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Scoliosis Follow-Up Using Non-Invasive Trunk
Surface Acquisition.

Mathias M. Adankon, Najat Chihab, Jean Dansereau, Hubdrtlleaand Farida Cheriet

Abstract—Adolescent Idiopathic Scoliosis (AIS) is a muscu- it is important to know if and when the curve will progress

loskeletal pathology. It is a complex spinal curvature in three- in order to perform optimal treatment.
dimensional space that also affects the appearance of theuink.

The clinical follow-up of AIS is decisive for its management . .
Currently, the Cobb angle, which is measured from full spine  1he Cobb angle is the gold standard for the monitoring and

radiography, is the most common indicator of scoliosis proges- treatment decision of scoliosis. Several researchersidems
sion. However, cumulative exposure to X-rays radiation inceases that an increase in the Cobb angle measured from full spine
the risk for certain cancers. Thus, a non-invasive method fothe radiography is the most common indicator of progression.

identification of scoliosis progression from trunk shape aalysis : : .
would be helpful. In this study, a statistical model is built On the other hand, there is as yet no reliable way to predict

from a set of healthy subjects using Independent Component WhiCh defqrmities will progress, these.patients are mcve'do .
Analysis (ICA) and Genetic Algorithm (GA). Based on this With a series of X-rays acquired semi-annually during rapid
model, a representation of each scoliotic trunk from a set oAIS  adolescent growth. However, cumulative exposure to X-rays

patients is computed and the difference between two success radiation significantly increases the risk for certain @sc
acquisitions is used to determine if the scoliosis has progssed [14]

or not. This study was conducted on 58 subjects comprising 28
healthy subjects and 30 AIS patients who had trunk surface ) . ) )
acquisitions in upright standing posture. The model detect 93% Thus, during the last 30 years, many optical non-invasive

of the progressive cases and 80% of the non-progressive case surface measurement systems have been developed based
Thus, the rate of false negatives, representing the propadn  on 5 3D reconstruction of the back or of the whole trunk

of undetected progressions, is very low, only 7%. This study . . . . .
shows that it is possible to perform a scoliotic patient’s fdow-up using various techniques: Moiré contour topography [44, 4

using 3D trunk image analysis, which is based on a non-invass  Integrated Shape Imaging System (ISIS)[43] and Quantec
acquisition technique. scanner [16, 32]. However, most studies have been focused
Index Terms—Scoliosis, Independent Component Analysis, Ge- O hOW_ to find the relationship between the Cobb angle and
netic Algorithm, Surface topography, 3D trunk modeling, Patern ~ the indices computed from the trunk surface. Many research
recognition. teams have tried to establish the correlation between the
Cobb angle and various indices of torso asymmetry but their

I. INTRODUCTION results are mitigated [2, 27, 28].

Adolescent Idiopathic Scoliosis (AIS) is a deformity of R " ¢ wdi h d4d d the i ¢
the spine that is outwardly manifested by asymmetry and ecently, a few studies have addresse € I1ssue o

deformities of the external surface of the trunk. It comsisFCOHOSiS progression using non-invasive acquisition[38],

of a complex spinal curvature in three-dimensional spactgze authors have identified the best surface topography

inclination in the frontal plane, rotation of vertebrae et parameters correlated with scoliosis progression. Tlesiults

axial plane and modification of the natural curves in threeveal that the most important measures are decompensation

sagittal plane. This pathology is often outwardly visibl trunk rotation and lordosis angle. In addition, Seze and/iKor

but it may go unnoticed during its development for severegf] h?ve_ p;elsl,ented a prellmlr;ary \{vork on ;heTfﬁaS'b"';y
years. Among patients with AIS, 1 in 25 cases have mifgf SCONIOSIS follow-up using surface topography. This tu

deformities and only 1 in 200 adolescents have deformitigged the_ Moire contourdtgpc;griphy E[etc;]hnlqbuthe, whelredthg
that progress to require either bracing or surgical treatmeP 0Jression was assessed Dy looking at the rb hump, lardos
In fact, the treatment decision is taken by the orthope d spinal curve and by subjective comparison of the fringe

doctor based on the progression of the scoliotic curve. Thlﬁgapplngg._l-!owever, the results are moderate: sensitiay 9
and specificity 60%.
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trunk deformations such as asymmetry of the shouldess) optical surface digitizing system (Creaform Inc., lsgvi
waist or scapulae cannot been characterized by th&3€, Canada) is used at the scoliosis clinic of Sainte-Jeistin
functional indices. Thus, in our recent work [1], we havélospital. The precision of the 3D reconstruction of the krun
proposed a method for analyzing scoliotic trunk deformsitiesurface using this system was evaluated by measuring the
using Independent Component Analysis (ICA), and haweean normal distance between the 3D reconstruction of an
shown that the independent components capture the loaathropomorphic manikin with the optical digitizers and a
scoliosis deformations. set of point markers on the object surface digitized with a
coordinate measuring machine (CMM). This distance was
evaluated atl.1 + 0.9mm [36]. The acquisition system has
four scanners (Capturor Il Large Field) placed around the
ICA is a statistical method that attempts to expregmtient (at the back, at the front and to the right and left
the observed data with a linear combination of mutuallsides of the front angulated at about 55 degrees in order to
independent variables [12]. ICA finds the independeminimize occlusion by the patient's arms). Visible markers
components, also called sources, by maximizing the statist are affixed to the patient’s skin to indicate several anataimi
independence between the estimated components. ICA wasdmarks: left and right anterior-superior iliac spinAS(S);
originally developed to deal with the blind source separati suprasternal notch; xiphoid process; spinous process ef th
problem. With the recent increase of interest in ICA, vasioyprominent vertebra (C7-T1); middle of the posterior-sigrer
applications have been designed based on this statistitiac spines (PSIS); left and right iliac crests (laterdgft
technigue. Among them, we have feature extraction or daad right inferior limits of the ribcage. The patient must
representation, which consists of computing a small vectbe centered in the field of view of the four cameras with a
representation of data (sound, image, etc) [23, 31, 5]. free-standing anatomical posture; see Figure 1. Subjeats m
be at the center of the system (marked on the floor) with their
Recently, ICA has been used for image segmentatishoes removed and with any long hair tied up over the neck.
[30] and medical image analysis [8, 19, 41]. Boquete et alhey are asked to stand still during acquisition, focusing o
[8] have proposed a thermographic image analysis basegboint above the front digitizer. Each scanner consists of a
on ICA for automated detection of high tumor risk areas$CD camera and a structured light projector. The large field
Hassen et al [19] used ICA to built a cardiovascular diseaseanner model has a viewing volume of 1200 mm x 900 mm
diagnosis system based on magnetic resonance imaging. ICAO00 mm, a lateral resolution of 1.2 mm, a depth resolution
in a high-dimensional space with sparse data was appliedofol.0 mm and a camera resolution of 0.8 megapixels. The
landmarked 3D shapes resulting from the aortic segmentati€reaform body digitizer technology combines phase-siyfti
The aortic shape variations were captured by the indepéndimterferometry and active optical triangulation. Each bé t
components, which were sorted using prior knowledge. Tlfieur scanners provides a partial 3D surface of the trunk and
simple classification task in the 2D space spanned by tthe total acquisition time is slightly under 5 seconds. Thastv
two first independent components was then performed byrejority of patients at the scoliosis clinic of Sainte-duest
simple quadratic classifier. In [41], ICA is used to perfornrospital accept full torso surface scanning; we estimade th
myocardial contraction shape analysis. Here, a classifitatthe refusal rate is between 2% and 4%.
algorithm was built from the ICA components in order to
automatically detect and localize abnormally contracting
regions of the myocardium.

In this paper, we propose to analyze 3D images of scoliotic
trunks based on ICA in order to identify progressive cases
of scoliosis. The aim of this study is to determine if the
deformation severity of AIS patients has increased or not
(Cobb angle increase of at least 5 degrees) between suecessi
clinical visits based on surface topography analysis, auith
prior knowledge from X-ray data.

The organization of the paper is as follows. In Section I,
we describe the materials and the methodology used in this
study. In Section Ill, we present the experiment results and
discussion. Finally, a conclusion is given in Section IV.

Il. MATERIALS AND METHODS

A. Data acquisition Fig. 1. Configuration of Creaform digitizers at Sainte-ihestHospital.

Over the last thirty years, several techniques have been
used for non invasive evaluation of scoliosis. In this cepte
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B. 3D trunk reconstruction K represents the number of neighb¢eg} of the vertexv. w,
The 3D reconstruction of the whole trunk surface of i the closeness smoothing filter, the standard Gaussian filt
scoliotic patient using the CreafornkEditing and Merging With parameter; it is given by following equation:
software is not automatic. It requires manual intervergion v — ail|?
that can take considerable time (on average 20 minutes) We :ewp(_ 252 )
c

to reconstruct the trunk surface of a single scoliotic h i di b h
patient. Moreover, these manual interventions result im lo IV — ail r_epres_ents the Euclidean distance between the
ertexv and its neighbou;.

reproducibility. We developed an automatic method fof ) . . o
reconstructing in 3D the trunk surface of scoliotic patsettt Ws 1S the fea;ure—preservmg weight function; it is given by
reduce the time required to obtain each 3D trunk model. Tlflg_'llowmg equation:
advantage of this new, automatic and fast method is to enable <n,v-—q; >2
the rapid construction of a large database of 3D trunk sarfac )

uction of a ‘arge ¢ 203
models of scoliotic patients in different postures as wall a n,v—q; > represents the dot product of the normakith

of non-scoliotic cases. Moreover, the results are comigletg, vectorv — q;. This dot product represents the offset of the

reproducible. Our novel 3D trunk surface reconstructio.iohbora: to the tangent plané defined bv the pair
method consists of three steps: preprocessing of the f l‘,lfl’g) di gentp (v,n) y P

)

noisy polygonal surfaces from the Creaform digitizers, We

Wy = exp( —

have validated the smoothing parameters &) by

reg|strat|_0n of these polygonal surfaces and merging tEﬁlculating the average point to point distance between the
geometries and textures.

noisy surface and its filtered counterpart for 28 polygonal
surfaces. Thus, we have selected the values of the smoothing
parameterss. = o, = 3, since, qualitatively, noise is no
longer visible on the filtered surface, while quantitatywéie
average distance calculated over the 28 polygonal surfaces
is small (.26 + 0.33 mm), which is less than the depth
resolution of the Creaform system (1 mm).

Subsequently, we introduced a measure to automatically and
rapidly compute the quality of triangles and to eliminatesth
of poor quality while at the same time keeping a minimum
percentage of triangles to obtain a good 3D reconstruction o
the trunk surface. The most common measure of the quality
of triangles is given by the following formula [37]:
g Tin.
Tout (1)
(b+c—a)lc+a—Db)a+b—rc)
abe
ri and ro,e represent the radii of the inscribed and
circumscribed circles of the triangle respectively. Theme
a, b and ¢ represent the lengths of the side4B, AC, BC)
of the triangle ABC. We have selected the value= 0.3
Fig. 2. Merging the four polygonal surfaces. for the quality factor because it eliminates triangles obmpo
quality while at the same time keeping a minimum percentage
Firstly, to remove the noise from the 3D polygonal surfacegf triangles (0% of all triangles of the initial mesh) to obtain
we propose the bilateral filter for its simplicity, speed ang good 3D reconstruction of the trunk surface. We have

ability to remove noise while preserving 3D surface fea&urgalidated this parameter on 145 patients in different parsit
[15]. The bilateral filter uses the local neighborhoods tfil (standing and lateral bending).

vertices v of the mesh in the normal direction using the

following equation: Secondly, the data captured by each digitizer are expressed
V=v+dn in a coordinate system related to the camera. It is therefore

necessary to register all the data into a common coordinate

system. Since the time required to acquire the surface of the

trunk with four cameras is quite short (under five seconds),

The calculation of the displacemetitalong the normah of
each vertexv is given by the following equation:

K

Z(wc.ws).h we consider that thg_patient dogs no_t move. Also, thg opr_erato
repeats the acquisition once: if patient movement is \asibl

d= Zlei in the first acquisition, the other one is used. Hence, we
ch.ws exploit a rigid registration technique that uses the ihitia

registration matrices computed by the multi-head calibrat
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Fig. 3. Features extraction process: (a) 3D trunk imageci@)d of 1800 points; (c) vector of 5400 components; (d) 4ponents resulting from PCA.

of the Creaform system. The rigid registration consists buplicate vertices nor intersecting polygons.
transforming each poinp(z,y,z) € R? belonging to each
polygonal surface into a poinf(z’,y’,z) € R? using the  Finally, the texture information associated to the partial
following equation: surfaces must also be merged. Indeed, the Poisson surface
g=Rp+T 2) reconstruction only allows merging of the geometry of the
four polygonal surfaces. However, the texture of the 3DKkrun
R represents the rotation matrix an@ represents the reconstruction is needed to detect the positions of markers
translation matrix. affixed to the patient’'s skin and other anatomical landmarks
To merge the textures, we orthogonally project the merged
The rigid registration is followed by a refinement step usingolygonal surface onto the six faces of a cube according to
the ICP (lterative Closest Point) algorithm to correct esro the orientations of the normal vectors of the mesh triangles
The aim of the ICP algorithm is to iteratively register twamio Then, we similarly project the four textures of each face on
clouds that partially overlap into a common coordinateeyst the six faces of the cube, we save the texture obtained and
based on an initial estimate of the transformation [7]. Tleps for those triangles that were created by the geometriesenerg
performed iteratively until convergence are as follows: step, we interpolate their texture by averaging all the ilo

e match all the points{fp;}, i = 1 : N) belonging to the ©n all four faces.
source surface (right or left side of patient) with all the
points (q¢;}, « = 1 : N) belonging to the destination
surface (front of patient); C. Features extraction
e estimate the rigid transformation (translation and rota- First of all, several preprocessing steps are performearbef
tion) that minimizes the mean squared errors betweg@plying ICA. The training trunk models are aligned in

the corresponding point{;} et {g;}): order to remove unwanted variations. For this task, we use
N Generalized Procrustes alignment [18], in which regigtrat
E— %Z IRp; + T — qi? A3) is done using i§0m0rphic scaling, trans_la?ion, and roqntio .
P Before the alignment step, each scoliotic trunk 3D image is
) _ decomposed into 1800 points (30 sections and 60 points per
e transform the points{p;}, i = 1 : N) using the gection)and after the alignment, the feature vector ig boin
estimated transformation to align them with the pointg,e 3p coordinatesz, y, z) of each point. Thus, each torso
({g:}, i=1:N). is represented by a vector whose lengt%460 = 1800 x 3.

The optimal numbers of sections and points per section are

Thirdly, after the filtering and registration steps, we pe@ obtained manually after using a grid method through cross-
a method for merging the four polygonal surfaces (see figualidation procedure.
2) based on the Poisson equation [29]. The Poisson surfacén general, analyzing an object based on statistical mathod
reconstruction is a hybrid method, being both global anslith a large number of features is not recommended because
local. It is global since it considers all points at onceyorking in high-dimensional space entails the well-known
and local since it is based on a hierarchical set of basmurse of dimensionality” problem. To avoid this, we
functions with compact support, which reduces the Poissase Principal Component Analysis (PCA) to reduce the
equation to a sparse linear system. This method generatedimmensionality of the data. PCA is a mathematical technique
closed and smooth surface and the resulting mesh contaimgt uses an orthogonal transformation to convert a number
around 70,000 vertices (for an average patient trunk) with of (possibly) correlated variables into a (smaller) number
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of uncorrelated variables. However, PCA focuses on tmeaximizing the statistical independence. The FastICA
components that provide large variations in the data aafjorithm uses a fixed-point iteration technique that piesi
hasn’t the capacity to preserve the smaller variabilityu§h an accurate solution and fast convergence. It is 10-100
we select 40 components that provide virtually all of thaltottimes faster than other ICA algorithms, which are based on
variance (99%). Figure 3 illustrates each step of the featurconventional gradient descent methods.
extraction process from 3D image to feature vector with 40
components. Let us suppose that we have two 3D scoliotic trunk
images acquired at different times for the same subject.
The comparison between their weight vectots provides
. information on the scoliosis progression. The comparison i
D. ICA modeling . )
performed by calculating the L1 norm distance between the
Let us consider a dataseD comprising ¢ samples \yeight vectors. Thus, a progression of the scoliotic deftyrm

{z1,... 2} with z; € R?. ICA attempts to find a linear js detected if this distance is superior to a threshgldixed
transformation : in advance during the ICs selection. The overview of the
X = As (4) proposed system is shown in Figure 4.

where the statistical independence between the variables
(81,...,5n) is maximized. The random variablesare called E
independent componentiCs), with s; € RY and A € R*n
is amixing matrix

Independent components selection
Unlike PCA, where the components are ordered based on
Thus, each sample; of datasetD is represented by Sum_the rate of variance retained, most ICA algorithms provide

ming the independent components weighted by the eIememg IC_:s |n_arb|trary order, t_hus_ making it more d'ﬁ'cu!t to
of the mixing matrixA: exploit their results. Thus, in literature, various techugs

are proposed. Hyvarinen et al. [24] exploit the residual
- dependence structure in order to define a topographic order

Ti = ZAikSk ®) or the components, and therefore the result is used to sort th

k=1 ICs. In [20], the ICs are sorted based on their data power,

The previous equation is a common definition of ICArepresenting the amount of input data variance explained by
However, it is not possible in the general case to find a lineaach IC. This technique resembles the eigenvalues used to

transformation that gives strictly independent composienperform component selection in PCA. But in practice, this
Thus, in practice, some assumption is made on the data asehnique is not suitable because an important aim of ICA is
a specific definition is used for the function that measurés detect local (small) variations. Cheung et al. [10, 1Neha

independence. proposed to order the ICs by using a reconstruction error
The following fundamental restrictions (in addition to thguch as Mean Square Error (MSE) or Relative Hamming
basic assumption of statistical independence) are impwsedistance (RHD) function. They give a strategy to determine
order to ensure the identifiability of the ICA model [26]:  a sub-optimal ordering based on a Testing-and-Acceptance

a) All the independent components, with the possible (TnA) algorithm that uses a reconstruction error function.

exception of one, must be non-Gaussian. The TnA method gives good results, but a major issue of
b) The number of observed dafamust be at least as largethis technique concerns the number of ICs to keep. l.e., how
as the number of independent componentse., £ > n. many ICs should be selected after the ordering step? Thus,
c) The matrixA must be of full column rank. these previous methods are not appropriate since our specifi

problem requires ICs selection ang optimization.
Statistical independence is the key in all the algorithms
designed to perform ICA. Usually, an objective function A combinatorial approach can be appropriate for the
measuring independence is chosen and optimized. In ti@s selection problem; in our case, we decided to use a
literature, we found various methods based on differe@enetic Algorithm (GA) [21, 22], which works very well
objective functions, such as measuring of non-Gaussiangy combinatorial problems. The GA is a particular case
(principle used by the FastICA algorithm [25]), minimizati of Evolutionary Algorithms that are based on biological
of mutual information [6] or maximum likelihood estimationphenomena [4]. Specifically, the GA imitates the operations
[9]. Maximum likelihood estimation is a popular approach foproduced during the reproduction of a living species. The GA
estimating the ICA model. This technique is also connecteuhlike classical optimization methods, does a paralletctea
to the infomax principle and it is shown in [34] that thisand it has the advantage of adapting to complex problems
method is essentially equivalent to minimization of mutuah which differentiability and convexity are not guarardee
information. Also, continuity of the search space is not a constraint for
the GA. Figure 5 provides a flowchart representation of the
In this study, ICA is applied to training data usingGA process.
the FastICA algorithm [25]. The independent components
s = (s1,...,8,) and the projection of the training data In this work, the following optimization problem is consid-
(mixing matrix A) into the ICA space are estimated byered to select both the ICs and the valuengf
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Scoliosis patient at visit t°
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A

Healthy
Subjects

Fig. 4. Global overview of the proposed system.

max f(sp,ap)

Sp,0Q P -
Subject to: Initialize the populahon
of solutions
9(sp,ag) = 0.95 (6) e
v
wheresp represent the selected ICs,
Evaluate each solution
f(sp,a0) = specificity
B number of true negatives L
~ number of (true negatives+ false positives) ,
L Select good solutions
g(sp,an) = sensitivity
B number of true positives L
number of (true positives+ false negatives) _
with the following notations: using GA operators
- True positive: scoliosis has progressed and is correctly
identified as progressive;
- False positive: scoliosis has not progressed and is iactyr Maximum

[ ifi i lterations ?
identified as progressive; erations

- True negative: scoliosis has not progressed and is ctyrect
identified as non-progressive;
- False negative: scoliosis has progressed and is inclyrrect
identified as non-progressive.

Choose the best solution
in the current population

1) Representation:Our goal is to find an optimal subset @
of p ICs taken from the pull of the:x ICs obtained after
running the ICA algorithm. Thus, each solution is represéntrig. 5. Genetic algorithm process
in the genetic domain by a chromosome witlgenes, as an
array ofn bits. In this study, we use a binary representation
where bit1 means a given IC is selected and bitmeans  2) Evaluation: This step of the GA is necessary in
the IC is unselected. For example, if we have a problearder to determine the quality of each candidate solution in
with 7 initial ICs, an individual solution of the populationthe population. In this case, we compute the value of the
can be represented bil;0;0;1;1;0;0) if only (s1,s4,55) 0bjective function defined by (sp, ap) under the constraint
are selected, 0f0;1;0;1;0;1;1) if only (s2,s4,s6,s7) are g(sp,ap) > 0.95. In practice, we first determine the value
selected. of the thresholdag yielding a sensitivity of 95%, and the

function f(sp, ap) is then calculated.
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F. Validation

3) Selection:The selection operator performs the following The validation cohort for this study is composed of
tasks: identify good solutions in a population, make mietip fifty-eight subjects whose data were collected between 2010
copies of the good solutions and eliminate bad solution® froand 2012. The subjects fall into two groups: healthy subject
the population. There are several techniques for carryiagd AIS patients. The first group includes 28 healthy subject
out this selection task; for our problem, we have chosgfho came to the scoliosis clinic because of their trunk
a method calledTournament selectiorf3, 17], which has appearance but received a negative diagnosis based oratlini
several advantages: it is efficient to code, works on pdrallgnd X-ray exams. The second group consists of 30 AIS
architectures and allows the selection pressure to beyeaghtients who each had three clinical visits (with trunk aoef
adjusted. In addition, we use a heuristic that enables usdequisitions) in the 2010-2012 period. The inclusion cidte
select the best solution at each iteration (generationls Bh for our cohort were the following: 1) diagnosis of AlS, 2) age
because, when we use the Tournament selection technigsiween 10 and 18 years when the acquisitions were taken
we do not have any guarantee that the best solution hgsd 3) Cobb angle measurement of the main curve greater
been selected at that moment. Hence, we first select the hgh 10 degrees. We excluded from this study patients who
solution in the current population at each generation anghd previous spinal surgery or who were undergoing brace
second, we complete the selection using the Tournamemiatment. Table 1 reports the maximum and mean Cobb
technique. angle values measured in the thoracic (T), thoraco-lumbar

(TL) and lumbar (L) spinal regions for the three visits, for

4) Crossover: The crossover operator is one of the twdhe second group (scoliosis group).

GA operators that create new solutions in the population.
Crossover is the process of combining the genes of one TABLE |
individual with those of another to create new individu&latt /g 1ATION OF COBE ANGLE IN DEGREES WITHIN SCOLIOSIS GROUP

inherit characteristics from both parents. As with the céba FROM FIRST VISIT TO THIRD VISIT

operator, there are a number of crossover operators in the

GA literature [39]. For this study, we use the three-points EE Visit 2 VEE
crossover technique, where each old individual is divided i T T L1 T T LT T L
four parts (at three points) and the new individual is bujyd 4 Mean value 30 24 27|34 26 31| 36 28 31
randomly choosing the successive parts from its parents.[IMaximum value | 47 30 49] 58 38 49|59 41 51

figure 6, an example of the three-points crossover technique

is illustrated. . . _
To establish whether a patient’'s scoliosis has progressed

or not between two successive visits, we look at the Cobb
angles in the three spinal regions: the scoliosis is labaked
progressive if at least one of the three measurements s&sea
by 5 degrees or more. Thus, for the same subject, we can
observe progression between visits 1 and 2 and stability

Individual A ‘1 0‘0 1‘1‘0 0‘

Individual B ‘ 0|1 ‘ 0| 1 ‘ 0 ‘ 111 ‘ between visits 2 and 3, as seen in the example provided in
‘ Table II. This labelling is considered as the ground truth in
this study.

Individual A ‘1’1‘0‘1‘1‘0‘1|

TABLE I
Individual B ‘ 0’ 0 ‘ 0‘ 1 ‘ 0 ‘ 1 ‘0 I EXAMPLE OF COBB ANGLE VARIATION FROM FIRST VISIT TO THIRD VISIT

| | Visit 1 Visit 2 Visit 3 |
T TL L T TL L T TL L

Fig. 6. Example of the crossover operator. Two individuaislutions) are COblb 45 <10 43154 <10 45|54 <10 46
shown before and after the three-points crossover tecariias been applied. [_219'€S

Progression between visits 1 and 2|
| Stability between visits 2 and 3

5) Mutation: In general, when the mutation operator is The kernel of the detection system is obtained using
applied to a chromosome (individual), a randomly selectede data from the healthy subjects. The FastICA algorithm
gene is changed into its opposite. A new individual is thus run on the 28 healthy samples to construct the ICA
created in the population. When a Hiitis changed intol model; the progression detection system is then testeden th
at the j — th position, this means that the correspondingcoliotic patients. The scoliosis test set contains 90 &ssnp
components; is selected in the new solution, whereas theorresponding to the 30 patients whose data were colletted a
mutation from bitl to 0 meanss; is deselected. three clinical visits each. For the progression/non-peesgion

labellings between pairs of successive visits, we have 60
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TABLE Il

MEAN VALUE OF COBB ANGLE WITHIN PROGRESSIVE GROUP AND
NON-PROGRESSIVE GROUP FROM FIRST VISIT TO THIRD VISIT

cases of non-progression, which represents 80%. In order
word, the sensitivity of our system is 93% and the specificity
is 80%. Conversely, only 7% of scoliosis progressions ate no
detected while 20% of non-progressive cases are determined

| | Visit1 ] Visit 2 | Visit 3 |

Progressive 31 38 44 .

group as having progressed.

Non-progressive 29 30 30

group In fact, we set the decision threshold low in order to

obtain a better accuracy among positive samples; indeésd, it
better from a clinical standpoint to minimize false negegiv

cases in all, consisting of 26 progressive cases and than fals_e positives. When we analyze the.two gndetectgd
non-progressive cases. Table Ill gives the mean value RfPgression cases, we remark that both patients in question
Cobb angle within progressive group and non-progressitf@ve double major spinal curves; the effect of that type
group from first visit to third visit. Between two visits,Of scoliosis on external deformity tends to "balance out”
3D trunk images of a given patient are analyzed using tp@twegn the thoragic and lumbar regions. Therefore, detect .
proposed system to obtain the progression result. To eealugcoliosis progression pased solely on trunk shape analysis
the performance of our system, the progression results tfRgeomes more difficult in such cases.

obtained are compared to the ground truth labels based on _
the Cobb angle variations. We can conclude from the very low false negative rate

(0.07) that our approach is efficient at detecting the ptgien

Considering the relatively small size of the scoliosis grouWhose scoliosis progresses. This result confirm that the
it is not advisable to reduce this set further by formin%rogres.smn of the spinal curve also affects the appearaince
a separate validation set in order to set the valuenpf € patientss trunk and that an appropriate computing syste
and select the ICs. Therefore, we choose “leave-one-ofit"able to detect the evolution of the trunk deformity.
cross-validation (LOOCV) to estimate the performance of ) ) . ]
our classification system. The LOOCV procedure is a goodPrevious studies that attempted to estimate internal Cobb
technique for evaluating classifier generalization penamce, angles from external trunk shape met with limited results.
the idea being to test the generalization capacity of iHdat is m_faptavery dlfflcu_lt problem b(_ecause the mechdnica
classifier through unseen data. LOOCYV is almost unbiasegaracteristics of the soft tissues are different for eafept.
and its error should be relatively informative about th&hus, the same scoliosis severity (same Cobb angle) will

generalization error of the classifier (see [33, 44]). not necessarily produce the same external deformity in
two different subjects. However, when the analysis and

comparison are done on the same subject between clinical
visits, the biomechanical variables affecting the reladhuip
between internal and external shapes can be considered
The first stage of ICA modeling, namely computingonstant under certain conditions. In the present studsh ea
the ICs, used the group of healthy subjects. We ran thatient is compared only to him/herself over time, and the
FastICA algorithm on the 28 healthy samples and obtainalove-mentioned problems relating to inter-patient \olitst
27 independent components sorted by the genetic algorithene thus avoided. Unlike previous studies that focused en th
As described in section II-F above, a LOOCV procedure fsredictive factors for the Cobb angle or others spinal ieslic
used in order to set the parametéss, ap) and to test the this is the first time that a quantitative comparison between
system on different subsets from the scoliosis group. Taldgternal geometries of the scoliotic trunk has been perédrm
IV summarizes the results obtained using this evaluati@ver time.
procedure.

Ill. EXPERIMENTAL RESULTS AND DISCUSSION

Moreover, at the heart of our study is the use of ICA.
This statistical tool is able to capture local shape vaiedi
Unlike other statistical techniques, ICA does not assuna¢ th
the data distribution is normal, nor does it focus only on

TABLE IV
RESULTS OF SCOLIOSIS PROGRESSION DETECTION

'-abe”i?grouusrilggtrﬁﬂifgfaphs the large variations in the data. Thus, shape analysis with

progress?ve Non-progressive ICA preserves the_ small scale _variability without assur_nir_lg

cases cases Gaussianity. In this work, 3D image analysis of scoliotic

Detected as pro] 24 7 trunks based on ICA makes possible the automatic monitoring

gressive of scoliosis progression by providing a framework in which a
Detected as non- 2 27 I L : . K sh d .

progressive small variation in a patient's trunk shape (_ ue to an in@eas

| 6 32 in Cobb angle of at least 5 degrees) is detectable. The

complete process from scanning to detection takes about 10
minutes.

The proposed system detected 24 out of 26 real cases of
progression, which represents 93%, and 27 out of 34 realAs for the clinical relevance of this study, our system could
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be used for screening purposes. During the scoliosis alinic [4]
follow-up, the physician could use the proposed approach to
determine whether a given patient’'s scoliosis has progtess
or not. Subsequently, an X-ray examination would be used to
confirm the trunk surface-based diagnosis only if progogssi [5]
is detected by the screening system. Functioning in this
way, most patients with non-progressive scoliosis would be
spared unnecessary X-ray exams. Thus, our non-invasive
system could be used in order to prevent cumulative radiatio[6]
exposure in many cases. According to our experimental
results, in 27 out of 34 cases of non-progression between two
visits, the patient would not have to undergo an X-ray exam
and its consequences. [7]

(8]

In this work, we have presented a computer-aided diagnosis
(CAD) system that is able to identify progressive cases of
scoliosis using 3D trunk images obtained from a non invasive
surface acquisition setup. The CAD system is designed usin[%
ICA, which constitutes an innovation of this study. Also, ]
we have presented a novel method for selecting relevant ICs
based on a genetic algorithm. To our knowledge, this is the
first time that ICA has been used to perform scoliotic trun 0]
analysis.

IV. CONCLUSION

Moreover, the results demonstrate the clinical usefulnéss[ll]

the proposed system for scoliosis follow-up. In future, Wwa a
to build a system to predict scoliosis progression based on
surface topography and ICA. In this work, the challenge will
lie in how to estimate the evolution of the trunk deformityaat
future point in time based on past observations. We expect[g@]
develop this new system by incorporating time series arslys
in the ICA procedure.

[13]
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