general case to find a linear
transformation that gives strictly independent components.
Thus, in practice, some assumption is made on the data and
a specific definition is used for the function that measures
independence.

The following fundamental restrictions (in addition to the
basic assumption of statistical independence) are imposedin
order to ensure the identifiability of the ICA model [26]:
a) All the independent componentssi, with the possible
exception of one, must be non-Gaussian.
b) The number of observed dataℓ must be at least as large
as the number of independent componentsn, i.e., ℓ ≥ n.
c) The matrixA must be of full column rank.

Statistical independence is the key in all the algorithms
designed to perform ICA. Usually, an objective function
measuring independence is chosen and optimized. In the
literature, we found various methods based on different
objective functions, such as measuring of non-Gaussianity
(principle used by the FastICA algorithm [25]), minimization
of mutual information [6] or maximum likelihood estimation
[9]. Maximum likelihood estimation is a popular approach for
estimating the ICA model. This technique is also connected
to the infomax principle and it is shown in [34] that this
method is essentially equivalent to minimization of mutual
information.

In this study, ICA is applied to training data using
the FastICA algorithm [25]. The independent components
s = (s1, . . . , sn) and the projection of the training data
(mixing matrix A) into the ICA space are estimated by

maximizing the statistical independence. The FastICA
algorithm uses a fixed-point iteration technique that provides
an accurate solution and fast convergence. It is 10-100
times faster than other ICA algorithms, which are based on
conventional gradient descent methods.

Let us suppose that we have two 3D scoliotic trunk
images acquired at different times for the same subject.
The comparison between their weight vectorsAi provides
information on the scoliosis progression. The comparison is
performed by calculating the L1 norm distance between the
weight vectors. Thus, a progression of the scoliotic deformity
is detected if this distance is superior to a thresholdα0 fixed
in advance during the ICs selection. The overview of the
proposed system is shown in Figure 4.

E. Independent components selection

Unlike PCA, where the components are ordered based on
the rate of variance retained, most ICA algorithms provide
the ICs in arbitrary order, thus making it more difficult to
exploit their results. Thus, in literature, various techniques
are proposed. Hyvarinen et al. [24] exploit the residual
dependence structure in order to define a topographic order
or the components, and therefore the result is used to sort the
ICs. In [20], the ICs are sorted based on their data power,
representing the amount of input data variance explained by
each IC. This technique resembles the eigenvalues used to
perform component selection in PCA. But in practice, this
technique is not suitable because an important aim of ICA is
to detect local (small) variations. Cheung et al. [10, 11] have
proposed to order the ICs by using a reconstruction error
such as Mean Square Error (MSE) or Relative Hamming
Distance (RHD) function. They give a strategy to determine
a sub-optimal ordering based on a Testing-and-Acceptance
(TnA) algorithm that uses a reconstruction error function.
The TnA method gives good results, but a major issue of
this technique concerns the number of ICs to keep. I.e., how
many ICs should be selected after the ordering step? Thus,
these previous methods are not appropriate since our specific
problem requires ICs selection andα0 optimization.

A combinatorial approach can be appropriate for the
ICs selection problem; in our case, we decided to use a
Genetic Algorithm (GA) [21, 22], which works very well
on combinatorial problems. The GA is a particular case
of Evolutionary Algorithms that are based on biological
phenomena [4]. Specifically, the GA imitates the operations
produced during the reproduction of a living species. The GA,
unlike classical optimization methods, does a parallel search
and it has the advantage of adapting to complex problems
in which differentiability and convexity are not guaranteed.
Also, continuity of the search space is not a constraint for
the GA. Figure 5 provides a flowchart representation of the
GA process.

In this work, the following optimization problem is consid-
ered to select both the ICs and the value ofα0:
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Fig. 4. Global overview of the proposed system.

max
sP ,α0

f(sP , α0)

subject to:

g(sP , α0) ≥ 0.95 (6)

wheresP represent the selected ICs,

f(sP , α0) = specificity

=
number of true negatives

number of (true negatives+ false positives)
g(sP , α0) = sensitivity

=
number of true positives

number of (true positives+ false negatives)

with the following notations:
- True positive: scoliosis has progressed and is correctly
identified as progressive;
- False positive: scoliosis has not progressed and is incorrectly
identified as progressive;
- True negative: scoliosis has not progressed and is correctly
identified as non-progressive;
- False negative: scoliosis has progressed and is incorrectly
identified as non-progressive.

1) Representation:Our goal is to find an optimal subset
of p ICs taken from the pull of then ICs obtained after
running the ICA algorithm. Thus, each solution is represented
in the genetic domain by a chromosome withn genes, as an
array ofn bits. In this study, we use a binary representation
where bit 1 means a given IC is selected and bit0 means
the IC is unselected. For example, if we have a problem
with 7 initial ICs, an individual solution of the population
can be represented by(1; 0; 0; 1; 1; 0; 0) if only (s1, s4, s5)
are selected, or(0; 1; 0; 1; 0; 1; 1) if only (s2, s4, s6, s7) are
selected.

Fig. 5. Genetic algorithm process

2) Evaluation: This step of the GA is necessary in
order to determine the quality of each candidate solution in
the population. In this case, we compute the value of the
objective function defined byf(sP , α0) under the constraint
g(sP , α0) ≥ 0.95. In practice, we first determine the value
of the thresholdα0 yielding a sensitivity of 95%, and the
function f(sP , α0) is then calculated.
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3) Selection:The selection operator performs the following
tasks: identify good solutions in a population, make multiple
copies of the good solutions and eliminate bad solutions from
the population. There are several techniques for carrying
out this selection task; for our problem, we have chosen
a method calledTournament selection[3, 17], which has
several advantages: it is efficient to code, works on parallel
architectures and allows the selection pressure to be easily
adjusted. In addition, we use a heuristic that enables us to
select the best solution at each iteration (generation). This is
because, when we use the Tournament selection technique,
we do not have any guarantee that the best solution has
been selected at that moment. Hence, we first select the best
solution in the current population at each generation and,
second, we complete the selection using the Tournament
technique.

4) Crossover: The crossover operator is one of the two
GA operators that create new solutions in the population.
Crossover is the process of combining the genes of one
individual with those of another to create new individuals that
inherit characteristics from both parents. As with the selection
operator, there are a number of crossover operators in the
GA literature [39]. For this study, we use the three-points
crossover technique, where each old individual is divided into
four parts (at three points) and the new individual is build by
randomly choosing the successive parts from its parents. In
figure 6, an example of the three-points crossover technique
is illustrated.

Fig. 6. Example of the crossover operator. Two individuals (solutions) are
shown before and after the three-points crossover technique has been applied.

5) Mutation: In general, when the mutation operator is
applied to a chromosome (individual), a randomly selected
gene is changed into its opposite. A new individual is thus
created in the population. When a bit0 is changed into1
at the j − th position, this means that the corresponding
componentsj is selected in the new solution, whereas the
mutation from bit1 to 0 meanssj is deselected.

F. Validation

The validation cohort for this study is composed of
fifty-eight subjects whose data were collected between 2010
and 2012. The subjects fall into two groups: healthy subjects
and AIS patients. The first group includes 28 healthy subjects
who came to the scoliosis clinic because of their trunk
appearance but received a negative diagnosis based on clinical
and X-ray exams. The second group consists of 30 AIS
patients who each had three clinical visits (with trunk surface
acquisitions) in the 2010-2012 period. The inclusion criteria
for our cohort were the following: 1) diagnosis of AIS, 2) age
between 10 and 18 years when the acquisitions were taken
and 3) Cobb angle measurement of the main curve greater
than 10 degrees. We excluded from this study patients who
had previous spinal surgery or who were undergoing brace
treatment. Table 1 reports the maximum and mean Cobb
angle values measured in the thoracic (T), thoraco-lumbar
(TL) and lumbar (L) spinal regions for the three visits, for
the second group (scoliosis group).

TABLE I
VARIATION OF COBB ANGLE IN DEGREES WITHIN SCOLIOSIS GROUP

FROM FIRST VISIT TO THIRD VISIT

Visit 1 Visit 2 Visit 3

T TL L T TL L T TL L
Mean value 30 24 27 34 26 31 36 28 31
Maximum value 47 30 49 58 38 49 59 41 51

To establish whether a patient’s scoliosis has progressed
or not between two successive visits, we look at the Cobb
angles in the three spinal regions: the scoliosis is labeledas
progressive if at least one of the three measurements increases
by 5 degrees or more. Thus, for the same subject, we can
observe progression between visits 1 and 2 and stability
between visits 2 and 3, as seen in the example provided in
Table II. This labelling is considered as the ground truth in
this study.

TABLE II
EXAMPLE OF COBB ANGLE VARIATION FROM FIRST VISIT TO THIRD VISIT

Visit 1 Visit 2 Visit 3

T TL L T TL L T TL L
Cobb
angles

45 < 10 43 54 < 10 45 54 < 10 46

Progression between visits 1 and 2
Stability between visits 2 and 3

The kernel of the detection system is obtained using
the data from the healthy subjects. The FastICA algorithm
is run on the 28 healthy samples to construct the ICA
model; the progression detection system is then tested on the
scoliotic patients. The scoliosis test set contains 90 samples
corresponding to the 30 patients whose data were collected at
three clinical visits each. For the progression/non-progression
labellings between pairs of successive visits, we have 60
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TABLE III
MEAN VALUE OF COBB ANGLE WITHIN PROGRESSIVE GROUP AND

NON-PROGRESSIVE GROUP FROM FIRST VISIT TO THIRD VISIT

Visit 1 Visit 2 Visit 3

Progressive
group

31 38 44

Non-progressive
group

29 30 30

cases in all, consisting of 26 progressive cases and 34
non-progressive cases. Table III gives the mean value of
Cobb angle within progressive group and non-progressive
group from first visit to third visit. Between two visits,
3D trunk images of a given patient are analyzed using the
proposed system to obtain the progression result. To evaluate
the performance of our system, the progression results thus
obtained are compared to the ground truth labels based on
the Cobb angle variations.

Considering the relatively small size of the scoliosis group,
it is not advisable to reduce this set further by forming
a separate validation set in order to set the value ofα0

and select the ICs. Therefore, we choose ”leave-one-out”
cross-validation (LOOCV) to estimate the performance of
our classification system. The LOOCV procedure is a good
technique for evaluating classifier generalization performance,
the idea being to test the generalization capacity of the
classifier through unseen data. LOOCV is almost unbiased
and its error should be relatively informative about the
generalization error of the classifier (see [33, 44]).

III. E XPERIMENTAL RESULTS AND DISCUSSION

The first stage of ICA modeling, namely computing
the ICs, used the group of healthy subjects. We ran the
FastICA algorithm on the 28 healthy samples and obtained
27 independent components sorted by the genetic algorithm.
As described in section II-F above, a LOOCV procedure is
used in order to set the parameters(sP , α0) and to test the
system on different subsets from the scoliosis group. Table
IV summarizes the results obtained using this evaluation
procedure.

TABLE IV
RESULTS OF SCOLIOSIS PROGRESSION DETECTION

Labelling using radiographs
(ground truth)

Progressive Non-progressive
cases cases

Detected as pro-
gressive

24 7

Detected as non-
progressive

2 27

26 34

The proposed system detected 24 out of 26 real cases of
progression, which represents 93%, and 27 out of 34 real

cases of non-progression, which represents 80%. In order
word, the sensitivity of our system is 93% and the specificity
is 80%. Conversely, only 7% of scoliosis progressions are not
detected while 20% of non-progressive cases are determined
as having progressed.

In fact, we set the decision threshold low in order to
obtain a better accuracy among positive samples; indeed, itis
better from a clinical standpoint to minimize false negatives
than false positives. When we analyze the two undetected
progression cases, we remark that both patients in question
have double major spinal curves; the effect of that type
of scoliosis on external deformity tends to ”balance out”
between the thoracic and lumbar regions. Therefore, detecting
scoliosis progression based solely on trunk shape analysis
becomes more difficult in such cases.

We can conclude from the very low false negative rate
(0.07) that our approach is efficient at detecting the patients
whose scoliosis progresses. This result confirm that the
progression of the spinal curve also affects the appearanceof
the patient’s trunk and that an appropriate computing system
is able to detect the evolution of the trunk deformity.

Previous studies that attempted to estimate internal Cobb
angles from external trunk shape met with limited results.
That is in fact a very difficult problem because the mechanical
characteristics of the soft tissues are different for each patient.
Thus, the same scoliosis severity (same Cobb angle) will
not necessarily produce the same external deformity in
two different subjects. However, when the analysis and
comparison are done on the same subject between clinical
visits, the biomechanical variables affecting the relationship
between internal and external shapes can be considered
constant under certain conditions. In the present study, each
patient is compared only to him/herself over time, and the
above-mentioned problems relating to inter-patient variability
are thus avoided. Unlike previous studies that focused on the
predictive factors for the Cobb angle or others spinal indices,
this is the first time that a quantitative comparison between
external geometries of the scoliotic trunk has been performed
over time.

Moreover, at the heart of our study is the use of ICA.
This statistical tool is able to capture local shape variations.
Unlike other statistical techniques, ICA does not assume that
the data distribution is normal, nor does it focus only on
the large variations in the data. Thus, shape analysis with
ICA preserves the small scale variability without assuming
Gaussianity. In this work, 3D image analysis of scoliotic
trunks based on ICA makes possible the automatic monitoring
of scoliosis progression by providing a framework in which a
small variation in a patient’s trunk shape (due to an increase
in Cobb angle of at least 5 degrees) is detectable. The
complete process from scanning to detection takes about 10
minutes.

As for the clinical relevance of this study, our system could
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be used for screening purposes. During the scoliosis clinical
follow-up, the physician could use the proposed approach to
determine whether a given patient’s scoliosis has progressed
or not. Subsequently, an X-ray examination would be used to
confirm the trunk surface-based diagnosis only if progression
is detected by the screening system. Functioning in this
way, most patients with non-progressive scoliosis would be
spared unnecessary X-ray exams. Thus, our non-invasive
system could be used in order to prevent cumulative radiation
exposure in many cases. According to our experimental
results, in 27 out of 34 cases of non-progression between two
visits, the patient would not have to undergo an X-ray exam
and its consequences.

IV. CONCLUSION

In this work, we have presented a computer-aided diagnosis
(CAD) system that is able to identify progressive cases of
scoliosis using 3D trunk images obtained from a non invasive
surface acquisition setup. The CAD system is designed using
ICA, which constitutes an innovation of this study. Also,
we have presented a novel method for selecting relevant ICs
based on a genetic algorithm. To our knowledge, this is the
first time that ICA has been used to perform scoliotic trunk
analysis.

Moreover, the results demonstrate the clinical usefulnessof
the proposed system for scoliosis follow-up. In future, we aim
to build a system to predict scoliosis progression based on
surface topography and ICA. In this work, the challenge will
lie in how to estimate the evolution of the trunk deformity ata
future point in time based on past observations. We expect to
develop this new system by incorporating time series analysis
in the ICA procedure.
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